首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vocal learning in songbirds and humans is strongly influenced by social interactions based on sensory inputs from several modalities. Songbird vocal learning is mediated by cortico‐basal ganglia circuits that include the SHELL region of lateral magnocellular nucleus of the anterior nidopallium (LMAN), but little is known concerning neural pathways that could integrate multimodal sensory information with SHELL circuitry. In addition, cortical pathways that mediate the precise coordination between hemispheres required for song production have been little studied. In order to identify candidate mechanisms for multimodal sensory integration and bilateral coordination for vocal learning in zebra finches, we investigated the anatomical organization of two regions that receive input from SHELL: the dorsal caudolateral nidopallium (dNCLSHELL) and a region within the ventral arcopallium (Av). Anterograde and retrograde tracing experiments revealed a topographically organized inter‐hemispheric circuit: SHELL and dNCLSHELL, as well as adjacent nidopallial areas, send axonal projections to ipsilateral Av; Av in turn projects to contralateral SHELL, dNCLSHELL, and regions of nidopallium adjacent to each. Av on each side also projects directly to contralateral Av. dNCLSHELL and Av each integrate inputs from ipsilateral SHELL with inputs from sensory regions in surrounding nidopallium, suggesting that they function to integrate multimodal sensory information with song‐related responses within LMAN‐SHELL during vocal learning. Av projections share this integrated information from the ipsilateral hemisphere with contralateral sensory and song‐learning regions. Our results suggest that the inter‐hemispheric pathway through Av may function to integrate multimodal sensory feedback with vocal‐learning circuitry and coordinate bilateral vocal behavior.  相似文献   

2.
In many songbirds, vocal learning‐related cellular plasticity was thought to end following a developmental critical period. However, mounting evidence in one such species, the zebra finch, suggests that forms of plasticity common during song learning continue well into adulthood, including a reliance on auditory feedback for song maintenance. This reliance wanes with increasing age, in tandem with age‐related increases in fine motor control. We investigated age‐related morphological changes in the adult zebra finch song system by focusing on two cortical projection neuron types that 1) share a common efferent target, 2) are known to exhibit morphological and functional change during song learning, and 3) exert opposing influences on song acoustic structure. Neurons in HVC and the lateral magnocellular nucleus of the anterior nidopallium (LMAN) both project to the robust nucleus of the arcopallium (RA). During juvenile song learning and adult song maintenance, HVC promotes song syllable stereotypy, whereas LMAN promotes learning and acoustic variability. After retrograde labeling of these two cell types in adults, there were age‐related increases in dendritic arbor in HVC‐RA but not LMAN‐RA neurons, resulting in an increase in the ratio of HVC‐RA:LMAN‐RA dendritic arbor. Differential growth of HVC relative to LMAN dendrites may relate to increases in song motor refinement, decreases in the reliance of song on auditory feedback, or both. Despite this differential growth with age, both cell types retain the capacity for experience‐dependent growth, as we show here. These results may provide insights into mechanisms that promote and constrain adult vocal plasticity. J. Comp. Neurol. 520:3673–3686, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
Variation in environmental factors such as day length and social context greatly affects reproductive behavior and the brain areas that regulate these behaviors. One such behavior is song in songbirds, which males use to attract a mate during the breeding season. In these species the absence of a potential mate leads to an increase in the number of songs produced, while the presence of a mate greatly diminishes singing. Interestingly, although long days promote song behavior, producing song itself can promote the incorporation of new neurons in brain regions controlling song output. Social context can also affect such neuroplasticity in these song control nuclei. The goal of the present study was to investigate in canaries (Serinus canaria), a songbird species, how photoperiod and social context affect song and the incorporation of new neurons, as measured by the microtubule‐associated protein doublecortin (DCX) in HVC, a key vocal production brain region of the song control system. We show that long days increased HVC size and singing activity. In addition, male canaries paired with a female for 2 weeks showed enhanced DCX‐immunoreactivity in HVC relative to birds housed alone. Strikingly, however, paired males sang fewer songs that exhibited a reduction in acoustic features such as song complexity and energy, compared with birds housed alone, which sang prolifically. These results show that social presence plays a significant role in the regulation of neural and behavioral plasticity in songbirds and can exert these effects in opposition to what might be expected based on activity‐induced neurogenesis.  相似文献   

