首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The wide application of additive manufacturing in dentistry implies the further investigation into oral micro-organism adhesion and biofilm formation on vat-photopolymerization (VP) dental resins. The surface characteristics and microbiological analysis of a VP dental resin, printed at resolutions of 50 μm (EG-50) and 100 μm (EG-100), were evaluated against an auto-polymerizing acrylic resin (CG). Samples were evaluated using a scanning electron microscope, a scanning white-light interferometer, and analyzed for Candida albicans (CA) and Streptococcus mutans (SM) biofilm, as well as antifungal and antimicrobial activity. EG-50 and EG-100 exhibited more irregular surfaces and statistically higher mean (Ra) and root-mean-square (rms) roughness (EG-50-Ra: 2.96 ± 0.32 µm; rms: 4.05 ± 0.43 µm/EG-100-Ra: 3.76 ± 0.58 µm; rms: 4.79 ± 0.74 µm) compared to the CG (Ra: 0.52 ± 0.36 µm; rms: 0.84 ± 0.54 µm) (p < 0.05). The biomass and extracellular matrix production by CA and SM and the metabolic activity of SM were significantly decreased in EG-50 and EG-100 compared to CG (p < 0.05). CA and SM growth was inhibited by the pure unpolymerized VP resin (48 h). EG-50 and EG-100 recorded a greater irregularity, higher surface roughness, and decreased CA and SM biofilm formation over the CG.  相似文献   

2.
Ductile-to-brittle transition (DBT) temperature and brittle fracture stress, σF, are important toughness criteria for structural materials. In this paper, low-carbon steels with an ultrafine elongated grain (UFEG) structure (transverse grain size 1.2 μm) and with two ferrite (α)-pearlite structure with grain sizes 10 µm and 18 µm were prepared. The UFEG steel was fabricated using multipass warm biaxial rolling. The tensile tests with a cylindrical specimen and three-point bending tests with a single-edge-notched specimen were performed at −196 °C. The local stress near the notch was quantitatively calculated via finite element analysis (FEA). The σF for each sample was quantified based on the experimental results and FEA. The relationship between σF and dα in the wide range of 1.0 μm to 138 μm was plotted, including data from past literature. Finally, the conditions of grain size and temperature that cause DBT fracture in low-carbon steel were shown via the stress−d−1/2 map. The results quantitatively showed the superiority of α grain size for brittle fracture.  相似文献   

3.
Xishi Tai  Jinhe Jiang 《Materials》2012,5(9):1626-1634
A new trinuclear Cd (II) complex [Cd3(L)6(2,2-bipyridine)3] [L = N-phenylsulfonyl-L-leucinato] has been synthesized and characterized by elemental analysis, IR and X-ray single crystal diffraction analysis. The results show that the complex belongs to the orthorhombic, space group P212121 with a = 16.877(3) Å, b = 22.875(5) Å, c = 29.495(6) Å, α = β = γ = 90°, V = 11387(4) Å3, Z = 4, Dc= 1.416 μg·m−3, μ = 0.737 mm−1, F (000) = 4992, and final R1 = 0.0390, ωR2 = 0.0989. The complex comprises two seven-coordinated Cd (II) atoms, with a N2O5 distorted pengonal bipyramidal coordination environment and a six-coordinated Cd (II) atom, with a N2O4 distorted octahedral coordination environment. The molecules form one dimensional chain structure by the interaction of bridged carboxylato groups, hydrogen bonds and π-π interaction of 2,2-bipyridine. The luminescent properties of the Cd (II) complex and N-Benzenesulphonyl-L-leucine in solid and in CH3OH solution also have been investigated.  相似文献   

