首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
2.
3.
NO has been shown to mediate angiogenesis; however, its role in vessel morphogenesis and maturation is not known. Using intravital microscopy, histological analysis, alpha-smooth muscle actin and chondroitin sulfate proteoglycan 4 staining, microsensor NO measurements, and an NO synthase (NOS) inhibitor, we found that NO mediates mural cell coverage as well as vessel branching and longitudinal extension but not the circumferential growth of blood vessels in B16 murine melanomas. NO-sensitive fluorescent probe 4,5-diaminofluorescein imaging, NOS immunostaining, and the use of NOS-deficient mice revealed that eNOS in vascular endothelial cells is the predominant source of NO and induces these effects. To further dissect the role of NO in mural cell recruitment and vascular morphogenesis, we performed a series of independent analyses. Transwell and under-agarose migration assays demonstrated that endothelial cell-derived NO induces directional migration of mural cell precursors toward endothelial cells. An in vivo tissue-engineered blood vessel model revealed that NO mediates endothelial-mural cell interaction prior to vessel perfusion and also induces recruitment of mural cells to angiogenic vessels, vessel branching, and longitudinal extension and subsequent stabilization of the vessels. These data indicate that endothelial cell-derived NO induces mural cell recruitment as well as subsequent morphogenesis and stabilization of angiogenic vessels.  相似文献   

4.
Lymphatic vessel growth, or lymphangiogenesis, is regulated by vascular endothelial growth factor-C (VEGF-C) and -D via VEGF receptor 3 (VEGFR-3). Recent studies suggest that VEGF, which does not bind to VEGFR-3, can also induce lymphangiogenesis through unknown mechanisms. To dissect the receptor pathway that triggers VEGFR-3-independent lymphangiogenesis, we used both transgenic and adenoviral overexpression of placenta growth factor (PlGF) and VEGF-E, which are specific activators of VEGFR-1 and -2, respectively. Unlike PlGF, VEGF-E induced circumferential lymphatic vessel hyperplasia, but essentially no new vessel sprouting, when transduced into mouse skin via adenoviral vectors. This effect was not inhibited by blocking VEGF-C and -D. Postnatal lymphatic hyperplasia, without increased density of lymphatic vessels, was also detected in transgenic mice expressing VEGF-E in the skin, but not in mice expressing PlGF. Surprisingly, VEGF-E induced lymphatic hyperplasia postnatally, and it did not rescue the loss of lymphatic vessels in transgenic embryos where VEGF-C and VEGF-D were blocked. Our data suggests that VEGFR-2 signals promote lymphatic vessel enlargement, but unlike in the blood vessels, are not involved in vessel sprouting to generate new lymphatic vessels in vivo.  相似文献   

5.
Schlemm’s canal (SC) is a specialized vascular structure in the eye that functions to drain aqueous humor from the intraocular chamber into systemic circulation. Dysfunction of SC has been proposed to underlie increased aqueous humor outflow (AHO) resistance, which leads to elevated ocular pressure, a factor for glaucoma development in humans. Here, using lymphatic and blood vasculature reporter mice, we determined that SC, which originates from blood vessels during the postnatal period, acquires lymphatic identity through upregulation of prospero homeobox protein 1 (PROX1), the master regulator of lymphatic development. SC expressed lymphatic valve markers FOXC2 and integrin α9 and exhibited continuous vascular endothelial–cadherin (VE-cadherin) junctions and basement membrane, similar to collecting lymphatics. SC notably lacked luminal valves and expression of the lymphatic endothelial cell markers podoplanin and lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1). Using an ocular puncture model, we determined that reduced AHO altered the fate of SC both during development and under pathologic conditions; however, alteration of VEGF-C/VEGFR3 signaling did not modulate SC integrity and identity. Intriguingly, PROX1 expression levels linearly correlated with SC functionality. For example, PROX1 expression was reduced or undetectable under pathogenic conditions and in deteriorated SCs. Collectively, our data indicate that PROX1 is an accurate and reliable biosensor of SC integrity and identity.  相似文献   