4.
Neural activity within the cortical premotor nucleus HVC (acronym is name) encodes the learned songs of adult male zebra finches (Taeniopygia guttata). HVC activity is driven and/or modulated by a group of five afferent nuclei (the Medial Magnocellular nucleus of the Anterior Nidopallium, MMAN; Nucleus Interface, NIf; nucleus Avalanche, Av; the Robust nucleus of the Arcopallium, RA; the Uvaeform nucleus, Uva). While earlier evidence suggested that HVC receives a uniformly distributed and nontopographic pattern of afferent input, recent evidence suggests this view is incorrect (Basista et al., 2014 ). Here, we used a double‐labeling strategy (varying both the distance between and the axial orientation of dual tracer injections into HVC) to reveal a massively parallel and in some cases topographic pattern of afferent input. Afferent neurons target only one rostral or caudal location within medial or lateral HVC, and each HVC location receives convergent input from each afferent nucleus in parallel. Quantifying the distributions of single‐labeled cells revealed an orthogonal topography in the organization of afferent input from MMAN and NIf, two cortical nuclei necessary for song learning. MMAN input is organized across the lateral‐medial axis whereas NIf input is organized across the rostral‐caudal axis. To the extent that HVC activity is influenced by afferent input during the learning, perception, or production of song, functional models of HVC activity may need revision to account for the parallel input architecture of HVC, along with the orthogonal input topography of MMAN and NIf.  相似文献   

5.
Songbirds learn to produce vocalizations early in life by listening to, then copying the songs of conspecific males. The anterior forebrain pathway, homologous to a basal ganglia‐forebrain circuit, is essential for song learning. The projection between the striato‐pallidal structure, Area X, and the medial portion of the dorsolateral thalamic nucleus (DLM) is strongly hyperpolarizing in adults, due to a very negative chloride reversal potential (Person & Perkel, Neuron 46:129–140, 2005). The chloride reversal potential is determined, in part, by the expression level of a neuron‐specific potassium‐chloride cotransporter, KCC2, which is developmentally upregulated in mammals. To determine whether a similar upregulation in KCC2 expression occurs at the Area X to DLM synapse during development, we examined the expression level of KCC2 in adult zebra finches across the song system as well as during development in the Area X – DLM synapse. We demonstrate that KCC2 is expressed in a subset of neurons throughout the song system, including HVC (used as a proper name), robust nucleus of the arcopallium (RA), lateral magnocellular nucleus of the anterior nidopallium (LMAN), Area X, and DLM. The majority of pallidal‐like projection neurons in Area X showed KCC2 immunoreactivity. In adults, KCC2 expression was robust within DLM, and was upregulated between 14 and 24 days post hatching, before the onset of song learning. Light and electron microscopic analysis indicated that KCC2 immunoreactivity is strongly associated with the plasma membrane. Thus, in the song system as in the mammalian brain, KCC2 expression is well placed to modulate the GABAA reversal potential.  相似文献   

6.
It is established that in songbirds the size of several brain song control nuclei varies seasonally, based on changes in cell size, dendritic branching and, in nucleus HVC, the incorporation of newborn neurons. In the developing and adult mammalian brain, the protein doublecortin (DCX) is expressed in postmitotic neurons and, as a part of the microtubule machinery, required for neuronal migration. We recently showed that in adult canaries, DCX-immunoreactive (ir) cells are present throughout the telencephalon, but the link between DCX and the active neurogenesis observed in songbirds remained uncertain. We demonstrate here that DCX labels recently born cells in the canary telencephalon and that, in parallel with changes in HVC volume, the number of DCX-ir cells is increased specifically in the HVC of testosterone-treated males compared with castrates, and in castrated testosterone-treated males paired with a female as compared with males paired with another male. The numbers of elongated DCX-ir cells (presumptive migrating neurons) and round multipolar DCX-ir cells (differentiating neurons) were also affected by the sex of the subjects and their photoperiodic condition (photosensitive vs photostimulated vs photorefractory). Thus, in canaries the endocrine state, as well as the social or photoperiodic condition independently of variation in steroid hormone action, affects the number of cells expressing a protein involved in neuronal migration specifically in brain areas that incorporate new neurons in the telencephalon. The DCX gene may be one of the targets by which testosterone and social stimuli induce seasonal changes in the volume of song nuclei.  相似文献   

