首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Bacillus subtilis RecU protein is involved in homologous recombination, DNA repair, and chromosome segregation. Purified RecU binds preferentially to three- and four-strand junctions when compared to single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) ( approximately 10- and approximately 40-fold lower efficiency, respectively). RecU cleaves mobile four-way junctions but fails to cleave a linear dsDNA with a putative cognate site, a finding consistent with a similar genetic defect observed for genes classified within the epsilon epistatic group (namely ruvA, recD, and recU). In the presence of Mg(2+), RecU also anneals a circular ssDNA and a homologous linear dsDNA with a ssDNA tail and a linear ssDNA and a homologous supercoiled dsDNA substrate. These results suggest that RecU, which cleaves recombination intermediates with high specificity, might also help in their assembly.  相似文献   

3.
Holliday junctions form during DNA repair and homologous recombination processes. These processes entail branch migration, whereby the length of two arms of a cruciform increases at the expense of the two others. Branch migration is carried out in prokaryotic cells by the RuvAB motor complex. We study RuvAB-catalyzed branch migration by following the motion of a small paramagnetic bead tethered to a surface by two opposing arms of a single cruciform. The bead, pulled under the action of magnetic tweezers, exerts tension on the cruciform, which in turn transmits the force to a single RuvAB complex bound at the crossover point. This setup provides a unique means of measuring several kinetic parameters of interest such as the translocation rate, the processivity, and the force on the substrate against which the RuvAB complex cannot effect translocation. RuvAB-catalyzed branch migration proceeds with a small, discrete number of rates, supporting the view that the monomers comprising the RuvB hexameric rings are not functionally homogeneous and that dimers or trimers constitute the active subunits. The most frequently encountered rate, 98 +/- 3 bp/sec, is approximately five times faster than previously estimated. The apparent processivity of branch migration between pauses of inactivity is approximately 7,000 bp. Branch migration persists against opposing forces up to 23 pN.  相似文献   

4.
Escherichia coli RecA protein catalyzes reciprocal strand-exchange reactions between duplex DNA molecules, provided that one contains a single-stranded gap or tail, to form recombination intermediates containing Holliday junctions. Recombination reactions are thought to occur within helical RecA-nucleoprotein filaments in which DNA molecules are interwound. Structures generated in vitro by RecA protein have been used to detect an activity from fractionated E. coli extracts that resolves the intermediates into heteroduplex recombinant products. Resolution occurs by specific endonucleolytic cleavage at the Holliday junction. The products of cleavage are characteristic of patch and splice recombinants.  相似文献   

5.
The RuvC protein of Escherichia coli resolves Holliday junctions during genetic recombination and the postreplicational repair of DNA damage. Using synthetic Holliday junctions that are constrained to adopt defined isomeric configurations, we show that resolution occurs by symmetric cleavage of the continuous (noncrossing) pair of DNA strands. This result contrasts with that observed with phage T4 endonuclease VII, which cleaves the pair of crossing strands. In the presence of RuvC, the pair of continuous strands (i.e., the target strands for cleavage) exhibit a hypersensitivity to hydroxyl radicals. These results indicate that the continuous strands are distorted within the RuvC/Holliday junction complex and that RuvC-mediated resolution events require protein-directed structural changes to the four-way junction.  相似文献   

6.
Resolution of Holliday junctions by eukaryotic DNA topoisomerase I.   总被引:6,自引:0,他引:6       下载免费PDF全文
The Holliday junction, a key intermediate in both homologous and site-specific recombination, is generated by the reciprocal exchange of single strands between two DNA duplexes. Resolution of the junctions can occur in two directions with respect to flanking markers, either restoring the parental DNA configuration or generating a genetic crossover. Recombination can be regulated, in principle, by factors that influence the directionality of the resolution step. We demonstrate that the vaccinia virus DNA topoisomerase, a eukaryotic type I enzyme, catalyzes resolution of synthetic Holliday junctions in vitro. The mechanism entails concerted transesterifications at two recognition sites, 5'-CCCTT decreases, that are opposed within a partially mobile four-way junction. Cruciforms are resolved unidirectionally and with high efficiency into two linear duplexes. These findings suggest a model whereby type I topoisomerases may either promote or suppress genetic recombination in vivo.  相似文献   