6.
Caveolae in endothelial cells have been implicated as plasma membrane microdomains that sense or transduce hemodynamic changes into biochemical signals that regulate vascular function. Therefore we compared long- and short-term flow-mediated mechanotransduction in vessels from WT mice, caveolin-1 knockout (Cav-1 KO) mice, and Cav-1 KO mice reconstituted with a transgene expressing Cav-1 specifically in endothelial cells (Cav-1 RC mice). Arterial remodeling during chronic changes in flow and shear stress were initially examined in these mice. Ligation of the left external carotid for 14 days to lower blood flow in the common carotid artery reduced the lumen diameter of carotid arteries from WT and Cav-1 RC mice. In Cav-1 KO mice, the decrease in blood flow did not reduce the lumen diameter but paradoxically increased wall thickness and cellular proliferation. In addition, in isolated pressurized carotid arteries, flow-mediated dilation was markedly reduced in Cav-1 KO arteries compared with those of WT mice. This impairment in response to flow was rescued by reconstituting Cav-1 into the endothelium. In conclusion, these results showed that endothelial Cav-1 and caveolae are necessary for both rapid and long-term mechanotransduction in intact blood vessels.  相似文献   

7.
Inflammation is associated with blood vessel and lymphatic vessel proliferation and remodeling. The microvasculature of the mouse trachea provides an ideal opportunity to study this process, as Mycoplasma pulmonis infection of mouse airways induces widespread and sustained vessel remodeling, including enlargement of capillaries into venules and lymphangiogenesis. Although the mediators responsible for these vascular changes in mice have not been identified, VEGF-A is known not to be involved. Here, we sought to determine whether TNF-α drives the changes in blood vessels and lymphatics in M. pulmonis–infected mice. The endothelial cells, but not pericytes, of blood vessels, but not lymphatics, were immunoreactive for TNF receptor 1 (TNF-R1) and lymphotoxin B receptors. Most TNF-R2 immunoreactivity was on leukocytes. Infection resulted in a large and sustained increase in TNF-α expression, as measured by real-time quantitative RT-PCR, and smaller increases in lymphotoxins and TNF receptors that preceded vessel remodeling. Substantially less vessel remodeling and lymphangiogenesis occurred when TNF-α signaling was inhibited by a blocking antibody or was silenced in Tnfr1–/– mice. When administered after infection was established, the TNF-α–specific antibody slowed but did not reverse blood vessel remodeling and lymphangiogenesis. The action of TNF-α on blood vessels is probably mediated through direct effects on endothelial cells, but its effects on lymphangiogenesis may require inflammatory mediators from recruited leukocytes. We conclude that TNF-α is a strong candidate for a mediator that drives blood vessel remodeling and lymphangiogenesis in inflammation.  相似文献   

8.
9.
Arteriovenous malformations (AVMs) are vascular anomalies where arteries and veins are directly connected through a complex, tangled web of abnormal arteries and veins instead of a normal capillary network. AVMs in the brain, lung, and visceral organs, including the liver and gastrointestinal tract, result in considerable morbidity and mortality. AVMs are the underlying cause of three major clinical symptoms of a genetic vascular dysplasia termed hereditary hemorrhagic telangiectasia (HHT), which is characterized by recurrent nosebleeds, mucocutaneous telangiectases, and visceral AVMs and caused by mutations in one of several genes, including activin receptor–like kinase 1 (ALK1). It remains unknown why and how selective blood vessels form AVMs, and there have been technical limitations to observing the initial stages of AVM formation. Here we present in vivo evidence that physiological or environmental factors such as wounds in addition to the genetic ablation are required for Alk1-deficient vessels to develop to AVMs in adult mice. Using the dorsal skinfold window chamber system, we have demonstrated for what we believe to be the first time the entire course of AVM formation in subdermal blood vessels by using intravital bright-field images, hyperspectral imaging, fluorescence recordings of direct arterial flow through the AV shunts, and vascular casting techniques. We believe our data provide novel insights into the pathogenetic mechanisms of HHT and potential therapeutic approaches.  相似文献   

