首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blending of different biopolymers, e.g., collagen, chitosan, silk fibroin and cross-linking modifications of these mixtures can lead to new materials with improved physico-chemical properties, compared to single-component scaffolds. Three-dimensional scaffolds based on three-component mixtures of silk fibroin, collagen and chitosan, chemically cross-linked, were prepared and their physico-chemical and biological properties were evaluated. A mixture of EDC (N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride) and NHS (N-hydroxysuccinimide) was used as a cross-linking agent. FTIR was used to observe the position of the peaks characteristic for collagen, chitosan and silk fibroin. The following properties depending on the scaffold structure were studied: swelling behavior, liquid uptake, moisture content, porosity, density, and mechanical parameters. Scanning Electron Microscopy imaging was performed. Additionally, the biological properties of these materials were assessed, by metabolic activity assay. The results showed that the three-component mixtures, cross-linked by EDC/NHS and prepared by lyophilization method, presented porous structures. They were characterized by a high swelling degree. The composition of scaffolds has an influence on mechanical properties. All of the studied materials were cytocompatible with MG-63 osteoblast-like cells.  相似文献   

2.
目的 探讨成膜法自制壳聚糖管状支架的方法及支架的理化学生物特性.方法 利用乙酸溶液制备浓度为8%的壳聚糖乙酸水溶胶,采用成膜方法制管后用NaOH脱下壳聚糖导管,扫描电镜下观察壳聚糖管表面超微结构;并进行溶胀性实验、pH值测定、细胞毒性试验、体外及体内降解实验.结果 壳聚糖管光滑,韧性好,具有三维多孔立体结构,孔径大小不同.壳聚糖管具有膨胀性,中性,无毒,随时间被组织吸收降解,体外降解慢于体内.结论 成膜法自制壳聚糖管状支架可行,其理化生物学特性表明可用作生物可吸收支架.  相似文献   

3.
目的研究壳聚糖和透明质酸聚电解质复合物(PEC)纳米颗粒在生理盐水中的稳定浓度和物理化学参数对靶向抗体CD47有效吸附的影响以及合成的纳米载体对于血管内皮细胞的体外靶向性。方法壳聚糖(CS)作为聚阳离子与透明质酸(HA)(作为聚阴离子)发生电荷中和,合成壳聚糖和透明质酸聚电解质复合物纳米粒子。一模型抗体——动脉粥样硬化靶向抗体CD47在水或PBS溶液中,与纳米颗粒作用4 h后,定量吸附在CS-HA纳米颗粒表面。将合成的纳米载体体内外与血管内皮细胞及动脉粥样斑块相互作用,研究其靶向吸附作用。结果络合过程和胶体的物理化学性质受到外部因素的影响,如电荷混合比和聚合物浓度等参数。通过上述原理合成了非化学计量的CS-HA纳米胶体,在水或PBS(pH 7.4)溶液中保持稳定1个多月。扫描电镜检测其形貌特征。CS-HA/CD47抗体纳米颗粒平均粒径在375~620 nm之间,Zeta电位为正。CD47抗体靶向的纳米载体可在体外有效吸附到血管内皮细胞及动脉粥样斑块的表面。结论成功合成了CS-HA/CD47抗体纳米颗粒,该靶向纳米载体在体外可有效吸附到血管内皮细胞株及动脉粥样斑块的表面,是对动脉粥样硬化靶向给药具有应用前景的有效纳米载体。  相似文献   

4.
Dicalcium Phosphate Dihydrate (DCPD) mineral scaffolds alone do not possess the mechanical flexibility, ease of physicochemical properties’ tuneability or suitable porosity required for regenerative bone scaffolds. Herein, we fabricated highly porous freeze-dried chitosan scaffolds embedded with different concentrations of Dicalcium Phosphate Dihydrate (DCPD) minerals, i.e., 0, 20, 30, 40 and 50 (wt)%. Increasing DCPD mineral concentration led to increased scaffold crystallinity, where the % crystallinity for CH, 20, 30, 40, and 50-DCPD scaffolds was determined to be 0.1, 20.6, 29.4, 38.8 and 69.9%, respectively. Reduction in scaffold pore size distributions was observed with increasing DCPD concentrations of 0 to 40 (wt)%; coalescence and close-ended pore formation were observed for 50-DCPD scaffolds. 50-DCPD scaffolds presented five times greater mechanical strength than the DCPD mineral-free scaffolds (CH). DCPD mineral enhanced cell proliferation for the 20, 30 and 40-DCPD scaffolds. 50-DCPD scaffolds presented reduced pore interconnectivity due to the coalescence of many pores in addition to the creation of closed-ended pores, which were found to hinder osteoblast cell proliferation.  相似文献   

