首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of aranidipine, a novel dihydropyridine Ca(2+) channel antagonist, on membrane currents in guinea pig ventricular myocytes and on action potentials in rabbit sinoatrial node tissue were examined. In myocytes, aranidipine (10 nmol/l to 1 micromol/l) concentration-dependently decreased T-type and L-type Ca(2+) currents. Aranidipine (1 micromol/l) had little effect on K(+) currents. In the sinoatrial node, 0.1 micromol/l aranidipine increased cycle length, and decreased +V(max) and the slope of the phase 4 depolarization. Thus, inhibition of both T-type and L-type Ca(2+) currents by aranidipine may partly explain its potent negative chronotropic activity.  相似文献   

2.
The effects of barnidipine and nifedipine on L-type Ca(2+) current (I(Ca(L))) were investigated in ventricular cardiomyocytes from rats. Both barnidipine and nifedipine reduced I(Ca(L)) in a concentration and voltage dependent manner; the EC(50) were 80 and 130 nM at a holding potential of -80 mV, respectively, and 18 and 6 nM at -40 mV, respectively. Both drugs induced a leftward shift of the steady-state inactivation curve of I(Ca(L)). Using a twin pulse protocol, the relationships between the amount of block of I(Ca(L)) by either drug, seen during the second pulse, and the length of the first pulse were described by monoexponential functions reflecting onset of block, dependent on drug concentration. The onset of block by barnidipine was three times faster than that by nifedipine. With both drugs, recovery of I(Ca(L)) was 50 times slower than under control conditions and described by monoexponential functions reflecting offset of block (independent of drug concentration). The offset of block with barnidipine was three times slower than that with nifedipine. The time constants of block and unblock of I(Ca(L)) by both drugs were used to calculate binding and unbinding and to predict their effects at two frequencies. It is suggested that barnidipine exhibits a higher affinity to the inactivated Ca(2+) channel state as compared to nifedipine.  相似文献   

3.
It has been suggested that protein tyrosine kinase (PTK) activity can directly regulate cardiac L-type Ca(2+) channels. This conclusion is based to a large extent on the observation that the PTK inhibitor genistein can inhibit the cardiac L-type Ca(2+) current. The purpose of the present study was to determine whether the ability of genistein to inhibit cardiac L-type Ca(2+) channel activity is due to inhibition of PTK activity. Genistein significantly reduced the magnitude of the L-type Ca(2+) current in guinea pig ventricular myocytes recorded using the whole-cell patch-clamp technique. However, this effect was associated with extracellular, not intracellular, application of the drug. Peroxovanadate (PVN), a potent protein tyrosine phosphatase inhibitor, had no effect on the basal Ca(2+) current. PVN was also ineffective in preventing the inhibitory effect of genistein. Internal perfusion of cells with a pipette solution containing ATPgammaS was used to prevent reversibility of phosphorylation-dependent processes. This treatment did not alter the inhibitory effect of genistein, although it did result in irreversible protein kinase A-dependent regulation of the Ca(2+) current. Bath application of lavendustin A, a PTK inhibitor that is structurally unrelated to genistein, did not affect the Ca(2+) current amplitude. The inhibitory effect of genistein was also associated with a hyperpolarizing shift in the voltage dependence of Ca(2+) channel inactivation. These results are consistent with the conclusion that the cardiac L-type Ca(2+) current is not directly regulated by PTK activity and that the inhibitory effect of genistein is due to direct non-catalytic blockade of the channels.  相似文献   

4.
The effects of tributyltin (TBT) on cytosolic Ca(2+) concentration ([Ca(2+)](c)) and cell viability were investigated in nerve growth factor-differentiated PC12 cells. TBT concentration dependently increased [Ca(2+)](c) with an EC(50) value of 0.07μM. This effect was markedly reduced by removal of the extracellular Ca(2+) or membrane depolarization with a high K(+) medium, but unaffected by thapsigargin causing depletion of intracellular Ca(2+) stores. The L-type voltage-dependent Ca(2+) channel (VDCC) blocker nicardipine blocked the effect of TBT, but the N-type VDCC blocker ω-conotoxin did not. TBT decreased the number of viable cells with an EC(50) value of 0.09μM. The TBT-induced cell death was prevented by nicardipine or by chelating the cytosolic Ca(2+) with BAPTA-AM, but not by ω-conotoxin. The results show that TBT causes an increase in [Ca(2+)](c) via activating L-type VDCCs, and support the idea that the organotin-induced cell death arises through Ca(2+) mobilization via L-type VDCCs.  相似文献   

