首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Neurokinin B, encoded by the tachykinin3 gene, plays a crucial role in regulating reproduction in mammals via KNDy neurons and interaction with GnRH. Previous work in teleost fishes has focused on hypothalamic tac3 expression for its role in reproduction, but detailed studies on extra-hypothalamic tac3 expression are limited. Here, we identified two tac3 genes in the social African cichlid fish Astatotilapia burtoni, only one of which produces a functional protein containing the signature tachykinin motif. In situ hybridization for tac3a mRNA identified cell populations throughout the brain. Numerous tac3a cells lie in several thalamic and hypothalamic nuclei, including periventricular nucleus of posterior tuberculum, lateral tuberal nucleus (NLT), and nucleus of the lateral recess (NRL). Scattered tac3-expressing cells are also present in telencephalic parts, such as ventral (Vv) and supracomissural (Vs) part of ventral telencephalon. In contrast to other teleosts, tac3 expression was absent from the pituitary. Using double-fluorescent staining, we localized tac3a-expressing cells in relation to GnRH and kisspeptin cells. Although no GnRH-tac3a colabeled cells were observed, dense GnRH fibers surround and potentially synapse with tac3a cells in the preoptic area. Only minimal (<5%) colabeling of tac3a was observed in kiss2 cells. Despite tac3a expression in many nodes of the mesolimbic reward system, it was absent from tyrosine hydroxylase (TH)-expressing cells, but tac3a cells were located in areas with dense TH fibers. The presence of tac3a-expressing cells throughout the brain, including in socially relevant brain regions, suggest more diverse functions beyond regulation of reproductive physiology that may be conserved across vertebrates.  相似文献   

4.
Tau is a microtubule-associated protein (MAP) that is localized to the axon. In Alzheimer's disease (AD), the distribution of tau undergoes a remarkable alteration, leading to the formation of tau inclusions in the somatodendritic compartment. While the abnormal aggregated tau has been extensively studied in human patient tissues and animal models of AD, how normal tau localizes to the axon, which would be the foundation to understand how the mis-localization occurs, has not been well studied due to the poor detectability of normal unaggregated tau in vivo. Therefore, we developed immunohistochemical techniques that can detect normal mouse and human tau in brain tissues with high sensitivity. Using these techniques, we demonstrate the global distribution of tau in the mouse brain and confirmed that normal tau is exclusively localized to the axonal compartment in vivo. Interestingly, tau antibodies strongly labeled nonmyelinated axons such as hippocampal mossy fibers, while white matters generally exhibited low levels of immunoreactivity. Furthermore, mouse tau is highly expressed not only in neurons but also in oligodendrocytes. With super resolution imaging using the stimulated-depletion microscopy, axonal tau appeared punctate rather than fibrous, indicating that tau decorates microtubules sparsely. Co-labeling with presynaptic and postsynaptic markers revealed that normal tau is not localized to synapses but sparsely distributes in the axon. Taken together, this study reports novel antibodies to investigate the localization and mis-localization of tau in vivo and novel findings of normal tau localization in the mouse brain.  相似文献   

5.
The modulation of AMPA receptor (AMPAR) content at synapses is thought to be an underlying molecular mechanism of memory and learning. AMPAR content at synapses is highly plastic and is regulated by numerous AMPAR accessory transmembrane proteins such as TARPs, cornichons, and CKAMPs. SynDIG (synapse differentiation‐induced gene) defines a family of four genes (SynDIG1–4) expressed in distinct and overlapping patterns in the brain. SynDIG1 was previously identified as a novel transmembrane AMPAR‐associated protein that regulates synaptic strength. The related protein SynDIG4 [also known as Prrt1 (proline‐rich transmembrane protein 1)] has recently been identified as a component of AMPAR complexes. In this study, we show that SynDIG1 and SynDIG4 have distinct yet overlapping patterns of expression in the central nervous system, with SynDIG4 having especially prominent expression in the hippocampus and particularly within CA1. In contrast to SynDIG1 and other traditional AMPAR auxiliary subunits, SynDIG4 is de‐enriched at the postsynaptic density and colocalizes with extrasynaptic GluA1 puncta in primary dissociated neuron culture. These results indicate that, although SynDIG4 shares sequence similarity with SynDIG1, it might act through a unique mechanism as an auxiliary factor for extrasynaptic GluA1‐containing AMPARs. J. Comp. Neurol. 524:2266–2280, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