5.
Inorganic aluminum or iron salts supported with synthetic polymers are commonly used to eradicate colloidal particles from water in coagulation and flocculation processes. Nevertheless, these agents have several disadvantages, such as large volumes of sludge produced or environmental toxicity. Recently biodegradable polymers have been suggested as eco-friendly flocculants for water treatment. This study aimed to investigate the possibilities of using starch and chitosan and their oxidized derivatives as flocculants for filter backwash water treatment. Dialdehyde starch (DST) and dialdehyde chitosan (DCT) were synthesized by periodate oxidization of natural starch from corn and low molecular weight chitosan. The obtained materials have been characterized with scanning electron microscopy (SEM), ATR-FTIR spectroscopy, and thermogravimetric analysis (TGA). Furthermore, we studied the flocculation properties of polysaccharide flocculants in a series of jar tests. The effectiveness of chitosan and starched-based flocculants was compared to synthetic polymers commonly used to treat iron ions-rich filter backwash water. The environmental aspects of these chemicals, particularly the biodegradability of post-flocculation residues, were also addressed. It was found that oxidized starch and chitosan derivatives can be used as ecological flocculating materials to treat potable water or sludge.  相似文献   

6.
In order to solve the incompatibility between high porosity and mechanical properties, this study fabricates bone scaffolds by combining braids and sodium alginate (SA) membranes. Polyethylene terephthalate (PET) plied yarns are braided into hollow, porous three dimensional (3D) PET braids, which are then immersed in SA solution, followed by cross-linking with calcium chloride (CaCl2) and drying, to form PET bone scaffolds. Next, SA membranes are rolled and then inserted into the braids to form the spiral and porous PET/SA bone scaffolds. Samples are finally evaluated for surface observation, porosity, water contact angle, compressive strength, and MTT assay. The test results show that the PET bone scaffolds and PET/SA bone scaffolds both have good hydrophilicity. An increasing number of layers and an increasing CaCl2 concentration cause the messy, loose surface structure to become neat and compact, which, in turn, decreases the porosity and increases the compressive strength. The MTT assay results show that the cell viability of differing SA membranes is beyond 100%, indicating that the PET/SA bone scaffolds containing SA membranes are biocompatible for cell attachment and proliferation.  相似文献   

7.
3D nanocomposite scaffolds have attracted significant attention in bone tissue engineering applications. In the current study, we fabricated a 3D nanocomposite scaffold based on a bacterial polyglucuronic acid (PGU) and sodium alginate (Alg) composite with carbon nanofibers (CNFs) as the bone tissue engineering scaffold. The CNFs were obtained from electrospun polyacrylonitrile nanofibers through heat treatment. The fabricated CNFs were incorporated into a PGU/Alg polymeric solution, which was physically cross-linked using CaCl2 solution. The fabricated nanocomposites were characterized to evaluate the internal structure, porosity, swelling kinetics, hemocompatibility, and cytocompatibility. The characterizations indicated that the nanocomposites have a porous structure with interconnected pores architecture, proper water absorption, and retention characteristics. The in vitro studies revealed that the nanocomposites were hemocompatible with negligible hemolysis induction. The cell viability assessment showed that the nanocomposites were biocompatible and supported bone cell growth. These results indicated that the fabricated bacterial PGU/Alg/CNFs hydrogel nanocomposite exhibited appropriate properties and can be considered a new biomaterial for bone tissue engineering scaffolds.  相似文献   