4.
Aims: Volume elastic modulus (V E ), an index of arterial elasticity, and arterial diameter of the brachial artery can be automatically measured by a newly developed oscillometric device. We investigated the associations of V E with flow-mediated vasodilation (FMD), an index of endothelium-dependent vasodilation, nitroglycerine-induced vasodilation (NID), an index of endothelium-independent vasodilation, and intima-media thickness (IMT) of the brachial artery and association of oscillometrically measured brachial artery diameter with ultrasonographically measured brachial artery diameter in patients with cardiovascular risk factors. Methods: Oscillometric measurements of V E and brachial artery diameter and ultrasound measurements of brachial artery diameter, FMD, NID, and IMT of the brachial artery were performed in 50 patients with cardiovascular risk factors. Results: The mean values were 2.1±0.4 mmHg/% for V E , 0.31±0.05 mm for brachial IMT, 4.48±0.70 mm for oscillometric brachial artery diameter, and 4.30±0.55 mm for ultrasound brachial artery diameter. V E significantly correlated with brachial IMT (r=0.51, P <0.001), whereas there was no significant correlation of V E with FMD (r=-0.08, P =0.58) or NID (r=0.07, P =0.61). Multivariate analysis revealed that V E was significantly associated with brachial IMT (β=0.33, P =0.04). Oscillometric brachial artery diameter significantly correlated with ultrasound brachial artery diameter (r=0.79, P <0.001). The Bland-Altman plot showed good agreement between oscillometric brachial artery diameter and ultrasound brachial artery diameter (mean difference, -0.17 mm; limits of agreement, -1.03 mm to 0.69 mm). Conclusions: In patients with cardiovascular risk factors, V E may represent atherosclerotic structural alterations of the vascular wall but not vascular function. The accuracy of oscillometric measurement of brachial artery diameter is acceptable.  相似文献   

5.
Chopped carbon fiber-reinforced low-density unsaturated polyester resin (CCFR-LDUPR) composite materials with light weight and high mechanical properties were prepared at low temperature and under the synergistic action of methyl ethyl ketone peroxide (MEKP-II) and cobalt naphthenate. Optimal preparation conditions were obtained through an orthogonal experiment, which were preparation temperature at 58.0 °C, 2.00 parts per hundred of resin (phr) of NH4HCO3, 4.00 phr of chopped carbon fibers (CCFs) in a length of 6.0 mm, 1.25 phr of initiator and 0.08 phr of cobalt naphthenate. CCFR-LDUPR composite sample presented its optimal properties for which the density (ρ) was 0.58 ± 0.02 g·cm−3 and the specific compressive strength (Ps) was 53.56 ± 0.83 MPa·g−1·cm3, which is 38.9% higher than that of chopped glass fiber-reinforced low-density unsaturated polyester resin (CGFR-LDUPR) composite materials. Synergistic effects of initiator and accelerator accelerated the specific polymerization of resin in facile preparation at low temperature. Unique “dimples”, “plate microstructure” and “surface defect” fabricated the specific microstructure of the matrix of CCFR-LDUPR composite samples, which was different from that of cured unsaturated polyester resin (UPR) with “body defect” or that of CGFR-LDUPR with coexistence of “surface defect” and “body defect”.  相似文献   

6.
The aim of this study was to evaluate four test methods on the adhesion of resin composite to resin composite, and resin composite to glass ceramic. Resin composite specimens (N = 180, Quadrant Universal LC) were obtained and distributed randomly to test the adhesion of resin composite material and to ceramic materials (IPS e.max CAD) using one of the four following tests: (a) Macroshear SBT: (n = 30), (b) macrotensile TBT: (n = 30), (c) microshear µSBT: (n = 30) and (d) microtensile µTBT test (n = 6, composite-composite:216 sticks, ceramic-composite:216 sticks). Bonded specimens were stored for 24 h at 23 °C. Bond strength values were measured using a universal testing machine (1 mm/min), and failure types were analysed after debonding. Data were analysed using Univariate and Tukey’s, Bonneferroni post hoc test (α = 0.05). Two-parameter Weibull modulus, scale (m), and shape (0) were calculated. Test method and substrate type significantly affected the bond strength results, as well as their interaction term (p < 0.05). Resin composite to resin composite adhesion using SBT (24.4 ± 5)a, TBT (16.1 ± 4.4)b and µSBT (20.6 ± 7.4)a,b test methods presented significantly lower mean bond values (MPa), compared to µTBT (36.7 ± 8.9)b (p < 0.05). When testing adhesion of glass ceramics to resin composite, µSBT (6.6 ± 1)B showed the lowest and µTBT (24.8 ± 7)C,D the highest test values (MPa) (SBT (14.6 ± 5)A,D and TBT (19.9 ± 5)A,B) (p < 0.05). Resin composite adhesion to ceramic vs. resin composite did show significant difference for the test methods SBT and µTBT (resin composite (24.4 ± 5; 36.7 ± 9 MPa) vs. glass ceramic (14.6 ± 5; 25 ± 7 MPa)) (p > 0.05). Among substrate–test combinations, Weibull distribution presented the highest shape values for ceramic–resin in µSBT (7.6) and resin–resin in µSBT (5.7). Cohesive failures in resin–resin bond were most frequently observed in SBT (87%), followed by TBT (50%) and µSBT (50%), while mixed failures occurred mostly in ceramic–resin bonds in the SBT (100%), TBT (90%), and µSBT (90%) test types. According to Weibull modulus, failure types, and bond strength, µTBT tests might be more reliable for testing resin-based composites adhesion to resin, while µSBT might be more suitable for adhesion testing of resin-based composites to ceramic materials.  相似文献   