7.
Genetic recombination occurs between homologous DNA molecules via a four-way (Holliday) junction intermediate. This ancient and ubiquitous process is important for the repair of double-stranded breaks, the restart of stalled replication forks, and the creation of genetic diversity. Once formed, the four-way junction alone can undergo the stepwise exchange of base pairs known as spontaneous branch migration. Conventional ensemble assays, useful for finding average migration rates over long sequences, have been unable to examine the affect of sequence and structure on the migration process. Here, we present a single-molecule spontaneous branch migration assay with single-base pair resolution in a study of individual DNA junctions that can undergo one step of migration. Junctions exhibit markedly different dynamics of exchange between stacking conformers depending on the point of strand exchange, allowing the moment at which branch migration occurs to be detected. The free energy landscape of spontaneous branch migration is found to be highly nonuniform and governed by two types of sequence-dependent barriers, with unmediated local migration being up to 10 times more rapid than the previously deduced average rate.  相似文献   

8.
The Escherichia coli RuvA-RuvB complex promotes branch migration of Holliday junction DNA, which is the central intermediate of homologous recombination. Like many DNA motor proteins, it is suggested that RuvA-RuvB promotes branch migration by driving helical rotation of the DNA. To clarify the RuvA-RuvB-mediated branch migration mechanism in more detail, we observed DNA rotation during Holliday junction branch migration by attaching a bead to one end of cruciform DNA that was fixed to a glass surface at the opposite end. Bead rotation was observed when RuvA, RuvB, and ATP were added to the solution. We measured the rotational rates of the beads caused by RuvA-RuvB-mediated branch migration at various ATP concentrations. The data provided a K(m) value of 65 microM and a V(max) value of 1.6 revolutions per second, which corresponds to 8.3 bp per second. This real-time observation of the DNA rotation not only allows us to measure the kinetics of the RuvA-RuvB-mediated branch migration, but also opens the possibility of elucidating the branch migration mechanism in detail.  相似文献   

9.
10.
Sequence-specific ligation of DNA using RecA protein   总被引:1,自引:0,他引:1       下载免费PDF全文
A method is described that allows the sequence-specific ligation of DNA. The method is based on the ability of RecA protein from Escherichia coli to selectively pair oligonucleotides to their homologous sequences at the ends of fragments of duplex DNA. These three-stranded complexes were protected from the action of DNA polymerase. When treated with DNA polymerase, unprotected duplex fragments were converted to fragments with blunt ends, whereas protected fragments retained their cohesive ends. By using conditions that greatly favored ligation of cohesive ends, a second DNA fragment could be selectively ligated to a previously protected fragment of DNA. When this second DNA was a vector, selected fragments were preferentially cloned. The method had sufficient power to be used for the isolation of single-copy genes directly from yeast or human genomic DNA, and potentially could allow the isolation of much longer fragments with greater fidelity than obtainable by using PCR.  相似文献   

11.
The RecA protein of Escherichia coli forms a nucleoprotein filament that promotes homologous recognition and subsequent strand exchange between a single strand and duplex DNA via a three-stranded intermediate. Recognition of homology within three-stranded nucleoprotein complexes, which is probably central to genetic recombination, is not well understood as compared with the mutual recognition of complementary single strands by Watson-Crick base pairing. Using oligonucleotides, we examined the determinants of homologous recognition within RecA nucleoprotein filaments. Filaments that contained a single strand of DNA recognized homology not only in a complementary oligonucleotide but also in an identical oligonucleotide, whether their respective sugar-phosphate backbones were antiparallel or parallel, and a filament that contained duplex DNA showed the same polymorphic versatility in the recognition of homology. Recognition of self by a filament that contains a single strand reveals that RecA filaments can recognize homology via non-Watson-Crick hydrogen bonds. Recognition of multiple forms of the same sequence by duplex DNA in the filament shows that it primarily senses base-sequence homology, and suggests that recognition can be accomplished prior to the establishment of new Watson-Crick base pairs in heteroduplex products. However, unlike the initial recognition of homology, strand exchange is stereospecific, requiring the proper antiparallel orientation of complementary strands.  相似文献   

12.
The RuvC protein of Escherichia coli catalyzes the resolution of recombination intermediates during genetic recombination and the recombinational repair of damaged DNA. Resolution involves specific recognition of the Holliday structure to form a complex that exhibits twofold symmetry with the DNA in an open configuration. Cleavage occurs when strands of like polarity are nicked at the sequence 5'-WTT decreases S-3' (where W is A or T and S is G or C). To determine whether the cleavage site needs to be located at, or close to, the point at which DNA strands exchange partners, Holliday structures were constructed with the junction points at defined sites within this sequence. We found that the efficiency of resolution was optimal when the cleavage site was coincident with the position of DNA strand exchange. In these studies, junction targeting was achieved by incorporating uncharged methyl phosphonates into the DNA backbone, providing further evidence for the importance of charge-charge repulsions in determining DNA structure.  相似文献   