5.
1. Phenylarsine oxide (PAO) is commonly used to inhibit tyrosine phosphatase activity. However, PAO can affect a variety of different processes because of its ability to promote sulfhydryl oxidation. In the present study, we investigated the effects that PAO has on basal and beta-adrenergically stimulated L-type Ca(2+) channel activity in isolated cardiac myocytes. 2. Extracellular application of PAO transiently stimulated the basal L-type Ca(2+) channel activity, whereas it irreversibly inhibited protein kinase A (PKA)-dependent regulation of channel activity by isoproterenol, forskolin and 8-CPT-cAMP (8-p-chlorophenylthioadenosine 3',5'-cyclic monophosphate). PAO also inhibited channel activity irreversibly stimulated in the presence of adenosine 5'-(3-thiotriphosphate) tetralithium salt. 3. Neither the stimulatory nor the inhibitory effects of PAO were affected by the tyrosine kinase inhibitor lavendustin A, suggesting that tyrosine phosphorylation is not involved. 4. Extracellular application of the sulfhydryl-reducing agent dithiothreitol (DTT) antagonized both the stimulatory and inhibitory effects of PAO. Yet, following intracellular dialysis with DTT, only the inhibitory effect of PAO was antagonized. 5. The inhibitory effect of PAO was mimicked by intracellular, but not extracellular application of the membrane impermeant thiol oxidant 5,5'-dithio-bis(2-nitrobenzoic acid). 6. These results suggest that the stimulatory effect of PAO results from oxidation of sulfhydryl residues at an extracellular site and the inhibitory effect is due to redox regulation of an intracellular site that affects the response of the channel to PKA-dependent phosphorylation. It is concluded that the redox state of the cell may play a critical role in modulating beta-adrenergic responsiveness of the L-type Ca(2+) channel in cardiac myocytes.  相似文献   

6.
Emodin is known to be used in the treatment of cholesterol stones and cholecystitis. This study sought to investigate the effects of emodin on the contraction of gallbladder smooth muscle (GBSM), intracellular Ca(2+) concentration and L-type calcium current in GBSM cells. Gallbladder muscle strips were obtained from adult guinea pigs and the resting tension was recorded. Gallbladder smooth muscle cells were isolated by enzymatic digestion. Cells were loaded with fluo-3/AM and [Ca(2+)](i) was determined by a laser confocal microscope. Calcium current was recorded by the whole-cell patch clamp method. Emodin increased the resting tension of GBSM strips in a dose-dependent manner. Emodin elevated [Ca(2+)](i) in GBSM cells, and this effect was attenuated by pretreatment with nifedipine. In addition, Emodin increased L-type calcium current at concentrations of 1 to 30 microM (at +10 mV, 10 microM, 45.1+/-5.2% compared to control, EC(50) =3.11 microM). In the presence of protein kinase C (PKC) inhibitor, Staurosporine, emodin did not significantly affect the calcium current. However, phorbol 12, 13-dibutyrate mimicked emodin in enhancement of the calcium current. These results suggest that emodin promotes gallbladder contraction by increasing Ca(2+) influx through L-type calcium channel via PKC pathway.  相似文献   

7.
To evaluate the potency of levosimendan, a newly developed cardiotonic agent, as a phosphodiesterase-3 inhibitor, we examined its effects on the L-type Ca(2+) current (I(Ca,L)) in single human atrial cells using the whole-cell voltage-clamp method. Levosimendan significantly increased I(Ca,L) in a concentration-dependent manner (E(max), 139.0 +/- 1.8%; EC(50), 54 +/- 3.6 nM). The increase in I(Ca,L) induced by 1 microM levosimendan was significantly greater in human atrial cells (136.7 +/- 11.0%, n=8) than in rabbit atrial cells (23.5 +/- 3.5%, n=6) (depolarization to +10 mV in each case). In rat atrial and ventricular cells, I(Ca,L) was unaffected by 1-10 microM levosimendan. These results indicate that the selective phosphodiesterase-3 inhibitor levosimendan increases cardiac-cell I(Ca,L) significantly more strongly in human than in rabbit and rat. It seems likely that the positive inotropic effect of levosimendan on the human myocardium depends on an increase in I(Ca,L) that is modulated by adenosine 3'5'-cyclic monophosphate (cAMP)-dependent phosphorylation.  相似文献   