7.
N,N′-diphenyl-N,N′-diethylurea (C17H20N2O) crystallizes in the space group P21/c. The unit cell constants are: a = 10.42 ± 0.01 Å, b = 16.86 ± 0.02 Å, c = 10.66 ± 0.001 Å, β = 125°16′ ± 5′; Z = 4, Dx = 1.16 g·cm-3, Dmeas = 1.16 ± 0.01 g·cm-3. Data for 1392 reflections were collected at room temperature on a Picker automated diffractometer. The crystal structure was solved by direct methods and refined by bloc-diagonalized matrix least-squares calculations. The molecule is characterized by a pseudo C2 symmetry; both phenyl groups are trans with respect to the oxygen atom. The hybridization of the two nitrogen atoms is intermediate between trigonal and tetrahedral; the nonplanar distortion of the amide groups is about 30°. The amide C-N bond lengths are 1.37 Å.  相似文献   

8.
The NiAl–Cr–Co–X alloys were produced by centrifugal self-propagating high-temperature synthesis (SHS) casting. The effects of dopants X = La, Mo, Zr, Ta, and Re on combustion, as well as the phase composition, structure, and properties of the resulting cast alloys, have been studied. The greatest improvement in overall properties was achieved when the alloys were co-doped with 15% Mo and 1.5% Re. By forming a ductile matrix, molybdenum enhanced strength characteristics up to the values σucs = 1604 ± 80 MPa, σys = 1520 ± 80 MPa, and εpd = 0.79%, while annealing at T = 1250 ℃ and t = 180 min improved strength characteristics to the following level: σucs = 1800 ± 80 MPa, σys = 1670 ± 80 MPa, and εpd = 1.58%. Rhenium modified the structure of the alloy and further improved its properties. The mechanical properties of the NiAl, ZrNi5, Ni0.92Ta0.08, (Al,Ta)Ni3, and Al(Re,Ni)3 phases were determined by nanoindentation. The three-level hierarchical structure of the NiAl–Cr–Co+15%Mo alloy was identified. The optimal plasma treatment regime was identified, and narrow-fraction powders (fraction 8–27 µm) characterized by 95% degree of spheroidization and the content of nanosized fraction <5% were obtained.  相似文献   

9.
10.
Water oxidation by cyanobacteria, algae, and plants is pivotal in oxygenic photosynthesis, the process that powers life on Earth, and is the paradigm for engineering solar fuel–production systems. Each complete reaction cycle of photosynthetic water oxidation requires the removal of four electrons and four protons from the catalytic site, a manganese–calcium complex and its protein environment in photosystem II. In time-resolved photothermal beam deflection experiments, we monitored apparent volume changes of the photosystem II protein associated with charge creation by light-induced electron transfer (contraction) and charge-compensating proton relocation (expansion). Two previously invisible proton removal steps were detected, thereby filling two gaps in the basic reaction-cycle model of photosynthetic water oxidation. In the S2 → S3 transition of the classical S-state cycle, an intermediate is formed by deprotonation clearly before electron transfer to the oxidant (). The rate-determining elementary step (τ, approximately 30 µs at 20 °C) in the long-distance proton relocation toward the protein–water interface is characterized by a high activation energy (Ea = 0.46 ± 0.05 eV) and strong H/D kinetic isotope effect (approximately 6). The characteristics of a proton transfer step during the S0 → S1 transition are similar (τ, approximately 100 µs; Ea = 0.34 ± 0.08 eV; kinetic isotope effect, approximately 3); however, the proton removal from the Mn complex proceeds after electron transfer to . By discovery of the transient formation of two further intermediate states in the reaction cycle of photosynthetic water oxidation, a temporal sequence of strictly alternating removal of electrons and protons from the catalytic site is established.  相似文献   