6.
Pigment epithelium‐derived factor (PEDF) is a multifunctional protein which was initially described in the retina, although it is also present in other tissues. It functions as an antioxidant agent promoting neuronal survival. Recently, a PEDF receptor has shown an elevated binding affinity for PEDF. There are no relevant data regarding the distribution of both proteins in the brain, therefore the main goal of this work was to investigate the spatiotemporal presence of PEDF and PEDFR in the adult mouse brain, and to determine the PEDF blood level in mouse and human. The localization of both proteins was analyzed by different experimental methods such as immunohistochemistry, western‐blotting, and also by enzyme‐linked immunosorbent assay. Differential expression was found in some telencephalic structures and positive signals for both proteins were detected in the cerebellum. The magnitude of the PEDFR labeling pattern was higher than PEDF and included some cortical and subventricular areas. Age‐dependent changes in intensity of both protein immunoreactions were found in the cortical and hippocampal areas with greater reactivity between 4 and 8 months of age, whilst others, like the subventricular zones, these differences were more evident for PEDFR. Although ubiquitous presence was not found in the brain for these two proteins, their relevant functions must not be underestimated. It has been described that PEDF plays an important role in neuroprotection and data provided in the present work represents the first extensive study to understand the relevance of these two proteins in specific brain areas.  相似文献   

7.
Melanin-concentrating hormone (MCH) is a ubiquitous vertebrate neuropeptide predominantly synthesized by neurons of the diencephalon that can act through two G protein-coupled receptors, called MCHR1 and MCHR2. The expression of Mchr1 has been investigated in both rats and mice, but its synthesis remains poorly described. After identifying an antibody that detects MCHR1 with high specificity, we employed immunohistochemistry to map the distribution of MCHR1 in the CNS of rats and mice. Multiple neurochemical markers were also employed to characterize some of the neuronal populations that synthesize MCHR1. Our results show that MCHR1 is abundantly found in a subcellular structure called the primary cilium, which has been associated, among other functions, with the detection of free neurochemical messengers present in the extracellular space. Ciliary MCHR1 was found in a wide range of areas, including the olfactory bulb, cortical mantle, striatum, hippocampal formation, amygdala, midline thalamic nuclei, periventricular hypothalamic nuclei, midbrain areas, and in the spinal cord. No differences were observed between male and female mice, and interspecies differences were found in the caudate-putamen nucleus and the subgranular zone. Ciliary MCHR1 was found in close association with several neurochemical markers, including tyrosine hydroxylase, calretinin, kisspeptin, estrogen receptor, oxytocin, vasopressin, and corticotropin-releasing factor. Given the role of neuronal primary cilia in sensing free neurochemical messengers in the extracellular fluid, the widespread distribution of ciliary MCHR1, and the diverse neurochemical populations who synthesize MCHR1, our data indicate that nonsynaptic communication plays a prominent role in the normal function of the MCH system.  相似文献   

8.
Covalent conjugation of small ubiquitin‐like modifiers (SUMOs) or SUMOylation is a reversible post‐translational modification that regulates the stability and function of target proteins. SUMOs are removed from substrate proteins by sentrin/SUMO‐specific proteases (SENPs). Numerous studies have implicated SUMOylation in various physiological and pathological processes in neurons. To understand the functional roles of SUMOylation, it is necessary to determine the distribution of enzymes regulating SUMO conjugation and deconjugation; yet, the localization of SENPs has not been described in detail in intact brain tissue. Here, we report the distribution and subcellular localization of SENP3 and 5 in the adult murine brain. Immunohistochemical analyses revealed the ubiquitous distribution of both SENPs across different brain regions. Within individual cells, SENP3 was confined to the nucleus, consistent with the conventional view that SENPs regulate nuclear events. In contrast, SENP5 was detected in the neuropil but not in cell bodies. Moreover, strong SENP5 immunoreactivity was observed in regions with high numbers of synapses such as the cerebellar glomeruli, suggesting that SENP5 localizes to pre‐ and/or postsynaptic structures. We performed double immunolabeling in cultured neurons and found that SENP5 co‐localized with pre‐ and post‐synaptic markers, as well as a mitochondrial marker. Immunoelectron microscopy confirmed this finding and revealed that SENP5 was localized to presynaptic terminals, postsynaptic spines, and mitochondria in axon terminals. These findings advance the current understanding of the functional roles of SUMOylation in neurons, especially in synaptic regulation, and have implications for future therapeutic strategies in neurodegenerative disorders mediated by mitochondrial dysfunction.  相似文献   

