首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In complementary electrochromic devices (ECDs), nickel oxide (NiO) is generally used as a counter electrode material for enhancing the coloration efficiency. However, an NiO film as a counter electrode in ECDs is susceptible to degradation upon prolonged electrochemical cycling, which leads to an insufficient device lifetime. In this study, a type of counter electrode iridium oxide (IrO2) layer was fabricated using vacuum cathodic arc plasma (CAP). We focused on the comparison of IrO2 and NiO deposited on a 5 × 5 cm2 indium tin oxide (ITO) glass substrate with various Ar/O2 gas-flow ratios (1/2, 1/2.5, and 1/3) in series. The optical performance of IrO2-ECD (glass/ITO/WO3/liquid electrolyte/IrO2/ITO/glass) was determined by optical transmittance modulation; ∆T = 50% (from Tbleaching (75%) to Tcoloring (25%)) at 633 nm was higher than that of NiO-ECD (ITO/NiO/liquid electrolyte/WO3/ITO) (∆T = 32%). Apart from this, the ECD device demonstrated a fast coloring time of 4.8 s, a bleaching time of 1.5 s, and good cycling durability, which remained at 50% transmittance modulation even after 1000 cycles. The fast time was associated with the IrO2 electrode and provided higher diffusion coefficients and a filamentary shape as an interface that facilitated the transfer of the Li ions into/out of the interface electrodes and the electrolyte. In our result of IrO2-ECD analyses, the higher optical transmittance modulation was useful for promoting electrochromic application to a cycle durability test as an alternative to NiO-ECD.  相似文献   

2.
Electrochromic devices (ECDs) are a promising material for smart windows that are capable of transmittance variation. However, ECDs are still too expensive to achieve a wide market reach. Reducing fabrication cost remains a challenge. In this study, we inserted an IrO2 buffer layer on Ti-doped V2O5 (Ti:V2O5) as a counter electrode using various Ar/O2 gas flow ratios (1/2, 1/2.5, 1/3 and 1/3.5) in the fabrication process. The buffered-ECD resulted in a larger cyclic voltammetry (CV) area and the best surface average roughness (Ra = 3.91 nm) to promote electrochromic performance. It was fabricated using the low-cost, fast deposition process of vacuum cathodic arc plasma (CAP). This study investigates the influence of the IrO2 buffer/Ti:V2O5 electrode on ECD electrochemical and optical properties, in terms of color efficiency (CE) and cycle durability. The buffered ECD (glass/ITO/WO3/liquid electrolyte/IrO2 buffer/Ti:V2O5/ITO/glass) demonstrated excellent optical transmittance modulation; ∆T = 57% (from Tbleaching (67%) to Tcoloring (10%)) at 633 nm, which was higher than without the buffer (ITO/WO3/liquid electrolyte/Ti:V2O5/ITO) (∆T = 36%). In addition, by means of an IrO2 buffer, the ECD exhibited high coloration efficiency of 96.1 cm2/mC and good durability, which decayed by only 2% after 1000 cycles.  相似文献   

3.
A vanadium pentoxide (V2O5) thin film with thermal annealing as an ionic storage layer for electrochromic devices is presented in our study. The V2O5 thin film was deposited on an ITO glass substrate by an RF magnetron sputtering. The electrochromic properties of the film were evaluated after various thermal annealing temperatures. The structural analysis of the film was observed by X-ray diffraction (XRD), field emission electron microscopy (FE-SEM), and atomic force microscopy (AFM). The structure of the V2O5 thin film transformed from an amorphous to polycrystalline structure with directions of (110) and (020) after 400 °C thermal annealing. The electrochromic properties of the film improved compared with the unannealed V2O5 thin film. We obtained a charge capacity of 97.9 mC/cm2 with a transparent difference ΔT value of 31% and coloration efficiency of 6.3 cm2/C after 400 °C thermal annealing. The improvement was due to the polycrystalline orthorhombic structure formation of V2O5 film by the rearrangement of atoms from thermal energy. Its laminate structure facilitates Li+ ion intercalation and increases charge capacity and transparent difference.  相似文献   