8.
Membrane-covered Express2TM Monorail® stents composed of chitosan (CH) blended with polyethylene oxide (PEO) in 70:30% wt (CH-PEO) were coated with a monolayer of hyaluronic acid (HA). This significantly improved the resistance to platelet adhesion and demonstrated excellent mechanical properties, resisting the harsh conditions during stent crimping and subsequent inflation. CH-PEO/HA membrane was then combined with a paclitaxel (Pac) delivery system via three different approaches for comparison of release profiles of Pac. The activity of Pac in these systems was confirmed since its presence in the membrane significantly decreased cell viability of U937 macrophages. Presented results are promising for applications requiring different release patterns of hydrophobic drugs.  相似文献   

9.
Vascular grafts made of synthetic polymers perform poorly in cardiac and peripheral bypass applications. In these applications, chitosan-based materials can be produced and shaped to provide a novel scaffold for vascular tissue engineering. The goal of this study was to evaluate in vitro the mechanical properties of a novel chitosan formulation to assess its potential for this scaffold. Two chitosan-based hydrogel tubes were produced by modulating chitosan concentration. Based on the standard ISO 7198:1998, the hydrogel tubes were characterized in vitro in terms of suture retention strength, tensile strength, compliance, and burst pressure. By increasing chitosan concentration, suture retention value increased to reach 1.1 N; average burst strength and elastic moduli also increased significantly. The compliance seemed to exhibit a low value for chitosan tubes of high concentration. By modulating chitosan concentration, we produced scaffolds with suitable mechanical properties to be implanted in vivo and withstand physiological blood pressures.  相似文献   

10.
This research study reports the development of chitosan/carboxylated graphene oxide (CS/GO-COOH) composite scaffolds with nanofibrous architecture using the electrospinning method. The concept of designed composite fibrous material is based on bringing together the biological properties of CS, mechanical, electrical, and biological characteristics of GO-COOH with the versatility and efficiency of ultra-modern electrospinning techniques. Three different concentrations of GO-COOH were added into a chitosan (CS)-poly(ethylene oxide) (PEO) solution (the ratio between CS/PEO was 3/7 (w/w)) and were used in the synthesis process of composite scaffolds. The effect of GO-COOH concentration on the spinnability, morphological and mechanical features, wettability, and biological properties of engineered fibrous scaffolds was thoroughly investigated. FTIR results revealed the non-covalent and covalent interactions that could take place between the system’s components. The SEM micrographs highlighted the nanofibrous architecture of scaffolds, and the presence of GO-COOH sheets along the composite CS/GO-COOH nanofibers. The size distribution graphs showed a decreasing trend in the mean diameter of composite nanofibers with the increase in GO-COOH content, from 141.40 nm for CS/PG 0.1% to 119.88 nm for CS/PG 0.5%. The dispersion of GO-COOH led to composite scaffolds with increased elasticity; the Young’s modulus of CS/PG 0.5% (84 ± 4.71 MPa) was 7.5-fold lower as compared to CS/PEO (662 ± 15.18 MPa, p < 0.0001). Contact angle measurements showed that both GO-COOH content and crosslinking step influenced the surface wettability of scaffolds, leading to materials with ~1.25-fold higher hydrophobicity. The in vitro cytocompatibility assessment showed that the designed nanofibrous scaffolds showed a reasonable cellular proliferation level after 72 h of contact with the fibroblast cells.  相似文献   

11.
In this work, the biological properties of three-dimensional scaffolds based on a blend of nanohydroxyapatite (nHA), silk fibroin (SF), and chitosan (CTS), were prepared using a lyophilization technique with various weight ratios: 10:45:45, 15:15:70, 15:70:15, 20:40:40, 40:30:30, and 70:15:15 nHA:SF:CTS, respectively. The basic 3D scaffolds were obtained from 5% (w/w) chitosan and 5% silk fibroin solutions and then nHA was added. The morphology and physicochemical properties of scaffolds were studied and compared. A biological test was performed to study the growth and osteogenic differentiation of human bone marrow mesenchymal stem cells (hMSCs). It was found that the addition of chitosan increases the resistance properties and extends the degradation time of materials. In vitro studies with human mesenchymal stem cells found a high degree of biotolerance for the materials produced, especially for the 20:40:40 and 15:70:15 (nHa:SF:CTS) ratios. The presence of silk fibroin and the elongated shape of the pores positively influenced the differentiation of cells into osteogenic cells. By taking advantage of the differentiation/proliferation cues offered by individual components, the composites based on the nanohydroxyapatite, silk fibroin, and chitosan scaffold may be suitable for bone tissue engineering, and possibly offer an alternative to the widespread use of collagen materials.  相似文献   