7.
A fast, neuromodulatory role for estrogen signaling has been reported in many regions of the vertebrate brain. Regional differences in the cellular distribution of aromatase (estrogen synthase) in several species suggest that mechanisms for neuroestrogen signaling differ between and even within brain regions. A more comprehensive understanding of neuroestrogen signaling depends on characterizing the cellular identities of neurons that express aromatase. Calcium‐binding proteins such as parvalbumin and calbindin are molecular markers for interneuron subtypes, and are co‐expressed with aromatase in human temporal cortex. Songbirds like the zebra finch have become important models to understand the brain synthesis of steroids like estrogens and the implications for neurobiology and behavior. Here, we investigated the regional differences in cytoarchitecture and cellular identities of aromatase‐expressing neurons in the auditory and sensorimotor forebrain of zebra finches. Aromatase was co‐expressed with parvalbumin in the caudomedial nidopallium (NCM) and HVC shelf (proper name) but not in the caudolateral nidopallium (NCL) or hippocampus. By contrast, calbindin was not co‐expressed with aromatase in any region investigated. Notably, aromatase‐expressing neurons were found in dense somato‐somatic clusters, suggesting a coordinated release of local neuroestrogens from clustered neurons. Aromatase clusters were also more abundant and tightly packed in the NCM of males as compared to females. Overall, this study provides new insights into neuroestrogen regulation at the network level, and extends previous findings from human cortex by identifying a subset of aromatase neurons as putative inhibitory interneurons.  相似文献   

8.
Adult female zebra finches (Taeniopygia guttata), which do not produce learned songs, have long been thought to possess only vestiges of the forebrain network that supports learned song in males. This view ostensibly explains why females do not sing—many of the neural populations and pathways that make up the male song control network appear rudimentary or even missing in females. For example, classic studies of vocal-premotor cortex (HVC, acronym is name) in male zebra finches identified prominent efferent pathways from HVC to vocal-motor cortex (RA, robust nucleus of the arcopallium) and from HVC to the avian basal ganglia (Area X). In females, by comparison, the efferent targets of HVC were thought to be only partially innervated by HVC axons (RA) or absent (Area X). Here, using a novel visually guided surgical approach to target tracer injections with precision, we mapped the extrinsic connectivity of the adult female HVC. We find that female HVC shows a mostly male-typical pattern of afferent and efferent connectivity, including robust HVC innervation of RA and Area X. As noted by earlier investigators, we find large sex differences in the volume of many regions that control male singing (male > female). However, sex differences in volume were diminished in regions that convey ascending afferent input to HVC. Our findings do not support a vestigial interpretation of the song control network in females. Instead, our findings support the emerging view that the song control network may have an altogether different function in nonsinging females.  相似文献   