9.
10.
In the retina, dopamine is a key molecule for daytime vision. Dopamine is released by retinal dopaminergic amacrine cells and transmits signaling either by conventional synaptic or by volume transmission. By means of volume transmission, dopamine modulates all layers of retinal neurons; however, it is not well understood how dopamine modulates visual signaling pathways in bipolar cells. Here we analyzed Drd1a‐tdTomato BAC transgenic mice and found that the dopamine D1 receptor (D1R) is expressed in retinal bipolar cells in a type‐dependent manner. Strong tdTomato fluorescence was detected in the inner nuclear layer and localized to type 1, 3b, and 4 OFF bipolar cells and type 5‐2, XBC, 6, and 7 ON bipolar cells. In contrast, type 2, 3a, 5‐1, 9, and rod bipolar cells did not express Drd1a‐tdTomato. Other interneurons were also found to express tdTomato including horizontal cells and a subset (25%) of AII amacrine cells. Diverse visual processing pathways, such as color or motion‐coded pathways, are thought to be initiated in retinal bipolar cells. Our results indicate that dopamine sculpts bipolar cell performance in a type‐dependent manner to facilitate daytime vision. J. Comp. Neurol. 524:2059–2079, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

11.
The bed nucleus of the stria terminalis (BNST) is a critical node involved in stress and reward-related behaviors. Relaxin family peptide receptor 3 (RXFP3) signaling in the BNST has been implicated in stress-induced alcohol seeking behavior. However, the neurochemical phenotype and connectivity of BNST RXFP3-expressing (RXFP3+) cells have yet to be elucidated. We interrogated the molecular signature and electrophysiological properties of BNST RXFP3+ neurons using a RXFP3-Cre reporter mouse line. BNST RXFP3+ cells are circumscribed to the dorsal BNST (dBNST) and are neurochemically heterogeneous, comprising a mix of inhibitory and excitatory neurons. Immunohistochemistry revealed that ~48% of BNST RXFP3+ neurons are GABAergic, and a quarter of these co-express the calcium-binding protein, calbindin. A subset of BNST RXFP3+ cells (~41%) co-express CaMKIIα, suggesting this subpopulation of BNST RXFP3+ neurons are excitatory. Corroborating this, RNAscope® revealed that ~35% of BNST RXFP3+ cells express vVGluT2 mRNA, indicating a subpopulation of RXFP3+ neurons are glutamatergic. RXFP3+ neurons show direct hyperpolarization to bath application of a selective RXFP3 agonist, RXFP3-A2, while around 50% of cells were depolarised by exogenous corticotrophin releasing factor. In behaviorally naive mice the majority of RXFP3+ neurons were Type II cells exhibiting Ih and T type calcium mediated currents. However, chronic swim stress caused persistent plasticity, decreasing the proportion of neurons that express these channels. These studies are the first to characterize the BNST RXFP3 system in mouse and lay the foundation for future functional studies appraising the role of the murine BNST RXFP3 system in more complex behaviors.  相似文献   

12.
Micro‐RNAs (miRs) have emerged as key gene regulators in many diseases, including stroke. We recently reported that miR‐30a protects N2A cells against ischemic injury, in part through enhancing beclin 1‐mediated autophagy. The present study explores further the involvement of miR‐30a in ischemia‐induced apoptosis and its possible mechanisms in primary cortical neurons and stroked mouse brain. We demonstrate that miR‐30a level is significantly decreased in cortical neurons after 1‐hr oxygen–glucose deprivation (OGD)/24‐hr reoxygenation. Overexpression of miR‐30a aggravated the OGD‐induced neuronal cell death, whereas inhibition of miR‐30a attenuated necrosis and apoptosis as determined by 3‐(4,5‐dimethyl‐2‐thiazolyl)‐2,5‐di‐phenyl‐2H‐tetrazolium bromide, lactate dehydrogenase, TUNEL, and cleaved caspase‐3. The amount of HSPA5 protein, which is predicted to be a putative target of miR‐30a by TargetScan, could be reduced by pre‐miR‐30a, whereas it was increased by anti‐miR‐30a. Furthermore, the luciferase reporter assay confirmed that miR‐30a directly binds to the predicted 3′‐UTR target sites of the hspa5 gene. The cell injury regulated by miR‐30a in OGD‐treated cells could be aggravated by HSPA5 siRNA. We also observed an interaction of HSPA5 and caspase‐12 by coimmunoprecipitation and speculate that HSPA5 might be involved in endoplasmic reticulum stress‐induced apoptosis. In vivo, reduced miR‐30a increased the HSPA5 level and attenuated ischemic brain infarction in focal ischemia‐stroked mice. Downregulation of miR‐30a could prevent neural ischemic injury through upregulating HSPA5 protein expression, and decreased ER stress‐induced apoptosis might be one of the mechanisms underlying HSPA5‐mediated neuroprotection. © 2015 Wiley Periodicals, Inc.  相似文献   