10.
Transplantation of engineered tissues with microvascular structure is advancing towards therapeutic application to improve the flow of blood and/or lymphatic fluids. In lymphatic disorders, transplantation of tissue‐engineered lymphatic grafts can be an ideal treatment for draining excessive lymphatic fluid. In this study, we examined the transplantation of 3‐dimensional artificial human lymphatic network tissue (AHLT) fabricated by the cell accumulation technique into the subcutaneous tissue and fascia of mice. At 2 weeks after transplantation, the AHLT showed engraftment of artificial lymphatic vessels immunopositive for human CD31 and human podoplanin. Notably, we also observed the generation of blood vessel‐like structure comprising endothelial cells immunopositive for human CD34 and mural‐like cells immunopositive for human CD90 and αSMA, which were considered as myofibroblasts. In the fabrication of AHLT in vitro, the sporadic emergence of human CD34‐positive/Prox‐1‐negative sites was observed, followed by the formation of blood vessel‐like structure in the graft within 7 days after transplantation. The fine structure of engrafted AHLT observed by transmission electron microscopy showed that the engrafted artificial lymphatic vessels possess the specific structures of native lymphatic capillaries such as loose interendothelial connections and anchoring filaments. In contrast, blood vessel‐like structure showed tight interendothelial connections, thick basement membranes, and layers of mural‐like cells, which resemble small blood vessels. These results suggested the remodelling of artificial lymphatic network to form blood vessel‐like structure associated with mural‐like cells along with AHLT fabrication and engraftment.  相似文献   

11.
Platelets are essential for maintaining hemostasis following mechanical injury to the vasculature. Besides this established function, novel roles of platelets are becoming increasingly recognized, which are critical in non‐injury settings to maintain vascular barrier integrity. For example, during embryogenesis platelets act to support the proper separation of blood and lymphatic vessels. This role continues beyond birth, where platelets prevent leakage of blood into the lymphatic vessel network. During the course of inflammation, platelets are necessary to prevent local hemorrhage due to neutrophil diapedesis and disruption of endothelial cell‐cell junctions. Surprisingly, platelets also work to secure tumor‐associated blood vessels, inhibiting excessive vessel permeability and intra‐tumor hemorrhaging. Interestingly, many of these novel platelet functions depend on immunoreceptor tyrosine‐based activation motif (ITAM) signaling but not on signaling via G protein‐coupled receptors, which plays a crucial role in platelet plug formation at sites of mechanical injury. Murine platelets express two ITAM‐containing receptors: the Fc receptor γ‐chain (FcRγ), which functionally associates with the collagen receptor GPVI, and the C‐type lectin‐like 2 (CLEC‐2) receptor, a hemITAM receptor for the mucin‐type glycoprotein podoplanin. Human platelets express an additional ITAM receptor, FcγRIIA. These receptors share common downstream effectors, including Syk, SLP‐76 and PLCγ2. Here we will review the recent literature that highlights a critical role for platelet GPVI/FcRγ and CLEC‐2 in vascular integrity during development and inflammation in mice and discuss the relevance to human disease.  相似文献   

12.
The vascular endothelium mediates the ability of blood vessels to alter their architecture in response to hemodynamic changes; however, the specific endothelial-derived factors that are responsible for vascular remodeling are poorly understood. Here we show that endothelial-derived nitric oxide (NO) is a major endothelial-derived mediator controlling vascular remodeling. In response to external carotid artery ligation, mice with targeted disruption of the endothelial nitric oxide synthase gene (eNOS) did not remodel their ipsilateral common carotid arteries whereas wild-type mice did. Rather, the eNOS mutant mice displayed a paradoxical increase in wall thickness accompanied by a hyperplastic response of the arterial wall. These findings demonstrate a critical role for endogenous NO as a negative regulator of vascular smooth muscle proliferation in response to a remodeling stimulus. Furthermore, our data suggests that a primary defect in the NOS/NO pathway can promote abnormal remodeling and may facilitate pathological changes in vessel wall morphology associated with complex diseases such as hypertension and atherosclerosis.  相似文献   