12.
Implantations in orthopedics are associated with a high risk of bacterial infections in the surgery area. Therefore, biomaterials containing antibacterial agents, such as antibiotics, bactericidal ions or nanoparticles have been intensively investigated. In this work, silver decorated β tricalcium phosphate (βTCP)-based porous scaffolds were obtained and coated with a biopolymer—poly(3-hydroxybutyrate)-P(3HB). To the best of our knowledge, studies using silver-doped βTCP and P(3HB), as a component in ceramic-polymer scaffolds for bone tissue regeneration, have not yet been reported. Obtained materials were investigated by high-temperature X-ray diffraction, X-ray fluorescence, scanning electron microscopy with energy dispersive spectroscopy, hydrostatic weighing, compression tests and ultrahigh-pressure liquid chromatography with mass spectrometry (UHPLC-MS) measurements. The influence of sintering temperature (1150, 1200 °C) on the scaffolds’ physicochemical properties (phase and chemical composition, microstructure, porosity, compressive strength) was evaluated. Materials covered with P(3HB) possessed higher compressive strength (3.8 ± 0.6 MPa) and surgical maneuverability, sufficient to withstand the implantation procedures. Furthermore, during the hydrolytic degradation of the composite material not only pure (R)-3-hydroxybutyric acid but also its oligomers were released which may nourish surrounding tissues. Thus, obtained scaffolds were found to be promising bone substitutes for use in non-load bearing applications  相似文献   

13.
The ability to form strong intermolecular interactions by linear glucosamine polysaccharides with collagen is strictly related to their nonlinear dynamic behavior and hence bio-lubricating features. Type III collagen plays a crucial role in tissue regeneration, and its presence in the articular cartilage affects its bio-technical features. In this study, the molecular dynamics methodology was applied to evaluate the effect of deacetylation degree on the chitosan affinity to type III collagen. The computational procedure employed docking and geometry optimizations of different chitosan structures characterized by randomly distributed deacetylated groups. The eight different degrees of deacetylation from 12.5% to 100% were taken into account. We found an increasing linear trend (R2 = 0.97) between deacetylation degree and the collagen–chitosan interaction energy. This can be explained by replacing weak hydrophobic contacts with more stable hydrogen bonds involving amino groups in N-deacetylated chitosan moieties. In this study, the properties of chitosan were compared with hyaluronic acid, which is a natural component of synovial fluid and cartilage. As we found, when the degree of deacetylation of chitosan was greater than 0.4, it exhibited a higher affinity for collagen than in the case of hyaluronic acid.  相似文献   

14.
In this work, 3D porous granules based on Zn and Se-containing calcium phosphates (CaPs) were fabricated using a droplet-extrusion technique. The composite beads varied in composition and contained two different natural polymers: sodium alginate (SA) and gelatin (GEL). To analyse and compare their physicochemical properties, such as porosity and morphology, different techniques were applied, including scanning electron microscopy (SEM), sorption of N2 and mercury porosimetry. Prior to the fabrication of the granules, the properties of CaPs materials, (the bioceramic base of the beads), selenium (IV)-substituted hydroxyapatite (Se-HA) and zinc-substituted dicalcium phosphate dihydrate (Zn-DCPD), were also investigated. The results of cell viability assessment showed that Se-HA powder was non-toxic to human osteoblasts (hFOB 1.19) and simultaneously exhibited high toxicity to tumour cells (Saos-2). Once the cytotoxicity assay was completed, Se-HA and Zn-DCPD were used to prepare 3D materials. The prepared porous granules were used as matrices to deliver simvastatin to bones. Simvastatin was applied in either the lipophilic form or hydrophilic form. The release kinetics of simvastatin from granules of different composition was then assessed and compared.  相似文献   