11.
W D Rees  L C Gibbons  L A Turnberg 《Gut》1983,24(9):784-789
The effects of non-steroidal anti-inflammatory drugs and prostaglandins E2 and F on the secretory and electrical activity of isolated rabbit fundic mucosa have been studied. Spontaneous acid secretion was inhibited by serosal side application of sodium thiocyanate (6×10−2M) and the resulting alkali secretion measured by pH stat tiration. Serosal side application of indomethacin (10−5M) or aspirin (3×10−3M) inhibited alkali secretion (0·55±0·06 to 0·12±0·06 μmol/cm2/h, n=6, p<0·01 and 0·28±0·06 to 0·11±0·03 μmol/cm2/h, n=7, p<0·02 respectively). Mucosal or serosal side prostaglandin E2 (10−5 to 10−10M) and F (10−4 to 10−10M) failed to alter the rate of alkalinisation but secretion was significantly increased by serosal side 16,16-dimethyl-prostaglandin E2 (10−6M) (0·90±0·20 to 1·50±0·30 μmol/cm2/h, n=6, p<0·01). Serosal side application of 10−6M prostaglandin E2 to fundic mucosae pretreated with either aspirin (5×10−3M) or indomethacin (10−5M), to reduce endogenous E2 formation, also failed to alter alkali secretion. Pretreatment of the mucosa with 16,16-dimethyl-E2 (10−6M) abolished the inhibitory effect of indomethacin (10−5M) on alkali secretion (n=6) but did not modify the secretory response to aspirin (3×10−3M) (fall in alkali secretion with aspirin = 81±11% and with aspirin plus 16,16-dimethyl-E2 = 72±10%, n=7). In the doses used, none of the prostaglandins or non-steroidal anti-inflammatory drugs altered transmucosal potential difference or electrical resistance. These results show that the damaging agents, aspirin and indomethacin, both inhibit gastric alkali secretion but that modes of action may differ. The observation that prostaglandins, E2 and F failed to increase alkali production suggests that their protective activity against a variety of damaging agents as shown by others, may be mediated by another mechanism.  相似文献   

12.
OBJECTIVE—To study the influence MHC class II and TAP2 alleles exert on systemic lupus erythematosus (SLE) susceptibility and on the clinical and serological manifestations of the disease, in a cohort of Spanish patients.
METHODS—HLA-DR serological typing and HLA-DQA, DQB, and TAP2 DNA sequence specific oligotyping, were carried out in 85 unrelated Spanish SLE patients and 186 healthy controls. Autoantibodies detection was carried out by indirect immunofluorescence and counter immunoelectrophoresis.
RESULTS—Total SLE group: the frequency of HLA-DR3 and HLA-DQA1*0501 is significantly increased in this group (pc<0.005, δ=0.34 and pc<0.005, δ= 0.45, respectively) although the highest δ value (δ=0.87) is obtained when the TAP2*01 alleles are considered. No DQB allele shows significant deviation from the control group. Renal damage: it mainly occurs in HLA-DR3 patients (pc<0.0005 and δ=0.72). HLA-DQA1*0501 (pc<0.05, δ=0.57) and DQB1*0201 (pc NS, δ=0.56) are weaker susceptibility factors. Ro+ (but not La) group: this autoantibody response is associated with TAP2*01 alleles in homozygosity (p<0.05, δ=0.81). Ro/La+ group: it has a different genetic background as HLA-DQA1*0501 (δ=1) and HLA-DQB1*0201 (δ=1) are the main susceptibility factors.
CONCLUSIONS—A differential association between HLA-DR, DQA1, and DQB1 alleles and SLE or its clinical and serological manifestations are found. Furthermore, the associations are different to the ones reported in other ethnic groups. Finally, TAP2*01 group of alleles are associated with the highest susceptibility to SLE (higher than HLA-DR3) and may influence Ro (but not La) autoantibodies production, whereas HLA-DQA1*0501 and DQB1*0201 mediates concomitant Ro and La production.