13.
Holliday junctions are important structural intermediates in recombination, viral integration, and DNA repair. We present here the single-crystal structure of the inverted repeat sequence d(CCGGTACCGG) as a Holliday junction at the nominal resolution of 2. 1 A. Unlike the previous crystal structures, this DNA junction has B-DNA arms with all standard Watson-Crick base pairs; it therefore represents the intermediate proposed by Holliday as being involved in homologous recombination. The junction is in the stacked-X conformation, with two interconnected duplexes formed by coaxially stacked arms, and is crossed at an angle of 41.4 degrees as a right-handed X. A sequence comparison with previous B-DNA and junction crystal structures shows that an ACC trinucleotide forms the core of a stable junction in this system. The 3'-C x G base pair of this ACC core forms direct and water-mediated hydrogen bonds to the phosphates at the crossover strands. Interactions within this core define the conformation of the Holliday junction, including the angle relating the stacked duplexes and how the base pairs are stacked in the stable form of the junction.  相似文献   

14.
Homologous recombination is needed for meiotic chromosome segregation, genome maintenance, and tumor suppression. RAD51AP1 (RAD51 associated protein 1) has been shown to interact with and enhance the recombinase activity of RAD51. Accordingly, genetic ablation of RAD51AP1 leads to enhanced sensitivity to and also chromosome aberrations upon DNA damage, demonstrating a role for RAD51AP1 in mitotic homologous recombination. Here we show physical association of RAD51AP1 with the meiosis-specific recombinase DMC1 and a stimulatory effect of RAD51AP1 on the DMC1-mediated D-loop reaction. Mechanistic studies have revealed that RAD51AP1 enhances the ability of the DMC1 presynaptic filament to capture the duplex-DNA partner and to assemble the synaptic complex, in which the recombining DNA strands are homologously aligned. We also provide evidence that functional cooperation is dependent on complex formation between DMC1 and RAD51AP1 and that distinct epitopes in RAD51AP1 mediate interactions with RAD51 and DMC1. Finally, we show that RAD51AP1 is expressed in mouse testes, and that RAD51AP1 foci colocalize with a subset of DMC1 foci in spermatocytes. These results suggest that RAD51AP1 also serves an important role in meiotic homologous recombination.  相似文献   

15.
The FLP "recombinase" of the 2-micron circle yeast plasmid can resolve synthetic FLP site-Holliday junctions. Mutants of the FLP protein that are blocked in recombination but are normal in substrate cleavage can also mediate resolution. The products of resolution by these mutants are almost exclusively nicked molecules with a protein-bound 3' end. There is no significant asymmetry in strand cleavage (top versus bottom) by the mutants in linear or in circular FLP substrates; nor is there a bias in resolution (toward parentals or toward recombinants) of Holliday junctions (corresponding to top- or to bottom-strand exchange) by wild-type FLP. During normal FLP recombination, a small amount of the expected Holliday intermediate can be detected.  相似文献   

16.
The human recombinase hRad51 is a key protein for the maintenance of genome integrity and for cancer development. Polymerization and depolymerization of hRad51 on duplex DNA were studied here using a new generation of magnetic tweezers, measuring DNA twist in real time with a resolution of 5°. Our results combined with earlier structural information suggest that DNA is somewhat less extended by hRad51 than by RecA (4.5 vs. 5.1 Å per base pair) and untwisted by 18.2° per base pair. They also confirm a stoichiometry of 3–4 bp per protein in the hRad51-dsDNA nucleoprotein filament. At odds with earlier claims, we show that after initial deposition of a multimeric nucleus, nucleoprotein filament growth occurs by addition/release of single proteins, involving DNA twisting steps of 65° ± 5°. Simple numeric simulations show that this mechanism is an efficient way to minimize nucleoprotein filament defects. Nucleoprotein filament growth from a preformed nucleus was observed at hRad51 concentrations down to 10 nM, whereas nucleation was never observed below 100 nM in the same buffer. This behavior can be associated with the different stoichiometries of nucleation and growth. It may be instrumental in vivo to permit efficient continuation of strand exchange by hRad51 alone while requiring additional proteins such as Rad52 for its initiation, thus keeping the latter under the strict control of regulatory pathways.  相似文献   