8.
1. Effects of cyclopiazonic acid (CPA), a specific inhibitor of the Ca(2+)-ATPase in sarcoplasmic reticulum (SR), on membrane ionic currents were examined in single smooth muscle cells freshly isolated from ileal longitudinal strips and urinary bladder of the guinea-pig. 2. Under whole-cell clamp, CPA (1-10 microM) reduced peak outward current elicited by depolarization in a concentration-dependent manner. The concentration of CPA required for 50% decrease in the peak outward current was approximately 3 microM in ileal cells under these conditions. The current reduced by CPA recovered by more than 70% after washout. 3. The transient outward current elicited by application of 5 mM caffeine at a holding potential of -50 mV in Ca2+ free solution was almost abolished, when the preceding Ca(2+)-loading of the cell in a solution containing 2.2 mM Ca2+ was performed in the presence of 3 microM CPA. 4. When the Ca(2+)-dependent K+ current (IK-Ca) and Ca2+ current (ICa) were inhibited by addition of Ca2+, the remaining delayed rectifier type K+ current was not affected by 10 microM CPA. When outward currents were blocked by replacement of K+ by Cs+ in the pipette solution, the remaining ICa was not affected by 10 microM CPA. 5. CPA (10 microM) did not affect the conductance of single maxi Ca(2+)-dependent K+ channels or the Cd(2+)-dependence of their open probability in both inside- and outside-out configurations. 6. These results indicate that IK-Ca is selectively and strongly suppressed by CPA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
10.
1. The signal transduction mechanism of ginsenosides, the active ingredients of ginseng, was studied in XENOPUS: oocytes using two-electrode voltage-clamp technique. Ginseng total saponin (GTS), i.e., an unfractionated mixture of ginsenosides produced a large outward current at membrane potentials more positive than -20 mV when it was applied to the exterior of oocytes, but not when injected intracellularly. The effect of GTS was concentration-dependent (EC(50): 4.4 microg ml(-1)) and reversible. 2. Certain fractionated ginsenosides (Rb(1), Rb(2), Rc, Rf, Rg(2) and Ro) also produced an outward current in a concentration-dependent manner with the order of potency of Rf>Ro>Rb(1)=Rb(2)>Rg(2)>Rc. Other ginsenosides (Rd, Re and Rg(1)) had little or no effect. 3. The GTS effect was completely blocked by bath application of the Ca(2+)-activated Cl(-) channel blocker niflumic acid and by intracellular injection of the calcium chelator BAPTA or the IP(3) receptor antagonist heparin. Also, the effect was partially blocked by bath-applied U-73122, a phospholipase C (PLC) inhibitor and by intracellularly injected GTP gamma S, a non-hydrolyzable GTP analogue. Whereas, it was not altered by pertussin toxin (PTX) pretreatment. 4. These results indicate that: (1) interaction of ginsenosides with membrane component(s) at the extracellular side leads to Ca(2+)-activated Cl(-) channel opening in XENOPUS: oocyte membrane; and (2) this process involves PLC activation, the release of Ca(2+) from the IP(3)-sensitive intracellular store and PTX-insensitive G protein activation.  相似文献   