  相似文献   

13.
Xishi Tai  Na Wei  Donghao Wang 《Materials》2012,5(4):558-565
A new complex [Mg(L)2(phen)(H2O)2](phen)(H2O)2 [L= N-benzenesulphonyl-L-leucine] was synthesized by the reaction of magnesium chloride hexahydrate with N-benzenesulphonyl-L-leucine and 1,10-phenanthroline in the CH3CH2OH/H2O (v:v = 5:1). It was characterized by elemental analysis, IR and X-ray single crystal diffraction analysis. The crystal of the title complex [Mg(L)2(phen)(H2O)2](phen)(H2O)2 belongs to triclinic, space group P-1 with a = 0.72772(15) nm, b = 1.4279(3) nm, c = 1.4418(3) nm, α = 63.53(3)°, β = 79.75(3)°, γ = 81.83(3)°, V = 1.3163(5) nm3, Z =1, Dc= 1.258 μg·m−3, μ = 0.177 mm−1, F(000) = 526, and final R1 = 0.0506, ωR2 = 0.1328. The complex comprises a six-coordinated magnesium(II) center, with a N2O4 distorted octahedron coordination environment. The molecules are connected by hydrogen bonds and π-π stacking to form one dimensional chain structure. The luminescent property of the Mg(II) complex has been investigated in solid.  相似文献   

14.
In this work, novel MgCu2Nb2O8 (MCN) ceramics were synthesized by the two-step sintering (TSS) technique, and the phase composition, crystal structures, and microwave dielectric properties were comprehensively studied. X-ray diffraction (XRD) and Raman analysis demonstrated that MCN ceramics are multi-phase ceramics consisting of MgNb2O6 and CuO phases. X-ray photoelectron spectroscopy (XPS) was utilized to investigate the chemical composition and element valence of MgCu2Nb2O8 ceramics. Scanning electron microscopy (SEM) analysis demonstrated dense microstructures in the MCN ceramics prepared at a sintering temperature of 925 °C. The microwave dielectric properties were largely affected by the lattice vibrational modes and densification level of the ceramics. The outstanding microwave dielectric properties of εr = 17.15, Q × f = 34.355 GHz, and τf = −22.5 ppm/°C were obtained for the MCN ceramics sintered at 925 °C, which are results that hold promise for low temperature co-fired ceramic (LTCC) applications.  相似文献   

15.
BackgroundThe definite pathogenesis of lung injury complicated by type A aortic dissection (TAAD) remains unclear. In this paper, we investigated the relationship between intestinal injury, lung injury, and systemic inflammatory responses, with the aim of exploring the mechanism underlying intestinal injury and its impact on systemic inflammatory responses and lung injury in patients with TAAD.MethodsPatients with TAAD (n=36) and those with aortic root aneurysm (ARA) (n=30) were compared. TAAD patients were younger and had higher creatinine (Cr) than ARA patients. White blood cell (WBC) count, neutrophil count, neutrophil percentage, interleukin (IL)-6, IL-8, tumor necrosis factor α (TNF-α), C-reactive protein (CRP), histamine (HIS) levels, PaO2-FiO2 ratio, diamine oxidase (DAO), intestinal fatty acid binding protein (iFABP), and peptidoglycan (PGN) were measured using the same laboratory methods between the two groups.ResultsIncreased WBC [(9.70±4.05)×109/L vs. (5.88±1.2)×109/L, P<0.001], neutrophil [(7.65±4.27)×109/L vs. (3.40±0.97)×109/L, P<0.001], neutrophil percentage [(74.73±13.42)% vs. (57.67±9.45)%, P<0.001], IL-6 (37.48±4.87 vs. 20.90±0.92 pg/mL, P<0.001), IL-8 (97.15±9.11 vs. 69.46±3.17 pg/mL, P<0.001), TNF-α (71.32±10.35 vs. 33.90±2.27 pg/mL, P<0.001), CRP (10.67±1.62 vs. 4.43±0.26 µg/mL, P<0.001), HIS (13.29±1.88 vs. 7.63±0.58 ng/mL, P<0.001), DAO (24.94±4.72 vs. 10.92±2.44 U/L, P<0.001), iFABP (879.01±190.12 vs. 206.35±42.20 pg/mL, P<0.001), and PGN (31.10±5.51 vs. 12.52±2.20 ng/mL, P<0.001) and decreased PaO2-FiO2 ratio (365.35±146.47 vs. 447.86±70.80 mmHg, P=0.01) were detected in TAAD group relative to ARA group. In TAAD group, positive correlations were detected between DAO and inflammatory cytokines [IL-6 (r=0.56, P<0.001), IL-8 (r=0.61, P<0.001), TNF-α (r=0.71, P<0.001), and CRP (r=0.68, P<0.001)], between iFABP and inflammatory cytokines [IL-6 (r=0.72, P<0.001), IL-8 (r=0.71, P<0.001), TNF-α (r=0.90, P<0.001), and CRP (r=0.89, P<0.001)], between DAO and PGN (r=0.52, P<0.001), between iFABP and PGN (r=0.74, P<0.001), between PGN and inflammatory cytokines [IL-6 (r=0.85, P<0.001), IL-8 (r=0.44, P<0.001), TNF-α (r=0.61, P<0.001), and CRP (r=0.73, P<0.001)]. In acute TAAD subgroup, PGN and PaO2-FiO2 ratio were negatively correlated (r=−0.50, P=0.036).ConclusionsSystemic inflammatory responses in TAAD patients may lead to lung and intestine injury, and the latter may be involved in the development of systemic inflammatory responses and lung injury in these patients.  相似文献   