13.
Invertebrate tachykinin‐related peptides (TKRPs) comprise a group of signaling molecules having sequence similarities to mammalian tachykinins. A growing body of evidence has demonstrated the presence of TKRPs in the central nervous system of insects. In this investigation, we used an antiserum against locustatachykinin‐II to reveal the distribution pattern of these peptides in the brain of the moth Heliothis virescens. Immunolabeling was found throughout the brain of the heliothine moth. Most of the roughly 500 locustatachykinin‐II immunoreactive cell bodies, that is, ca. 400, were located in the protocerebrum, whereas the rest was distributed in the deutocerebrum, tritocerebrum, and the gnathal ganglion. Abundant immunoreactive processes were located in the same regions. Labeled processes in the protocerebrum were especially localized in optic lobe, central body, lateral accessory lobe, superior protocerebrum, and lateral protocerebrum, while those in the deutocerebrum were present exclusively in the antennal lobe. In addition to brain interneurons, four pairs of median neurosecretory cells in the pars intercerebralis with terminal processes in the corpora cardiaca and aorta wall were immunostained. No sexual dimorphism in immunoreactivity was found. Comparing the data obtained here with findings from other insect species reveals considerable differences, suggesting species‐specific roles of tachykinin‐related peptides in insects.  相似文献   

14.
Changes in executive function are at the root of most cognitive problems associated with Parkinson's disease. Because dopaminergic treatment does not necessarily alleviate deficits in executive function, it has been hypothesized that dysfunction of neurotransmitters/systems other than dopamine (DA) may be associated with this decrease in cognitive function. We have reported decreases in motor function and dopaminergic/glutamatergic biomarkers in a progressive 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP) Parkinson's mouse model. Assessment of executive function and dopaminergic/glutamatergic biomarkers within the limbic circuit has not previously been explored in our model. Our results show progressive behavioral decline in a cued response task (a rodent model for frontal cortex cognitive function) with increasing weekly doses of MPTP. Although within the dorsolateral (DL) striatum mice that had been given MPTP showed a 63% and 83% loss of tyrosine hydroxylase and dopamine transporter expression, respectively, there were no changes in the nucleus accumbens or medial prefrontal cortex (mPFC). Furthermore, dopamine‐1 receptor and vesicular glutamate transporter (VGLUT)?1 expression increased in the mPFC following DA loss. There were significant MPTP‐induced decreases and increases in VGLUT‐1 and VGLUT‐2 expression, respectively, within the DL striatum. We propose that the behavioral decline following MPTP treatment may be associated with a change not only in cortical–cortical (VGLUT‐1) glutamate function but also in striatal DA and glutamate (VGLUT‐1/VGLUT‐2) input. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
GPR151 is a G‐protein coupled receptor for which the endogenous ligand remains unknown. In the nervous system of vertebrates, its expression is enriched in specific diencephalic structures, where the highest levels are observed in the habenular area. The habenula has been implicated in a range of different functions including behavioral flexibility, decision making, inhibitory control, and pain processing, which makes it a promising target for treating psychiatric and neurological disease. This study aimed to further characterize neurons expressing the Gpr151 gene, by tracing the afferent connectivity of this diencephalic cell population. Using pseudotyped rabies virus in a transgenic Gpr151‐Cre mouse line, monosynaptic afferents of habenular and thalamic Gpr151‐expressing neuronal populations could be visualized. The habenular and thalamic Gpr151 systems displayed both shared and distinct connectivity patterns. The habenular neurons primarily received input from basal forebrain structures, the bed nucleus of stria terminalis, the lateral preoptic area, the entopeduncular nucleus, and the lateral hypothalamic area. The Gpr151‐expressing neurons in the paraventricular nucleus of the thalamus was primarily contacted by medial hypothalamic areas as well as the zona incerta and projected to specific forebrain areas such as the prelimbic cortex and the accumbens nucleus. Gpr151 mRNA was also detected at low levels in the lateral posterior thalamic nucleus which received input from areas associated with visual processing, including the superior colliculus, zona incerta, and the visual and retrosplenial cortices. Knowledge about the connectivity of Gpr151‐expressing neurons will facilitate the interpretation of future functional studies of this receptor.  相似文献   