11.
CYP2J2 is abundant in cardiomyocytes and is involved in the metabolism of arachidonic acid (AA) to epoxyeicosatrienoic acids (EETs), which affect multiple cell functions. In this study, we investigated the effect of overexpression of CYP2J2 on cardiac L-type Ca2+ currents (ICa) in adult transgenic mice. Cardiac-specific overexpression of CYP2J2 was achieved using the alpha-myosin heavy chain promoter. ICa was recorded from isolated ventricular cardiomyocytes. Compared with the wild-type cardiomyocytes (n = 60), the density of ICa was significantly increased by 40 +/- 9% in the CYP2J2 transgenic cardiomyocytes (n = 71; P < 0.001). N-Methylsulfonyl-6-(2-proparglyloxyphenyl)hexanamide (MS-PPOH), a specific inhibitor of EET biosynthesis, and clotrimazole, a cytochrome P450 inhibitor, significantly reduced ICa in both wild-type and transgenic cardiomyocytes; however, MS-PPOH inhibited ICa to a greater extent in the CYP2J2 transgenic cells (n = 10) than in the wild-type cells (n = 10; P < 0.01). Addition of 11,12-EET significantly restored ICa in MS-PPOH-treated cells. Intracellular dialysis with either of two inhibitory monoclonal antibodies against CYP2J2 significantly reduced ICa in both wild-type and transgenic mice. Membrane-permeable 8-bromo-cAMP and the beta-adrenergic agonist isoproterenol significantly reversed the monoclonal antibody-induced inhibition of ICa. In addition, the total protein level of the alpha1 subunit of the Cav1.2 L-type Ca2+ channel was not altered in CYP2J2 transgenic hearts, but the phosphorylated portion was markedly increased. In conclusion, overexpression of CYP2J2 increases ICa in CYP2J2 transgenic cardiomyocytes via a mechanism that involves cAMP-protein kinase A-dependent phosphorylation of the L-type Ca2+ channel.  相似文献   

12.
To examine if toosendanin (TSN) affects intracellular free-Ca2 concentration ([Ca2~]i) in neuroblastomaxglioma hybrid cells (NG108-15 cells). METHODS: The [Ca2~]i was determined by laser-scanning confocal microscopic imaging technique in which Fluo-3 was used as Ca2~ indicator. RESULTS: TSN induced an increase in resting[Ca2 ]i and in high K~-evoked Ca2~ transient in differentiated NG108-15 cells. The TSN-induced increase in [Ca2 ]i was dose-dependent and disappeared in CdC12-, nifedipine-containing or Ca2~-free solution, and appeared after washing out the Ca2~ channel blockers or adding Ca2~. CONCLUSION: TSN increased [Ca2~]i in differentiated NG108-15 cells. The [Ca2 ]i enhancement was due to the influx of extracellular Ca2 and related to L-type Ca2 channels.  相似文献   

13.
Mercury (Hg2+) suppression of potassium currents of outer hair cells   总被引:1,自引:0,他引:1  
The heavy metal mercury (Hg(2+)) is an insidious environmental pollutant that causes toxic effects on sensory systems. It is well known that the group IIB divalent cation Hg(2+) is an inhibitor of the group I monovalent potassium (K(+)) cation pore-forming channel in several biological preparations. Here, we used the whole cell patch clamp technique on freshly isolated outer hair cells (OHCs) of the guinea pig cochlea to record outward K(+) currents and inward K(+) currents treated with mercuric chloride (HgCl(2)). HgCl(2) affected K(+) currents in a voltage- and dose-dependent manner. The effects of HgCl(2) at 1.0-100 microM are more pronounced on onset peak current than on steady-state end current. HgCl(2) depolarized also the resting membrane potential. Although the effect of HgCl(2) at 1.0 microM was partially washed out over several minutes, the effects at 10 and 100 microM were irreversible to washout. Since K(+) channels of OHCs are targets for HgCl(2) ototoxicity, this may lead to auditory transduction problems, including a loss in hearing sensitivity. A better understanding of fundamental mechanisms underlying K(+) channelopathies in OHCs due to HgCl(2) poisoning may lead to better preventive or therapeutic agents.  相似文献   

14.

BACKGROUND AND PURPOSE

Pharmacological preconditioning (PPC) with mitochondrial ATP-sensitive K+ (mitoKATP) channel openers such as diazoxide, leads to cardioprotection against ischaemia. However, effects on Ca2+ homeostasis during PPC, particularly changes in Ca2+ channel activity, are poorly understood. We investigated the effects of PPC on cardiac L-type Ca2+ channels.