16.
The features of discontinuous dynamic recrystallization (DRX) in a highly-alloyed austenitic stainless steel were studied at temperatures of 800 °C to 1100 °C. Hot deformation accompanied by DRX was characterized by an activation energy of 415 kJ/mol. The frequency of the sequential DRX cycles depended on the deformation conditions; and the largest fraction of DRX grains with small grain orientation spread below 1° was observed at a temperature of around 1000 °C and a strain rate of about 10−3 s−1. The following power law relationships were obtained for DRX grain size (DDRX) and dislocation density (ρ) vs. temperature-compensated strain rate (Z) or peak flow stress (σP): DDRX ~ Z−0.25, ρ ~ Z0.1, σP ~ DDRX−0.9, σP ~ ρ1.4. The latter, i.e., σP ~ ρ1.4, was valid in the flow stress range below 300 MPa and changed to σP ~ ρ0.5 on increasing the stress. The obtained dependencies suggest a unique power law function between the dislocation density and the DRX grain size with an exponent of −0.5.  相似文献   

17.
The effects of lobeline and tubocurarine on the voltage-clamped endplates of frog sartorius and cutaneous pectoris muscles were examined at room temperature (20-23°C). Like tubocurarine, lobeline causes nondepolarizing neuromuscular blockade. The half-time of decay (t½) of endplate currents (e.p.c.s) recorded at a holding potential (Vm) of -90 mV was significantly shorter in endplates treated with lobeline (50 μM; mean t½ ± SEM = 0.41 ± 0.02 ms) or tubocurarine (11.4 μM; t½ = 0.64 ± 0.04 ms) than in those treated with Mg2+ (13 mM; t½ = 1.39 ± 0.11 ms) or a low concentration of tubocurarine (3 μM; t½ = 0.87 ± 0.05 ms). Similarly, lobeline (10 μM) shortened the t½ of untreated miniature e.p.c.s by 35%; tubocurarine, however, abolished miniature e.p.c.s at the concentration required to observe its actions on e.p.c. decay kinetics. The t½ of e.p.c.s recorded from preparations treated with Mg2+ (13 mM), tubocurarine at low concentrations (3 μM), or untreated miniature e.p.c.s was logarithmically related to Vm, being slower at more hyperpolarized values. By contrast, the t½s of e.p.c.s recorded in either lobeline (50 μM) or tubocurarine (11.4 μM) were independent of voltage in the range -150 to -80 mV. The ability of lobeline to shorten t½ and to remove the voltage dependence of t½ was partially antagonized by Mg2+ (13 mM). As expected, when lobeline or tubocurarine was removed from the bath or when acetylcholine release from the motor nerve terminals was increased by 4-aminopyridine (20 μM) and Ca2+ (10 mM) (in the presence of lobeline or tubocurarine), the amplitude of e.p.c.s increased as a function of time. However, the t½ of the decay phase of the e.p.c.s remained shortened (i.e., unaltered from the earlier treatment). These results suggest that both tubocurarine and lobeline have at least two distinct postjunctional actions including: (i) a block of the acetylcholine receptor and (ii) a block of the ionic channel associated with the acetylcholine receptor.  相似文献   