15.
The stability and mechanical properties of hydroxyapatite (HAp)/Chitosan composite materials depend on the dispersion of HAp aggregates in the chitosan matrix and on the chemical interaction between them. Therefore, hexagonal cross-sectioned HAp nanofibers were produced using a microwave-assisted hydrothermal method. Glutamic acid was used to control the HAp crystal growth; thereby, nanofibers were obtained with a preferential crystalline orientation, and they were grown along the “c” axis of HAp crystal structures. This morphology exposed the (300) and (100) crystal planes on the surface, and several phosphate groups and calcium ions were also exposed; they were able to form numerous chemical interactions with the amine, hydroxyl, and carbonyl groups of chitosan. Consequently, the final mechanical resistance of the composite materials was synergistically increased. Nanofibers were mixed with commercial chitosan using a sonotrode to improve their dispersion within the biopolymer matrix and prevent migration. The HAp nanofiber/Chitosan composite materials showed higher mechanical resistance than that observed in similar materials with the same chemical composition that were made of commercial HAp powders, which were used as reference materials. The mechanical resistance under tension of the composite materials made of nanofibers was similar to that reported for cortical bone.  相似文献   

16.
This review supplies a report on fresh advances in the field of silk fibroin (SF) biopolymer and its blends with biopolymers as new biomaterials. The review also includes a subsection about silk fibroin mixtures with synthetic polymers. Silk fibroin is commonly used to receive biomaterials. However, the materials based on pure polymer present low mechanical parameters, and high enzymatic degradation rate. These properties can be problematic for tissue engineering applications. An increased interest in two- and three-component mixtures and chemically cross-linked materials has been observed due to their improved physico-chemical properties. These materials can be attractive and desirable for both academic, and, industrial attention because they expose improvements in properties required in the biomedical field. The structure, forms, methods of preparation, and some physico-chemical properties of silk fibroin are discussed in this review. Detailed examples are also given from scientific reports and practical experiments. The most common biopolymers: collagen (Coll), chitosan (CTS), alginate (AL), and hyaluronic acid (HA) are discussed as components of silk fibroin-based mixtures. Examples of binary and ternary mixtures, composites with the addition of magnetic particles, hydroxyapatite or titanium dioxide are also included and given. Additionally, the advantages and disadvantages of chemical, physical, and enzymatic cross-linking were demonstrated.  相似文献   

17.
Bone scaffolds must fulfil numerous and sometimes contradictory characteristics: biocompatibility, bioactivity, high porosity, and appropriate mechanical strength. To tackle some of these issues, this study has several aims for the development of such scaffolds for dentistry applications: (i) to utilize appropriate materials (ceramics and sponges) and to introduce a novel, potentially performant ceramic material; (ii) to characterize the obtained scaffolds by using a range of methods; (iii) to compare and to correlate the assessment results with the scope to validate them reciprocally. There are two commercially available dental ceramics (i.e., Ceramco iC Natural Enamel (E) and Ceramco iC Natural Dentine (D), (DeguDent GmbH, Hanau-Wolfgang, Deutschland)) that are considered, as well as a new-developed porcelain (ceramic C). To obtain porous structures of scaffolds, each ceramic is introduced in two different sponges: a denser one, green (G) and a less dense one, blue (B). A total of 60 samples are manufactured and divided in six study groups, obtained by combining the above materials: GE, BE, GD, BD, GC, and BC (where the first letter represents the sponge type and the second one the utilized ceramic). Several methods are applied to characterize their chemical composition, as well as their macro- and micro-porosity: X-ray Diffraction (XRD), apparent porosity measurements, scanning electronic microscopy (SEM), and confocal microscopy (CM). The latter two methods image the inner (porous) and the outer/cortical (denser) areas of the samples. The results show a good porosity (i.e., dimensions and uniformity of pores) of around 65% for the final group BC, with satisfactory values of around 51% for BD and GC. A certain correlation is made between SEM, CM, and the apparent porosity results. The biocompatibility of the new ceramic C is demonstrated. Finally, a necessary trade-off is made with the mechanical strength of the obtained scaffolds, which was also evaluated. From this point of view, Group BD has the highest compressive strength of around 4 MPa, while Group BC comes second, with around 2 MPa. This trade-off between porosity and mechanical strength suggests a choice between Groups BC and BD, which are the best with regard to the porosity and mechanical strength criterium, respectively.  相似文献   