4.
High Power Impulse Magnetron Sputtering (HiPIMS) was used for deposition of indium tin oxide (ITO) transparent thin films at low substrate temperature. A hybrid-type composite target was self-prepared by low-pressure cold spraying process. Prior to spraying In2O3 and oxidized Sn powders were mixed in a volume ratio of 3:1. Composite In2O3/Sn coating had a mean thickness of 900 µm. HiPIMS process was performed in various mixtures of Ar:O2: (i) 100:0 vol.%, (ii) 90:10 vol.%, (iii) 75:25 vol.%, (iv) 50:50 vol.%, and (v) 0:100 vol.%. Oxygen rich atmosphere was necessary to oxidize tin atoms. Self-design, simple high voltage power switch capable of charging the 20 µF capacitor bank from external high voltage power supply worked as a power supply for an unbalanced magnetron source. ITO thin films with thickness in the range of 30–40 nm were obtained after 300 deposition pulses of 900 V and deposition time of 900 s. The highest transmission of 88% at λ = 550 nm provided 0:100 vol. % Ar:O2 mixture, together with the lowest resistivity of 0.03 Ω·cm.  相似文献   

5.
Well-ordered 3D mesoporous indium tin oxide (ITO) films obtained by a templated sol-gel route are discussed as conductive porous current collectors. This paper explores the use of such films modified by electrochemical deposition of zinc oxide (ZnO) on the pore walls to improve the electron transport in dye-sensitized solar cells (DSSCs). Mesoporous ITO film were dip-coated with pore sizes of 20–25 nm and 40–45 nm employing novel poly(isobutylene)-b-poly(ethylene oxide) block copolymers as structure-directors. After electrochemical deposition of ZnO and sensitization with the indoline dye D149 the films were tested as photoanodes in DSSCs. Short ZnO deposition times led to strong back reaction of photogenerated electrons from non-covered ITO to the electrolyte. ITO films with larger pores enabled longer ZnO deposition times before pore blocking occurred, resulting in higher efficiencies, which could be further increased by using thicker ITO films consisting of five layers, but were still lower compared to nanoporous ZnO films electrodeposited on flat ITO. The major factors that currently limit the application are the still low thickness of the mesoporous ITO films, too small pore sizes and non-ideal geometries that do not allow obtaining full coverage of the ITO surface with ZnO before pore blocking occurs.  相似文献   

6.
In this study, direct-current magnetron sputtering was used to fabricate Ti-doped indium tin oxide (ITO) thin films. The sputtering power during the 350-nm-thick thin-film production process was fixed at 100 W with substrate temperatures increasing from room temperature to 500 °C. The Ti-doped ITO thin films exhibited superior thin-film resistivity (1.5 × 10−4 Ω/cm), carrier concentration (4.1 × 1021 cm−3), carrier mobility (10 cm2/Vs), and mean visible-light transmittance (90%) at wavelengths of 400–800 nm at a deposition temperature of 400 °C. The superior carrier concentration of the Ti-doped ITO alloys (>1021 cm−3) with a high figure of merit (81.1 × 10−3−1) demonstrate the pronounced contribution of Ti doping, indicating their high suitability for application in optoelectronic devices.  相似文献   

7.
From the viewpoint of the device performance, the fabrication and patterning of oxide–metal–oxide (OMO) multilayers (MLs) as transparent conductive oxide electrodes with a high figure of merit have been extensively investigated for diverse optoelectronic and energy device applications, although the issues of their general concerns about possible shortcomings, such as a more complicated fabrication process with increasing cost, still remain. However, the underlying mechanism by which a thin metal mid-layer affects the overall performance of prepatterned OMO ML electrodes has not been fully elucidated. In this study, indium tin oxide (ITO)/silver (Ag)/ITO MLs are fabricated using an in-line sputtering method for different Ag thicknesses on glass substrates. Subsequently, a Q-switched diode-pumped neodymium-doped yttrium vanadate (Nd:YVO4, λ = 1064 nm) laser is employed for the direct ablation of the ITO/Ag/ITO ML films to pattern ITO/Ag/ITO ML electrodes. Analysis of the laser-patterned results indicate that the ITO/Ag/ITO ML films exhibit wider ablation widths and lower ablation thresholds than ITO single layer (SL) films. However, the dependence of Ag thickness on the laser patterning results of the ITO/Ag/ITO MLs is not observed, despite the difference in their absorption coefficients. The results show that the laser direct patterning of ITO/Ag/ITO MLs is primarily affected by rapid thermal heating, melting, and vaporization of the inserted Ag mid-layer, which has considerably higher thermal conductivity and absorption coefficients than the ITO layers. Simulation reveals the importance of the Ag mid-layer in the effective absorption and focusing of photothermal energy, thereby supporting the experimental observations. The laser-patterned ITO/Ag/ITO ML electrodes indicate a comparable optical transmittance, a higher electrical current density, and a lower resistance compared with the ITO SL electrode.  相似文献   