9.
10.
The songbird brain has a system of interconnected nuclei that are specialized for singing and song learning. Wada et al. (2004; J. Comp. Neurol. 476:44–64) found a unique distribution of the mRNAs for glutamate receptor subunits in the song control brain areas of songbirds. In conjunction with data from electrophysiological studies, these finding indicate a role for the glutamatergic neurons and circuits in the song system. This study examines vesicular glutamate transporter 2 (VGLUT2) mRNA and protein expression in the zebra finch brain, particularly in auditory areas and song nuclei. In situ hybridization assays for VGLUT2 mRNA revealed high levels of expression in the ascending auditory nuclei (magnocellular, angular, and laminar nuclei; dorsal part of the lateral mesencephalic nucleus; ovoidal nucleus), high or moderate levels of expression in the telencephalic auditory areas (cudomedial mesopallium, field L, caudomedial nidopallium), and expression in the song nuclei (HVC, lateral magnocellular nucleus of the anterior nidopallium, robust nucleus of the arcopallium), where levels of expression were greater than in the surrounding brain subdivisions. Area X did not show expression of VGLUT2 mRNA. Nuclei in the descending motor pathway (dorsomedial nucleus of the intercollicular complex, retroambigual nucleus, tracheosyringeal motor nucleus of the hypoglossal nerve) expressed VGLUT2 mRNA. The target nuclei of VGLUT2 mRNA‐expressing nuclei showed immunoreactivity for VGLUT2 as well as hybridization signals for the mRNA of glutamate receptor subunits. The present findings demonstrate the origins and targets of glutamatergic neurons and indicate a central role for glutamatergic circuits in the auditory and song systems in songbirds. J. Comp. Neurol. 522:2129–2151, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
Male songbirds typically require exposure to normal adult conspecific song during development in order to learn a normal song of their own. Females require exposure to conspecific song during development in order to select high-quality, learned song over the incomplete song produced by males reared in isolation. Altering males' opportunity for song learning during development affects the neuroanatomy of brain regions involved in song production (the song system), but in females the neural effects of song learning are unknown. We raised male and female zebra finches (Taeniopygia guttata) with differing amounts of exposure to singing males during development. At 120 days, we Golgi-stained their brains and measured the frequency of dendritic spines in brain areas used in song perception or production. We found that females reared with little or no exposure to song have 31% fewer dendritic spines per unit length of dendrite in caudomedial nidopallium (NCM), a brain area activated by song perception, compared to control females. The deprived females had small deficits in the frequency of spines in HVC, a region activated by song production in males. Males with limited exposure to song had a 24% lower spine density in HVC than controls but only a 10% lower density in NCM. These data support the hypothesis that NCM is important in auditory learning, while HVC is involved in sensorimotor learning, and that these capacities are differentially emphasized in the two sexes.  相似文献   

12.
Seki Y  Okanoya K 《Neuroreport》2008,19(6):679-682
The song control system of songbirds consists mainly of the 'motor pathway' and 'anterior forebrain pathway'. The medial magnocellular nucleus of anterior nidopallium (mMAN) projects to the song control nucleus HVC, which is the point of divergence of the two pathways. We made simultaneous multiunit electrophysiological recordings from the mMAN and HVC in anesthetized Bengalese finches. We confirmed that the mMAN neurons showed song-selective auditory responses, and found temporal correlations between song-related activities of the mMAN and HVC neurons. The temporal relationship between the neural activation of the HVC and mMAN suggests that these nuclei are parts of a closed loop, which could provide internal feedback to the HVC for sequential syllable control.  相似文献   

13.
Appeltants D  Ball GF  Balthazart J 《Neuroreport》2004,15(11):1727-1730
The caudomedial nidopallium in songbirds is a specialized forebrain auditory region involved in the processing of species-typical vocalizations. It receives a prominent catecholaminergic projection with many fibers forming basket-like structures around non-immunoreactive cells. We investigated in male canaries the anatomical relationship between tyrosine hydroxylase and cells immunoreactive for the steroid metabolizing enzyme, aromatase, in the caudomedial nidopallium using double-label immunocytochemistry. Fibers immunoreactive for tyrosine hydroxylase established numerous close contacts with aromatase-immunoreactive cells and often encircled these cells to form basket-like structures. Aromatase containing cells in the caudomedial nidopallium are therefore a major target of catecholaminergic inputs in canary. Interactions between catecholaminergic systems and aromatase in the caudomedial nidopallium may provide one mechanism for the regulation of estrogens involved in song perception and memorization.  相似文献   

14.
We investigated the participation of protein kinase C (PKC) in the regulation of vocal plasticity in songbirds. Deafening of adult Bengalese finches causes initial song alteration, followed by stabilization. In parallel, the expression of PKC beta1 increases transiently 2 weeks after deafening, and then decreases gradually in the robust nucleus of the arcopallium (RA) of Bengalese finches, similar to the pattern observed during developmental song learning. First, we showed that in adult zebra finches, whose songs change more gradually after auditory deprivation than those of Bengalese finches, PKC in RA also increased to an equal degree 2 weeks after deafening, despite the species difference. Second, double-labeling with an anterograde tracer and PKC immunofluorescence revealed that PKC immunoreactivity in RA was detected on the synaptic terminals from a high premotor vocal nucleus (HVC), but not from the lateral magnocellular nucleus of the anterior nidopallium (LMAN). To determine what causes deafening-induced PKC increases, we blocked signals from LMAN, the final output nucleus to RA in the anterior forebrain pathway (AFP), by a unilateral LMAN lesion prior to auditory deprivation of adult Bengalese finches. The PKC immunoreactivity increased in RA of the intact hemisphere; however, in RA on the lesioned side, it was less intense than that of the unlesioned side. Thus, the deafening-induced PKC expression was suppressed by lesioning of LMAN. These results suggest that an output signal from the AFP via LMAN induces the increase in PKC activity on HVC-RA synapses that may regulate song plasticity.  相似文献   