EXPERIMENTAL APPROACH

PPC was induced in isolated hearts and enzymatically dissociated cardiomyocytes from adult rats by preincubation with diazoxide. We measured reactive oxygen species (ROS) production and Ca2+ signals associated with action potentials using fluorescent probes, and L-type currents using a whole-cell patch-clamp technique. Levels of the α1c subunit of L-type channels in the cellular membrane were measured by Western blot.

KEY RESULTS

PPC was accompanied by a 50% reduction in α1c subunit levels, and by a reversible fall in L-type current amplitude and Ca2+ transients. These effects were prevented by the ROS scavenger N-acetyl-L-cysteine (NAC), or by the mitoKATP channel blocker 5-hydroxydecanoate (5-HD). PPC signficantly reduced infarct size, an effect blocked by NAC and 5-HD. Nifedipine also conferred protection against infarction when applied during the reperfusion period. Downregulation of the α1c subunit and Ca2+ channel function were prevented in part by the protease inhibitor leupeptin.

CONCLUSIONS AND IMPLICATIONS

PPC downregulated the α1c subunit, possibly through ROS. Downregulation involved increased degradation of the Ca2+ channel, which in turn reduced Ca2+ influx, which may attenuate Ca2+ overload during reperfusion.  相似文献   

15.
The role of L-type Ca(2+) channels in the relaxation to nitric oxide (NO)-mediated MaxiK(Ca) channel activation was examined in guinea pig aorta. Acetylcholine (ACh) produced an endothelium-dependent relaxation of guinea pig aorta precontracted with noradrenaline (NA), which was abolished by an NO synthase inhibitor, N(G)-nitro-L-arginine (L-NNA). Both endothelium-dependent relaxation by ACh and endothelium-independent relaxation by an NO donor, (+/-)-(E)-ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexeneamide (NOR3), were strongly suppressed by a soluble guanylate cyclase (sGC) inhibitor, 1H-[1,2,4]-oxadiazolo-[4,3-a]-quinoxalin-1-one (ODQ), suggesting that increased intracellular cGMP plays the key role in both responses. ACh- and NOR3-induced relaxations were significantly suppressed by iberiotoxin (IbTX), a selective blocker of MaxiK(Ca) channels. ACh- and NOR3-induced relaxations were greatly attenuated when arteries were precontracted with high KCl instead of NA, supporting the idea that K(+) channel activation mediates the relaxant responses. (6) NOR3-induced relaxations were not affected by a L-type Ca(2+) channel blocker, diltiazem. Furthermore, endothelium-independent relaxation by a K(ATP) channel opener, (+)-7,8-dihydro-6, 6-dimethyl-7-hydroxy-8-(2-oxo-1-piperidinyl)-6H-pyrano[2,3-f] benz-2,1, 3-oxadiazole (NIP-121) was not affected by diltiazem and nicardipine. These findings suggest that blockade of L-type Ca(2+) channels is not a major mechanism responsible for the vascular relaxation due to NO-mediated MaxiK(Ca) channel activation in guinea pig aorta.  相似文献   

16.
Azelastine is used for symptomatic relief of allergic rhinitis and asthma bronchiale. In vitro studies in smooth muscle cells from guinea pig trachea and ileum demonstrate that the drug blocks L-type Ca(2+) current (I(Ca, L)). However, for safety reasons, it is important to know whether azelastine also affects cardiac I(Ca, L) in therapeutically relevant concentrations. We have therefore studied the effects of azelastine on I(Ca, L) in guinea pig ventricular myocytes using standard whole-cell patch-clamp technique. Force of contraction and action potentials from isolated papillary muscles of the same species were also investigated at physiological temperature (36 degrees C). Azelastine (30 microM) significantly reduced force of contraction, shortened action potential duration, and depressed maximum upstroke velocity. I(Ca, L) was elicited by 200-ms-long clamp steps from -100 to 0 mV (one pulse every 3 s). Azelastine blocked I(Ca, L) reversibly and concentration-dependently with an IC(50) of 20.2+/-1.3 microM and a Hill coefficient of 1.1. At 10 microM, azelastine shifted steady-state inactivation by 5 mV (n=7) to more negative potentials. The time course of I(Ca, L) inactivation could be described by a double exponential function. Azelastine (10 microM) significantly shortened the slow inactivation time constant (tau(s)) from 54.2+/-2.8 ms under control conditions to 38.7+/-2.9 ms (n=16) in the presence of drug. Azelastine also reduced low-voltage-activated Ca(2+) currents with a similar IC(50) value (24 microM, at -35 mV). Since the therapeutic plasma concentrations are in the order of 10-100 nM, we conclude that azelastine does indeed affect also cardiac I(Ca, L), but the concentrations required are at least two orders of magnitude larger than those obtained during drug therapy.  相似文献   