8.
We prepare and test four types of glass antennas for X-band applications and energy harvesting. These antennas are made of three different glass metallization schemes, including conductive copper foil (CCF), conductive silver paste (CSP) and indium tin oxide (ITO) thin film. Compared with conventional microstrip patch antennas, the dielectric substrate materials of these designs are replaced with silicon-boron glass (εr = 6, tangent δ = 0.002). The antenna with CCF as a radiator and ground plane (case one) is compared with the antenna with ITO replacing the radiator (case two) and ground plane (case three), respectively, and the glass antenna made of CSP (case four) is also presented. In this paper, these four types of glass antennas are measured and analyzed, and a comparison of the fabrication process and performance of these antennas is demonstrated. This study could contribute to the development of human-machine interactivity (HMI) systems with glass dielectric substrates.  相似文献   

9.
This paper presents the dry etching characteristics of indium tin oxide (ITO)/Ag/ITO multilayered thin film, used as a pixel electrode in a high-resolution active-matrix organic light-emitting diode (AMOLED) device. Dry etching was performed using a combination of H2 and HCl gases in a reactive ion etching system with a remote electron cyclotron resonance (ECR) plasma source, in order to achieve high electron temperature. The effect of the gas ratio (H2/HCl) was closely observed, in order to achieve an optimal etch profile and an effective etch process, while other parameters—such as the radio frequency (RF) power, ECR power, chamber pressure, and temperature—were fixed. The optimized process, with an appropriate gas ratio, constitutes a one-step serial dry etch solution for ITO and Ag multilayered thin films.  相似文献   

10.
The development of optoelectronic devices based on flexible organic substrates substantially decreases the possible process temperatures during all stages of device manufacturing. This makes it urgent to search for new transparent conducting oxide (TCO) materials, cheaper than traditional indium-tin oxide (ITO), for the low-temperature deposition of transparent electrodes, a necessary component of most optoelectronic devices. The article presents the results of a vertically integrated study aimed at the low-temperature production of TCO thin films based on a zinc-indium oxide (ZIO) system with acceptable functional characteristics. First, dense and conducting ceramic targets based on the (100-x) mol% (ZnO) + x mol% (In2O3) system (x = 0.5, 1.5, 2.5, 5.0, and 10.0) were synthesized by the spark plasma sintering method. The dependences of the microstructure and phase composition of the ZIO ceramic targets on the In2O3 content have been studied by powder X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy methods. Then, a set of ZIO thin films with different Zn/In ratios were obtained on unheated glass substrates by direct current (dc) magnetron sputtering of the sintered targets. Complex studies of microstructure, electrical and optical properties of the deposited films have revealed the presence of an optimal doping level (5 mol% In2O3) of the ZIO target at which the deposited TCO films, in terms of the combination of their electrical and optical properties, become comparable to the widely used expensive ITO.  相似文献   