18.
Oxygen-evolving photosystem II particles (from Synechococcus) with about 80 chlorophyll molecules per primary electron donor (P680) were used for a correlated study of picosecond kinetics of fluorescence and absorbance changes, detected by the single-photon-timing technique and by a pump-probe apparatus, respectively. Chlorophyll fluorescence decays were biexponential with lifetimes τ1 = 80 ± 20 ps and τ2 = 520 ± 120 ps in open reaction centers and τ1 = 220 ± 30 ps and τ2 = 1.3 ± 0.15 ns in closed reaction centers. The corresponding fluorescence yield ratio Fmax/Fo was 3-4. Absorbance changes were monitored in the spectral range of 620-700 nm after excitation at 675 nm with 10-ps pulses sufficiently weak (<7 × 1012 photons/cm2 per pulse) to avoid singlet-singlet annihilation. With open reaction centers, the absorbance changes could be fit to the sum of three exponentials. The associated absorbance difference spectra were attributed to (i) exciton trapping and charge separation (τ = 100 ± 20 ps), (ii) the electron-transfer step P680+ I- QA → P680+ I QA- (where I is the primary electron acceptor and QA is the first quinone acceptor) (τ = 510 ± 50 ps), and (iii) the reduction of P680+ by the intact donor side (τ > 10 ns). With closed reaction centers, the absorbance changes were biexponential with lifetimes τ1 = 170-260 ps and τ2 = 1.6-1.75 ns. The results are explained in terms of a kinetic model that assumes P680 to constitute a shallow trap. The results show that QA reduction in these photosystem II particles decreases both the apparent rate and the yield of the primary charge separation by a factor of 2-3 and increases the mean lifetime of excitons in the antenna by a factor of 3-4. Thus, we conclude that the long-lived, nanosecond chlorophyll fluorescence is not charge-recombination luminescence but rather emission from equilibrated excited states of antenna chlorophylls.  相似文献   

19.
Antigen receptor locus V(D)J recombination requires interactions between widely separated variable (V), diversity (D), and joining (J) gene segments, but the mechanisms that generate these interactions are not well understood. Here we assessed mechanisms that direct developmental stage-specific long-distance interactions at the Tcra/Tcrd locus. The Tcra/Tcrd locus recombines Tcrd gene segments in CD4CD8 double-negative thymocytes and Tcra gene segments in CD4+CD8+ double-positive thymocytes. Initial Vα-to-Jα recombination occurs within a chromosomal domain that displays a contracted conformation in both thymocyte subsets. We used chromosome conformation capture to demonstrate that the Tcra enhancer (Eα) interacts directly with Vα and Jα gene segments distributed across this domain, specifically in double-positive thymocytes. Moreover, Eα promotes interactions between these Vα and Jα segments that should facilitate their synapsis. We found that the CCCTC-binding factor (CTCF) binds to Eα and to many locus promoters, biases Eα to interact with these promoters, and is required for efficient Vα–Jα recombination. Our data indicate that Eα and CTCF cooperate to create a developmentally regulated chromatin hub that supports Vα–Jα synapsis and recombination.  相似文献   

20.
Studies have shown that fish oils, containing n-3 fatty acids, have protective effects against ischemia-induced, fatal cardiac arrhythmias in animals and perhaps in humans. In this study we used the whole-cell voltage-clamp technique to assess the effects of dietary, free long-chain fatty acids on the Na+ current (INa,α) in human embryonic kidney (HEK293t) cells transfected with the α-subunit of the human cardiac Na+ channel (hH1α). Extracellular application of 0.01 to 30 μM eicosapentaenoic acid (EPA, C20:5n-3) significantly reduced INa,α with an IC50 of 0.51 ± 0.06 μM. The EPA-induced suppression of INa,α was concentration- and voltage-dependent. EPA at 5 μM significantly shifted the steady-state inactivation relationship by −27.8 ± 1.2 mV (n = 6, P < 0.0001) at the V1/2 point. In addition, EPA blocked INa,α with a higher “binding affinity” to hH1α channels in the inactivated state than in the resting state. The transition from the resting state to the inactivated state was markedly accelerated in the presence of 5 μM EPA. The time for 50% recovery from the inactivation state was significantly slower in the presence of 5 μM EPA, from 2.1 ± 0.8 ms for control to 34.8 ± 2.1 ms (n = 5, P < 0.001). The effects of EPA on INa,α were reversible. Furthermore, docosahexaenoic acid (C22:6n-3), α-linolenic acid (C18:3n-3), conjugated linoleic acid (C18:2n-7), and oleic acid (C18:1n-9) at 5 μM and all-trans-retinoic acid at 10 μM had similar effects on INa,α as EPA. Even 5 μM of stearic acid (C18:0) or palmitic acid (C16:0) also significantly inhibited INa,α. In contrast, 5 μM EPA ethyl ester did not alter INa,α (8 ± 4%, n = 8, P > 0.05). The present data demonstrate that free fatty acids suppress INa,α with high “binding affinity” to hH1α channels in the inactivated state and prolong the duration of recovery from inactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号