13.
Recirculation of fluid and cells through lymphatic vessels plays a key role in normal tissue homeostasis, inflammatory diseases, and cancer. Despite recent advances in understanding lymphatic function (Alitalo, K., T. Tammela, and T.V. Petrova. 2005. Nature. 438:946-953), the cellular features responsible for entry of fluid and cells into lymphatics are incompletely understood. We report the presence of novel junctions between endothelial cells of initial lymphatics at likely sites of fluid entry. Overlapping flaps at borders of oak leaf-shaped endothelial cells of initial lymphatics lacked junctions at the tip but were anchored on the sides by discontinuous button-like junctions (buttons) that differed from conventional, continuous, zipper-like junctions (zippers) in collecting lymphatics and blood vessels. However, both buttons and zippers were composed of vascular endothelial cadherin (VE-cadherin) and tight junction-associated proteins, including occludin, claudin-5, zonula occludens-1, junctional adhesion molecule-A, and endothelial cell-selective adhesion molecule. In C57BL/6 mice, VE-cadherin was required for maintenance of junctional integrity, but platelet/endothelial cell adhesion molecule-1 was not. Growing tips of lymphatic sprouts had zippers, not buttons, suggesting that buttons are specialized junctions rather than immature ones. Our findings suggest that fluid enters throughout initial lymphatics via openings between buttons, which open and close without disrupting junctional integrity, but most leukocytes enter the proximal half of initial lymphatics.  相似文献   

14.
15.
We studied the vascular effects of invasive human cytotrophoblasts in vivo by transplanting placental villi to the fifth mammary fat pads or beneath the kidney capsules of Scid mice. Over 3 weeks, robust cytotrophoblast invasion was observed in both locations. The architecture of the mammary fat pad allowed for detailed analysis of the cells' interactions with resident murine blood vessels, which revealed specific induction of apoptosis in the endothelial cells and smooth muscle walls of the arterioles. This finding, and confirmation of the results in an in vitro coculture model, suggests that a parallel process is important for enabling cytotrophoblast endovascular invasion during human pregnancy. Cytotrophoblast invasion of the kidney parenchyma was accompanied by a robust lymphangiogenic response, while in vitro, the cells stimulated lymphatic endothelial cell migration via the actions of VEGF family members, FGF, and TNF-alpha. Immunolocalization analyses revealed that human pregnancy is associated with lymphangiogenesis in the decidua since lymphatic vessels were not a prominent feature of the nonpregnant endometrium. Thus, the placenta triggers the development of a decidual lymphatic circulation, which we theorize plays an important role in maintaining fluid balance during pregnancy, with possible implications for maternal-fetal immune cell trafficking.  相似文献   

16.
Blood vessels are required for a tumor to grow and functional lymphatic vessels are required for it to disseminate to lymph nodes. In an attempt to eradicate both the primary tumor and its lymphatic metastasis, we targeted both blood and lymphatic vessels using two different tyrosine kinase inhibitors (TKIs): cediranib and vandetanib, which block vascular endothelial growth factor receptor (VEGFR)-2 and -3 in enzymatic assays. We found that although both cediranib and vandetanib slowed the growth rate of primary tumors and reduced blood vessel density, neither agent was able to prevent lymphatic metastasis when given after tumor cells had seeded the lymph node. However, when given during tumor growth, cediranib reduced the diameters of the draining lymphatic vessels, the number of tumor cells arriving in the draining lymph node, and the incidence of lymphatic metastasis. On the other hand, vandetanib had minimal effect on any of these variables, suggesting that vandetanib did not effectively block VEGFR-3 on lymphatic endothelial cells in our animal model. Collectively, these data indicate that the response of lymphatic vessels to a TKI can determine the incidence of lymphatic metastasis, independent of the effect of the TKI on blood vessels.  相似文献   