11.
The accurate determination of nitrite in food samples is of great significance for ensuring people’s health and safety. Herein, a rapid and low-cost detection method was developed for highly sensitive and selective detection of nitrite based on a surface-enhanced Raman scattering (SERS) sensor combined with electrochemical technology and diazo reaction. In this work, a gold nanoparticle (AuNP)/indium tin oxide (ITO) chip as a superior SERS substrate was obtained by electrochemical self-assembled AuNPs on ITO with the advantages of good uniformity, high reproducibility, and long-time stability. The azo compounds generated from the diazotization-coupling reaction between nitrite, 4-aminothiophenol (4-ATP), and N-(1-naphthyl) ethylenediamine dihydrochloride (NED) in acid condition were further assembled on the surface of AuNP/ITO. The detection of nitrite was realized using a portable Raman spectrometer based on the significant SERS enhancement of azo compounds assembled on the AuNP/ITO chip. Many experimental conditions were optimized such as the time of electrochemical self-assembly and the concentration of HAuCl4. Under the optimal conditions, the designed SERS sensor could detect nitride in a large linear range from 1.0 × 10−6 to 1.0 × 10−3 mol L−1 with a low limit of detection of 0.33 μmol L−1. Additionally, nitrite in real samples was further analyzed with a recovery of 95.1−109.7%. Therefore, the proposed SERS method has shown potential application in the detection of nitrite in complex food samples.  相似文献   

12.
This study aimed to evaluate the color change caused by hydraulic cements after 3 years in vitro by simulating their use in regenerative endodontic treatment (RET) and to quantify the color change after external bleaching with 40% hydrogen peroxide at 1, 6, and 12 months of follow-up. Fifty teeth were treated simulating RET. Samples were distributed according to the hydraulic cement to be used (n = 10 per group): negative control (no cement), ProRoot-MTA, MM-MTA, TotalFill BC-RRM, or Biodentine. Three years after RET, two sessions of external bleaching with Opalescence Boost were performed. The color was measured in the cervical and incisal halves of the teeth at different time points: baseline, 3 years after performing RET, and after 1, 6, and 12 months after bleaching. The ΔL, Δa, and Δb were determined. A generalized linear model was used to compare color considering group and time. The ΔEab and the ΔE00 were calculated and the acceptability in color change was determined. Three years after RET, a reduction in lightness (negative ΔL values) was found in all groups. These values significantly increased 1 month after bleaching in all groups (p < 0.05) and reversed at 6 months. One month after bleaching, ΔE00 values (color difference tolerance (CIEDE2000)) ranged from very good (>3.6 ≤ 5.4) to excellent (>5.4). One year after bleaching, the color reverted to values similar to those found 3 years after RET. All groups became darker after RET. The color recovered and even improved compared with the baseline measurement after one month of bleaching but did not remain stable over time.  相似文献   

13.
Different functionalities of materials based on indium tin oxide and fabricated at soft conditions were investigated with the goal of being used in a next generation of solar photovoltaic devices. These thin films were fabricated in a commercial UNIVEX 450B magnetron sputtering. The first studied functionality consisted of an effective n-type doped layer in an n-p heterojunction based on p-type crystalline silicon. At this point, the impact of the ITO film thickness (varied from 45 to 140 nm) and the substrate temperature (varied from room temperature to 250 °C) on the heterojunction parameters was evaluated separately. To avoid possible damages in the heterojunction interface, the applied ITO power was purposely set as low as 25 W; and to minimize the energy consumption, no heat treatment process was used. The second functionality consisted of indium-saving transparent conductive multicomponent materials for full spectrum applications. This was carried out by the doping of the ITO matrix with transition metals, as titanium and zinc. This action can reduce the production cost without sacrificing the optoelectronic film properties. The morphology, chemical, structural nature and optoelectronic properties were evaluated as function of the doping concentrations. The results revealed low manufactured and suitable films used successfully as conventional emitter, and near-infrared extended transparent conductive materials with superior performance that conventional ones, useful for full spectrum applications. Both can open interesting choices for cost-effective photovoltaic technologies.  相似文献   