15.
CRMP-4 is regarded to play a role in neuronal differentiation, neurite growth and synapse formation. It has been shown to express in brain areas undergoing plastic changes or neuronal generation. Bird song is a learned, complex behavior. During song learning, some neural changes occur dramatically within song nuclei in neuron number, neuronal morphology, and synaptic formation or rearrangements. In order to get insights into the potential functions of CRMP-4 in the posthatching development of song nuclei during song learning, we examined the expression of CRMP-4 protein and mRNA in song control nuclei of Bengalese finch (Lonchura striata) from posthatching days (P) 10 to adulthood. Our study showed that cells positive for CRMP-4 protein and mRNA were distributed in song nuclei nearly in all the studied groups. The numbers of CRMP-4 cells in most of studied song nuclei changed significantly with age. They reached the peak at P15 in the lateral magnocellular nucleus of anterior nidopallium (LMAN) and the caudal medial nidopallium (NCM), or at P25 in HVC, Area X and the dorsolateral nucleus of the medial anterior thalamus (DLM). They then continued to decrease till adulthood. CRMP-4 protein and mRNA were both relatively high expressed during the post-hatch development of song control nuclei and song learning (P20-60), suggesting that CRMP-4 is involved in these activities. Although CRMP-4 protein and mRNA largely decreased at adulthood, they continued to express moderately, revealing that CRMP-4 may play a role in the maintenance of adult song nuclei.  相似文献   

16.
The identification of pronounced seasonal changes in the volume of avian song control nuclei stimulated the discovery of adult neurogenesis in songbirds as well as renewed studies in mammals including humans. Neurogenesis in songbirds is modulated by testosterone and other factors such as photoperiod, singing activity and social environment. Adult neurogenesis has been widely studied by labeling, with tritiated thymidine or its analog BrdU, cells duplicating their DNA in anticipation of their last mitotic division and following their fate as new neurons. New methods based on endogenous markers of cell cycling or of various stages of neuronal life have allowed for additional progress. In particular immunocytochemical visualization of the microtubule-associated protein doublecortin has provided an integrated view of neuronal replacement in the song control nucleus HVC. Multiple questions remain however concerning the specific steps in the neuronal life cycle that are modulated by various factors and the underlying cellular mechanisms.  相似文献   