16.
17.
The Drosophila dopaminergic (DAergic) system consists of a relatively small number of neurons clustered throughout the brain and ventral nerve cord. Previous work shows that clusters of DA neurons innervate different brain compartments, which in part accounts for functional diversity of the DA system. We analyzed the association between DA neuron clusters and specific brain lineages, developmental and structural units of the Drosophila brain that provide a framework of connections that can be followed throughout development. The hatching larval brain contains six groups of primary DA neurons (born in the embryo), which we assign to six distinct lineages. We can show that all larval DA clusters persist into the adult brain. Some clusters increase in cell number during late larval stages, whereas others do not become DA positive until early pupa. Ablating neuroblasts with hydroxyurea (HU) prior to onset of larval proliferation (generates secondary neurons) confirms that these added DA clusters are primary neurons born in the embryo, rather than secondary neurons. A single cluster that becomes DA positive in the late pupa, PAM1/lineage DALcm1/2, forms part of a secondary lineage that can be ablated by larval HU application. By supplying lineage information for each DA cluster, our analysis promotes further developmental and functional analyses of this important system of neurons. J. Comp. Neurol. 525:363–379, 2017. © 2016 Wiley Periodicals, Inc.  相似文献   

18.
Subthreshold A‐type K+ currents (ISAs) have been recorded from the somata of nociceptors and spinal lamina II excitatory interneurons, which sense and modulate pain, respectively. Kv4 channels are responsible for the somatodendritic ISAs. Accumulative evidence suggests that neuronal Kv4 channels are ternary complexes including pore‐forming Kv4 subunits and two types of auxiliary subunits: K+ channel‐interacting proteins (KChIPs) and dipeptidyl peptidase‐like proteins (DPPLs). Previous reports have shown Kv4.3 in a subset of nonpeptidergic nociceptors and Kv4.2/Kv4.3 in certain spinal lamina II excitatory interneurons. However, whether and which KChIP and DPPL are coexpressed with Kv4 in these ISA‐expressing pain‐related neurons is unknown. In this study we mapped the protein distribution of KChIP1, KChIP2, KChIP3, DPP6, and DPP10 in adult rat dorsal root ganglion (DRG) and spinal cord by immunohistochemistry. In the DRG, we found colocalization of KChIP1, KChIP2, and DPP10 in the somatic surface and cytoplasm of Kv4.3(+) nociceptors. KChIP3 appears in most Aβ and Aδ sensory neurons as well as a small population of peptidergic nociceptors, whereas DPP6 is absent in sensory neurons. In the spinal cord, KChIP1 is coexpressed with Kv4.3 in the cell bodies of a subset of lamina II excitatory interneurons, while KChIP1, KChIP2, and DPP6 are colocalized with Kv4.2 and Kv4.3 in their dendrites. Within the dorsal horn, besides KChIP3 in the inner lamina II and lamina III, we detected DPP10 in most projection neurons, which transmit pain signal to brain. The results suggest the existence of Kv4/KChIP/DPPL ternary complexes in ISA‐expressing nociceptors and pain‐modulating spinal interneurons. J. Comp. Neurol. 524:846–873, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

19.
20.
Gonadotropin-inhibitory hormone (GnIH) is a neuropeptide first discovered in the quail brain that is involved in the control of reproductive physiology and behaviors, and stress response. GnIH gene encodes a second peptide, GnIH-related peptide-2 (RP2), the distribution and function of which remain unknown. We therefore studied GnIH-RP2 distribution by immunohistochemistry using a novel antibody capable of discriminating between GnIH and GnIH-RP2. The overall distribution of GnIH-RP2 is similar to that of GnIH. The vast majority of labeled neurons is located in the paraventricular nucleus (PVN) of the hypothalamus. Labeling of fibers is conspicuous in the diencephalon, but present also in the mesencephalon and telencephalon. Several regions involved in the control of reproduction and stress response (the PVN, septum, bed nucleus of the stria terminalis and nucleus commissura pallii) showed a dense network of immunolabeled fibers. To investigate the potential function of GnIH-RP2 we compared its expression in two quail lines genetically selected for divergence in their emotional reactivity. A quantitative analysis in the above-mentioned brain regions showed that the density of fibers was similar in the two lines. However, the number of GnIH-RP2 labeled neurons was higher in the median portion of the PVN in birds with higher emotional reactivity. These results point to a possible involvement of GnRH-RP2 in modulating stress response and/or emotional reactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号