14.
Metallic nanomesh, one of the emerging transparent conductive film (TCF) materials with both high electrical conductivity and optical transmittance, shows great potential to replace indium tin oxide (ITO) in optoelectronic devices. However, lithography-fabricated metallic nanomeshes suffer from an iridescence problem caused by the optical diffraction of periodic nanostructures, which has negative effects on display performance. In this work, we propose a novel approach to fabricate large-scale metallic nanomesh as TCFs on flexible polyethylene terephthalate (PET) sheets by maskless phase separation lithography of polymer blends in a low-cost and facile process. Polystyrene (PS)/polyphenylsilsequioxane (PPSQ) polymer blend was chosen as resist material for phase separation lithography due to their different etching selectivity under O2 reactive ion etching (RIE). The PS constituent was selectively removed by O2 RIE and the remained PPSQ nanopillars with varying sizes in random distribution were used as masks for further pattern transfer and metal deposition process. Gold (Au) nanomeshes with adjustable nanostructures were achieved after the lift-off step. Au nanomesh exhibited good optoelectronic properties (RS = 41 Ω/sq, T = 71.9%) and non-iridescence, without angle dependence owing to the aperiodic structures of disordered apertures. The results indicate that this Au nanomesh has high potential application in high-performance and broad-viewing-angle optoelectronic devices.  相似文献   

15.

Background

Dynamic hyperinflation (DH) is a major contributor to exercise limitation in chronic obstructive pulmonary disease (COPD). Therefore, we aimed to elucidate the physiological factors responsible for DH development during the 6-minute walk test (6MWT) in COPD patients and compare ventilatory response to the 6MWT in hyperinflators and non-hyperinflators.

Methods

A total of 105 consecutive subjects with stable COPD underwent a 6MWT, and the Borg dyspnea scale, oxygen saturation (SpO2), breathing pattern, and inspiratory capacity (IC) were recorded before and immediately after walking. The change in IC was measured, and subjects were divided into hyperinflators (ΔIC >0.0 L) and non-hyperinflators (ΔIC ≤0.0 L). Spirometry, the Modified Medical Research Council (MMRC) dyspnea scale and St George’s Respiratory Questionnaire (SGRQ) were also assessed.

Results

DH was present in 66.67% of subjects. ΔIC/IC was significantly and negatively correlated with the small airway function. On multiple stepwise regression analysis forced expiratory flow after exhaling 50% of the forced vital capacity (FEF50%) was the only predictor of ΔIC/IC. Non-hyperinflators had a higher post-walking VT (t=2.419, P=0.017) and post-walking VE (t=2.599, P=0.011) than the hyperinflators did. Age and resting IC were independent predictors of the 6-minute walk distance (6MWD) in hyperinflators.

Conclusions

DH was considerably common in subjects with COPD. Small airway function may partly contribute to the DH severity during walking. The ventilator response to the 6MWT differed between hyperinflators and non-hyperinflators. Resting hyperinflation is an important predictor of functional exercise capacity in hyperinflators.  相似文献   

16.
Flexible indium tin oxide (ITO)/Y2O3/Ag resistive random access memory (RRAM) devices were successfully fabricated using a thermal-energy-free ultraviolet (UV)/ozone-assisted photochemical annealing process. Using the UV/ozone-assisted photochemical process, the organic residue can be eliminated, and thinner and smother Y2O3 films than those formed using other methods can be fabricated. The flexible UV/ozone-assisted photochemical annealing process-based ITO/Y2O3/Ag RRAM devices exhibited the properties of conventional bipolar RRAM without any forming process. Furthermore, the pure and amorphous-phase Y2O3 films formed via this process showed a decreased leakage current and an increased high-resistance status (HRS) compared with the films formed using other methods. Therefore, RRAM devices can be realized on plastic substrates using a thermal-energy-free UV/ozone-assisted photochemical annealing process. The fabricated devices exhibited a resistive window (ratio of HRS/low-resistance status (LRS)) of >104, with the HRS and LRS values remaining almost the same (i.e., limited deterioration occurred) for 104 s and up to 102 programming/erasing operation cycles.  相似文献   