17.
Vascular remodeling normalizes abnormal hemodynamic stresses through structural changes affecting vessel size and wall thickness. We investigated the role of inflammation in flow-mediated vascular remodeling using a murine model of partial outflow reduction without flow cessation or neointima formation. Common carotid arteries decreased in size after ipsilateral external carotid artery ligation in wild-type mice, but not in myeloid differentiation protein-88 (MyD88)–deficient mice. Inward remodeling was associated with MyD88-dependent and superoxide-initiated cytokine and chemokine production, as well as transient adventitial macrophage accumulation and activation. Macrophage depletion prevented flow-mediated inward vascular remodeling. Expression of MyD88 by intrinsic vascular cells was necessary for cytokine and chemokine production and changes in vessel size, whereas MyD88 expression by bone marrow–derived cells was obligatory for changes in vessel size. We conclude that there are at least two distinct roles for MyD88 in flow-mediated inward remodeling of conduit arteries. Our findings suggest that inflammation is necessary for vascular adaptation to changes in hemodynamic forces.  相似文献   

18.
Numerical simulations of pulsatile flows and macromolecular (such as LDL) transport in complex blood vessels, including the cerebral artery, are carried out using the FLUENT software. The hemodynamic factors such as axial velocity, secondary flow as well as LDL concentration distribution in the complex vessel are obtained. It is found that in the case of pulsatile flow, the LDL concentration is higher in the central region of the flow than on the wall. Under the precondition of impermeability, the numerical results indicate that the blood flow is quite complicated in complex blood vessel. The complex flow can reduce the LDL concentration on the vessel wall, which is helpful to prevent the concentration polarization.  相似文献   

19.
Arteriovenous malformations are congenital vascular lesions characterized by a direct and tangled connection between arteries and veins, which disrupts oxygen circulation and normal blood flow. Arteriovenous malformations often occur in the patient with hereditary hemorrhagic telangiectasia. The attempts to elucidate the causative factors and pathogenic mechanisms of arteriovenous malformations are now still in progress. Some studies reported that shear stress in blood flow is one of the factors involved in arteriovenous malformations manifestation. Through several mechanotransducers harboring the endothelial cells membrane, the signal from shear stress is transduced towards the responsible signaling pathways in endothelial cells to maintain cell homeostasis. Any disruption in this well-established communication will give rise to abnormal endothelial cells differentiation and specification, which will later promote arteriovenous malformations. In this review, we discuss the update of several mechanotransducers that have essential roles in shear stress-induced signaling pathways, such as activin receptor-like kinase 1, Endoglin, Notch, vascular endothelial growth factor receptor 2, Caveolin-1, Connexin37, and Connexin40. Any disruption of these signaling potentially causes arteriovenous malformations. We also present some recent insights into the fundamental analysis, which attempts to determine potential and alternative solutions to battle arteriovenous malformations, especially in a less invasive and risky way, such as gene treatments.  相似文献   

20.
Summary.  Neural guidance cues are essential for a growing axon to correctly course through the body and innervate target tissues. Interestingly, the vascular network follows a parallel trajectory along nerves, suggesting that guidance cues important for neural patterning may also be required for proper vascular patterning. However, while an axon arises from one cell, a blood vessel is composed of many endothelial cells. Recent evidence suggests that neural repulsive cues are usurped by multi-cellular blood vessels to ensure vascular stabilization cues. Additional clues into the signaling mechanisms that promote vascular stabilization are emerging from cerebral cavernous malformations, a disease characterized by headache, epilepsy, and stroke. Thus, neurobiology and neurology are providing insights into the concepts of vascular stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号