17.
The effect of the isoquinoline derivative, drotaverine on the specific binding of [(3)H]nitrendipine and [(3)H]diltiazem to pregnant rat uterine membranes was examined. Drotaverine inhibited the specific [(3)H]nitrendipine and [(3)H]diltiazem bindings with IC(50) values of 5.6 and 2.6 microM, respectively. Saturation studies showed that diltiazem caused a significant increase in the maximum binding density without changing the K(D) of [(3)H]nitrendipine while drotaverine increased both the K(D) and the B(max) of [3H]nitrendipine. The dissociation kinetics of both [3H]nitrendipine and [(3)H]diltiazem were accelerated by drotaverine. These results suggest that drotaverine has a negative allosteric interaction with the binding sites for 1,4-dihydropyridines and 1,5-benzothiazepines on the L-type Ca(2+) channel in pregnant rat uterine membranes, which may have implications as to the potential usefulness of this drug in aiding child delivery.  相似文献   

18.
19.
Pharmacological blockade of Ca2+-independent phospholipase A2 (PLA2) is reported to disintegrate hippocampal synaptic plasticity, which is thought to be the cellular mechanism underlying learning and memory. Therefore, we investigated the effect of the Ca2+-independent PLA2 inhibitor bromoenol lactone (BEL) on spontaneous alteration behaviors of mice. When 3 nmol BEL was intracerebroventricularly injected 30 min prior to the test, the mice showed a poor alternation ratio, compared with control animals. The data suggest that Ca2+-independent PLA2 activity is required for spatial memory.  相似文献   

20.
A receptor can be activated either by specific ligand-directed changes in conformation or by intrinsic, spontaneous conformational change. In the beta(2)-adrenergic receptor (AR) overexpression transgenic (TG4) murine heart, spontaneously activated beta(2)AR (beta(2)-R*) in the absence of ligands has been evidenced by elevated basal adenylyl cyclase activity and cardiac function. In the present study, we determined whether the signaling mediated by beta(2)-R* differs from that of a ligand-elicited beta(2)AR activation (beta(2)-LR*). In ventricular myocytes from TG4 mice, the properties of L-type Ca(2+) current (I(Ca)), a major effector of beta(2)-LR* signaling, was unaltered, despite a 2.5-fold increase in the basal cAMP level and a 1.9-fold increase in baseline contraction amplitude as compared with that of wild-type (WT) cells. Although the contractile response to beta(2)-R* in TG4 cells was abolished by a beta(2)AR inverse agonist, ICI118,551 (5 x 10(-7) M), or an inhibitory cAMP analog, Rp-CPT-cAMPS (10(-4) M), no change was detected in the simultaneously recorded I(Ca). These results suggest that the increase in basal cAMP due to beta(2)-R*, while increasing contraction amplitude, does not affect I(Ca) characteristics. In contrast, the beta(2)AR agonist, zinterol elicited a substantial augmentation of I(Ca) in both TG4 and WT cells (pertussis toxin-treated), indicating that L-type Ca(2+) channel in these cells can respond to ligand-directed signaling. Furthermore, forskolin, an adenylyl cyclase activator, elicited similar dose-dependent increase in I(Ca) amplitude in WT and TG4 cells, suggesting that the sensitivity of L-type Ca(2+) channel to cAMP-dependent modulation remains intact in TG4 cells. Thus, we conclude that beta(2)-R* bypasses I(Ca) to modulate contraction, and that beta(2)-LR* and beta(2)-R* exhibit different intracellular signaling and target protein specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号