17.
Strontium titanate nickelate (STN) thin films on indium tin oxide (ITO)/glass substrate were synthesized using the sol-gel method for resistive random access memory (RRAM) applications. Aluminum (Al), titanium (Ti), tungsten (W), gold (Au) and platinum (Pt) were used as top electrodes in the STN-based RRAM to probe the switching behavior. The bipolar resistive switching behavior of the set and reset voltages is in opposite bias in the Al/STN/ITO and Pt/STN/ITO RRAMs, which can be partly ascribed to the different work functions of top electrodes in the ITO. Analyses of the fitting results and temperature-dependent performances showed that the Al/STN/ITO switching was mainly attributed to the absorption/release of oxygen-based functional groups, whereas the Pt/STN/ITO switching can be associated with the diffusion of metal electrode ions. The Al/STN/ITO RRAM demonstrated a high resistance ratio of >106 between the high-resistance state (HRS) and the low-resistance state (LRS), as well as a retention ability of >105 s. Furthermore, the Pt/STN/ITO RRAM displayed a HRS/LRS resistance ratio of >103 and a retention ability of >105 s.  相似文献   

18.
V6O13 thin films were deposited on indium-doped tin oxide (ITO) conductive glass by a concise low-temperature liquid-phase deposition method and through heat treatment. The obtained films were directly used as electrodes without adding any other media. The results indicate that the film annealed at 400 °C exhibited an excellent cycling performance, which remained at 82.7% of capacity after 100 cycles. The film annealed at 400 °C with diffusion coefficients of 6.08 × 10−12 cm2·s−1 (Li+ insertion) and 5.46 × 10−12 cm2·s−1 (Li+ extraction) in the V6O13 film electrode. The high diffusion coefficients could be ascribed to the porous morphology composed of ultrathin nanosheets. Moreover, the film endured phase transitions during electrochemical cycling, the V6O13 partially transformed to Li0.6V1.67O3.67, Li3VO4, and VO2 with the insertion of Li+ into the lattice, and Li0.6V1.67O3.67, Li3VO4, and VO2 partially reversibly transformed backwards to V6O13 with the extraction of Li+ from the lattice. The phase transition can be attributed to the unique structure and morphology with enough active sites and ions diffusion channels during cycles. Such findings reveal a bright idea to prepare high-performance cathode materials for LIBs.  相似文献   

19.
Cadmium selenide (CdSe) thin films were deposited on indium tin oxide (ITO) coated glass substrates using pulsed laser deposition (PLD) technique under different growth temperatures. Samples were investigated for their structural, morphological, and optical properties through X-ray diffraction (XRD), atomic force microscopy (AFM), and UV-Vis-NIR spectroscopy. AFM analysis revealed that the surface roughness of the as-grown CdSe thin films increased with the increase in deposition temperature. The optical constants and film thickness were obtained from spectroscopic ellipsometry analysis and are discussed in detail. The optical band gap of the as-grown CdSe thin films, calculated from the Tauc plot analysis, matched with the ellipsometry measurements, with a band gap of ~1.71 eV for a growth temperature range of 150 °C to 400 °C. The CdSe thin films were found to have a refractive index of ~3.0 and extinction coefficient of ~1.0, making it a suitable candidate for photovoltaics.  相似文献   

20.
This study focuses on the effect of the substrate temperature (TS) on the quality of VO2 thin films prepared by DC magnetron sputtering. TS was varied from 350 to 600 °C and the effects on the surface morphology, microstructure, optical and electrical properties of the films were investigated. The results show that TS below 500 °C favors the growth of V2O5 phase, whereas higher TS (≥500 °C) facilitates the formation of the VO2 phase. Optical characterization of the as-prepared VO2 films displayed a reduced optical transmittance (T˜) across the near-infrared region (NIR), reduced phase transition temperature (Tt), and broadened hysteresis width (ΔH) through the phase transition region. In addition, a decline of the luminous modulation (ΔT˜lum) and solar modulation (ΔT˜sol) efficiencies of the as-prepared films have been determined. Furthermore, compared with the high-quality films reported previously, the electrical conductivity (σ) as a function of temperature (T) reveals reduced conductivity contrast (Δσ) between the insulating and metallic phases of the VO2 films, which was of the order of 2. These outcomes indicated the presence of defects and unrelaxed lattice strain in the films. Further, the comparison of present results with those in the literature from similar works show that the preparation of high-quality films at TS lower than 650 °C presents significant challenges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号