17.
Both the bacterial RecA protein and the eukaryotic Rad51 protein form helical nucleoprotein filaments on DNA that catalyze strand transfer between two homologous DNA molecules. However, only the ATP-binding cores of these proteins have been conserved, and this same core is also found within helicases and the F1-ATPase. The C-terminal domain of the RecA protein forms lobes within the helical RecA filament. However, the Rad51 proteins do not have the C-terminal domain found in RecA, but have an N-terminal extension that is absent in the RecA protein. Both the RecA C-terminal domain and the Rad51 N-terminal domain bind DNA. We have used electron microscopy to show that the lobes of the yeast and human Rad51 filaments appear to be formed by N-terminal domains. These lobes are conformationally flexible in both RecA and Rad51. Within RecA filaments, the change between the "active" and "inactive" states appears to mainly involve a large movement of the C-terminal lobe. The N-terminal domain of Rad51 and the C-terminal domain of RecA may have arisen from convergent evolution to play similar roles in the filaments.  相似文献   

18.
Ethidium bromide, acridine orange, 4'-(9-acridinylamino)methanesulfon-o-anisidide (o-AMSA), and m-AMSA induce the rapid binding of RecA protein to double-stranded (ds) DNA. The filaments formed appear to retain the drug and are 12.8 nm in diameter with an 8.0-nm pitch. Two classes of drugs have been distinguished: (i) those that bind to RecA protein and induce assembly at low relative concentrations (e.g., ethidium bromide) and (ii) those that do not appear to interact directly with RecA protein and must be present at relatively high drug concentrations to stimulate assembly (e.g., m-AMSA). Ethidium bromide, acridine orange, and quinacrine inhibit RecA protein binding to single-stranded DNA. Addition of ATP to the drug-induced filaments causes the protein to rapidly dissociate from dsDNA, and protein binding to dsDNA diminishes upon extended exposure to room light. We suggest that the structure of the drug-induced filaments may be more typical of the complex that initiates RecA protein assembly along DNA rather than the product of extensive polymerization as induced by adenosine 5'-[gamma-thio]triphosphate.  相似文献   

19.
The polymerization of RecA on individual double-stranded DNA molecules is studied. A linear DNA (lambda DNA, 48.5 Kb), anchored at one end to a cover glass and at the other end to an optically trapped 3-micrometers diameter polystyrene bead, serves as a template. The elongation caused by RecA assembly is measured in the presence of ATP and ATP[gammaS]. By using force extension and hydrodynamic recoil, a value of the persistence length of the RecA-DNA complex is obtained. In the presence of ATP, the polymer length is unstable, first growing to saturation and then decreasing. This suggests a transient dynamics of association and dissociation for RecA on a double-stranded DNA, the process being controlled by ATP hydrolysis. Part of this dynamics is suppressed in the presence of ATP[gammaS], leading to a stabilized RecA-DNA complex. A one-dimensional nucleation and growth model is presented that may account for the protein assembly.  相似文献   

20.
The binding and polymerization of RecA protein to DNA is required for recombination, which is an essential function of life. We study the pressure and temperature dependence of RecA binding to single-stranded DNA in the presence of adenosine 5'-[γ-thio]triphosphate (ATP[γ-S]), in a temperature regulated high pressure cell using fluorescence anisotropy. Measurements were possible at temperatures between 5-60 °C and pressures up to 300 MPa. Experiments were performed on Escherichia coli RecA and RecA from a thermophilic bacteria, Thermus thermophilus. For E. coli RecA at a given temperature, binding is a monotonically decreasing and reversible function of pressure. At atmospheric pressure, E. coli RecA binding decreases monotonically up to 42 °C, where a sharp transition to the unbound state indicates irreversible heat inactivation. T. thermophilus showed no such transition within the temperature range of our apparatus. Furthermore, we find that binding occurs for a wider range of pressure and temperature for T. thermophilus compared to E. coli RecA, suggesting a correlation between thermophilicity and barophilicity. We use a two-state model of RecA binding/unbinding to extract the associated thermodynamic parameters. For E. coli, we find that the binding/unbinding phase boundary is hyperbolic. Our results of the binding of RecA from E. coli and T. thermophilus show adaptation to pressure and temperature at the single protein level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号