18.
The 3D printing of a multifunctional hydrogel biomaterial with bioactivity for tissue engineering, good mechanical properties and a biodegradability mediated by free and encapsulated cellulase was proposed. Bioinks of cellulase-laden and cellulose nanofiber filled chitosan viscous suspensions were used to 3D print enzymatic biodegradable and biocompatible cellulose nanofiber (CNF) reinforced chitosan (CHI) hydrogels. The study of the kinetics of CNF enzymatic degradation was studied in situ in fibroblast cell culture. To preserve enzyme stability as well as to guarantee its sustained release, the cellulase was preliminarily encapsulated in chitosan–caseinate nanoparticles, which were further incorporated in the CNF/CHI viscous suspension before the 3D printing of the ink. The incorporation of the enzyme within the CHI/CNF hydrogel contributed to control the decrease of the CNF mechanical reinforcement in the long term while keeping the cell growth-promoting property of chitosan. The hydrolysis kinetics of cellulose in the 3D printed scaffolds showed a slow but sustained degradation of the CNFs with enzyme, with approximately 65% and 55% relative activities still obtained after 14 days of incubation for the encapsulated and free enzyme, respectively. The 3D printed composite hydrogels showed excellent cytocompatibility supporting fibroblast cell attachment, proliferation and growth. Ultimately, the concomitant cell growth and biodegradation of CNFs within the 3D printed CHI/CNF scaffolds highlights the remarkable potential of CHI/CNF composites in the design of tissue models for the development of 3D constructs with tailored in vitro/in vivo degradability for biomedical applications.  相似文献   

19.
Degree of deacetylation (DDA) and molecular weight (MW) of chitosans are important to their physical and biological properties. In this study, two chitosans, HS (DDA = 73.3%) and AT (DDA = 76.8%), were deacetylated with 45% sodium hydroxide under nitrogen atmosphere at 80 °C or 90 °C for up to 120 min, to obtain two series of chitosans. The polymers produced were characterized for MW by gel permeation chromatography, DDA by titration and UV-vis methods, and crystallinity, hydrophilicity and thermal stability by X-ray diffraction, water contact angle and differential scanning calorimetry respectively. Films, made by solution casting in dilute acetic acid at ambient conditions, were evaluated for biological activity by albumin adsorption and the attachment and growth of a pre-osteoblast cell line. Chitosans with between 80–93% DDA’s (based on titration) were reproducibly obtained. Even though deacetylation under nitrogen was supposed to limit chain degradation during decetylation, MW decreased (by maximum of 37.4% of HS and 63.0% for AT) with increasing deacetylation reaction time and temperature. Crystallinity and decomposition temperature increased and water contact angles decreased with processing to increase DDA. Significantly less albumin was absorbed on films made with 93% DDA chitosans as compared with the original materials and the AT chitosans absorbed less than the HS chitosans. The cells on higher DDA chitosan films grew faster than those on lower DDA films. In conclusion, processing conditions increased DDA and influenced physicochemical and biological properties. However, additional studies are needed to unambiguously determine the influence of DDA or MW on in vitro and in vivo performance of chitosan materials for bone/implant applications.  相似文献   

20.
This work investigates the effect of layer thickness on the microstructure and mechanical properties of M300 maraging steel produced by Laser Engineered Net Shaping (LENS®) technique. The microstructure was characterized using light microscopy (LM) and scanning electron microscopy (SEM). The mechanical properties were characterized by tensile tests and microhardness measurements. The porosity and mechanical properties were found to be highly dependent on the layer thickness. Increasing the layer thickness increased the porosity of the manufactured parts while degrading their mechanical properties. Moreover, etched samples revealed a fine cellular dendritic microstructure; decreasing the layer thickness caused the microstructure to become fine-grained. Tests showed that for samples manufactured with the chosen laser power, a layer thickness of more than 0.75 mm is too high to maintain the structural integrity of the deposited material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号