17.
Neuronal connections of the High Vocal Center (HVC), a cortical nucleus of songbirds necessary for learned vocal behavior, and the region adjacent to HVC called paraHVC (pHVC), were studied in adult and juvenile male zebra finches. Extremely small injections of fluorescent dextran amines or biocytin were made within subregions of HVC and pHVC to define the precise nature and development of these pathways. In adults, all HVC injections produced an even, nontopographic distribution of retrograde label throughout the medial magnocellular nucleus of the anterior neostriatum (mMAN), the interfacial nucleus (NIf), and the uvaeform nucleus of the thalamus (Uva) and an even distribution of anterograde label within area X of the striatum and the robust nucleus of the archistriatum (RA). These same patterns of projections were present in juvenile birds 20–23 days of age, including the projection from HVC to RA, which has previously been reported to develop only after 25–30 days of age. Results also establish a novel efferent projection from HVC to pHVC in both juvenile and adult birds. Injections into pHVC indicate that this region receives afferent input from song control areas HVC, mMAN, medial regions of the parvicellular shell of lateral MAN, NIf, and Uva and projects to Area X, caudomedial regions of striatum, and regions of the caudomedial neostriatum (NCM). Thus, neuronal connections of pHVC are highly integrated with circuitry important for vocal behavior and are distinct from those of HVC. Such differences establish HVC and pHVC as separate brain areas and suggest that each may serve a different function in vocal behavior. Control injections in both juveniles and adults produced specific patterns of projections from areas outside of HVC to areas outside of RA, illustrating an overall spatial organization of projections from HVC and neighboring cortical areas. Further, although neuronal connections of HVC are not topographic, projections of HVC, pHVC, and surrounding areas demonstrate a broad spatial organization of efferents to striatum and regions surrounding RA, thus defining a level of organization beyond that of individual song control nuclei. J. Comp. Neurol. 397:118–138, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
Robust sex differences in brain and behaviour exist in zebra finches. Only males sing, and forebrain song control regions are more developed in males. The factors driving these differences are not clear, although numerous experiments have shown that oestradiol (E2) administered to female hatchlings partially masculinises brain and behaviour. Recent studies suggest that an increased expression of Z‐chromosome genes in males (ZZ; females: ZW) might also play a role. The Z‐gene tubulin‐specific chaperone A (TBCA) exhibits increased expression in the lateral magnocellular nucleus of the anterior nidopallium (LMAN) of juvenile males compared to females; TBCA+ cells project to the robust nucleus of the arcopallium (RA). In the present study, we investigated the role of TBCA and tested hypotheses with respect to the interactive or additive effects of E2 and TBCA. We first examined whether E2 in hatchling zebra finches modulates TBCA expression in the LMAN. It affected neither the mRNA, nor protein in either sex. We then unilaterally delivered TBCA small interfering (si)RNA to the LMAN of developing females treated with E2 or vehicle and males treated with the aromatase inhibitor, fadrozole, or its control. In both sexes, decreasing TBCA in LMAN reduced RA cell number, cell size and volume. It also decreased LMAN volume in females. Fadrozole in males increased LMAN volume and RA cell size. TBCA siRNA delivered to the LMAN also decreased the projection from this brain region to the RA, as indicated by anterograde tract tracing. The results suggest that TBCA is involved in masculinising the song system. However, because no interactions between the siRNA and hormone manipulations were detected, TBCA does not appear to modulate effects of E2 in the zebra finch song circuit.  相似文献   

19.
Neuronal death and replacement, or neuronal turnover, in the adult brain are one of many fundamental processes of neural plasticity. The adult avian song control circuit provides an excellent model for exploring mature neuronal death and replacement by new neurons. In the song control nucleus, HVC of adult male Gambel's white-crowned sparrows (Zonotrichia leucophrys gambelli) nearly 68,000 neurons are added each breeding season and die during the subsequent nonbreeding season. To accommodate large seasonal differences in HVC neuron number, the balance between neuronal addition and death in HVC must differ between seasons. To determine whether maintenance of new HVC neurons changes within and between breeding and nonbreeding conditions, we pulse-labeled two different cohorts of new HVC neurons under both conditions and quantified their maintenance. We show that the maintenance of new HVC neurons, as well as new nonneuronal cells, was higher at the onset of breeding conditions than at the onset of nonbreeding conditions. Once a steady-state HVC volume and neuronal number were attained in either breeding or nonbreeding conditions, neuronal and nonneuronal maintenance were similarly low. We found that new neuronal number correlated with a new nonneuronal number within each cohort of new neurons. Together, these data suggest that sex steroids promote the survival of an initial population of new neurons and nonneuronal cells entering HVC. However, once HVC is fully grown or regressed, neuronal and nonneuronal cell turnover is regulated by a common mechanism likely independent of direct sex steroid signaling.  相似文献   

20.
The organisation of the song control nuclei of the Australian magpie (Gymnorhina tibicen), a species with highly complex song, was investigated. In contrast to most of the songbirds studied so far, the Australian magpie sings throughout the year and both males and females sing. All of the forebrain song nuclei, including the high vocal centre (HVC), the robust nucleus of the archistriatum (RA), Area X and the lateral and medial magnocellular nuclei of the anterior neostriatum (lMAN and mMAN) were found to be well developed in both male and female magpies. Consistent with the known vocal competence of juvenile magpies, all of the song nuclei were also well-developed in juvenile magpies (2--3 months old). HVC in both male and female magpies consists of a rostrolateral and a caudomedial region. The ventromedial part of RA differs from the dorsolateral part by having medium-sized neurons packed in higher density. The HVC to RA projections were labelled anterogradely by DiI and DiA. However, no HVC to Area X projections were labeled by DiI or DiA, suggesting a possible difference from songbirds studied previously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号