首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the Ca(2+) signaling pathways of the response to angiotensin II in pleural mesothelial cells and the role of these Ca(2+) signaling pathways in mesothelial cell proliferation. Rat pleural mesothelial cells were maintained in vitro, and the Ca(2+) movement to angiotensin II was evaluated using the fluorescent Ca(2+) indicator fura 2. Furthermore, proliferation of mesothelial cells was assessed using a spectrophotometric 3-(4, 5-dimethylthazol-2-yl)-2,5-diphenyl-2H-tetrasodium bromide (MTT) assay. Angiotensin II (1 pM-100 microM) induced in mesothelial cells a biphasic elevation of intracellular Ca(2+) concentration ([Ca(2+)](i)) that consisted of a transient initial component, followed by a sustained component. Neither removal of extracellular Ca(2+) nor inhibition of Ca(2+) influx by 1 microM nifedipine affected the angiotensin II-induced initial transient elevation of [Ca(2+)](i) in mesothelial cells. Nifedipine did not block angiotensin II-induced sustained elevation of [Ca(2+)](i). Angiotensin II (1 pM-100 microM) had a proliferative effect on mesothelial cells in a dose-dependent manner. Angiotensin II type 1 (AT(1)) receptor antagonist ([Sar(1), Ile(8)]angiotensin II) inhibited both angiotensin II-induced elevation of [Ca(2+)](i) and proliferation of mesothelial cells. Pertussis toxin did not affect angiotensin II-induced responses. These results suggest that angiotensin II-induced responses to mesothelial cells are extremely dependent on the angiotensin AT(1) receptor coupled with pertussis toxin-insensitive G protein.  相似文献   

2.
1. The contribution of endothelin-1 (ET-1) to angiotensin II (Ang II)-mediated contraction of the isolated rat tail artery was assessed with measurements of tension, and cytosolic calcium ([Ca(2+)](i)). The distribution of the AT(1) receptor was studied with RT - PCR and immunohistochemistry. 2. Ang II induced an endothelium-independent contraction (pEC(50) 7.95+/-0.06 and E(max): 0.46 g+/-0.05 with endothelium vs 7.81+/-0.02 and 0.41 g+/-0.07 without endothelium; P>0.05). Ang II (0.003 - 0.3 microM)-induced a non-sustained contraction of endothelium-intact preparations which was not antagonized by BQ-123 (1 microM), but was inhibited by losartan (10 nM). In addition, the maximal contraction induced by ET-1 (0.1 microM) could be further increased by the addition of 0.1 microM Ang II. 3. Ang II (0.001 - 0.3 microM) elevated [Ca(2+)](i) in single vascular smooth muscle cells (VSMCs) in a dose-dependent manner (pEC(50) 9.12+/-0.26) and the Ang II-induced increases in [Ca(2+)](i) were not affected by a Ca(2+)-free solution, but were abolished by pretreatment with caffeine (5 mM). Ang II did not increase [Ca(2+)](i) in endothelial cells. ET-1 (0.1 microM) increased [Ca(2+)](i) in single VSMCs in a normal Ca(2+) containing physiological saline solution (PSS), but not in a Ca(2+)-free solution. 4. Ang II-induced contraction was insensitive to inhibition by nifedipine (0.1 microM), an antagonist of L-type voltage-gated Ca(2+) channels, and SK&F96365 (10 microM), which blocks non-selective cation channels, whereas that to ET-1 was inhibited by SK&F69365. 5. RT - PCR data indicate the expression of AT(1A) and AT(1B) on both VSMCs and endothelial cells, but immunohistochemical evidence illustrates that the AT(1) is located primarily on VSMCs. 6. These results indicate that endothelium-derived ET-1 is not involved in the Ang II-mediated vasoconstriction of the rat tail artery and that Ang II- and ET-1-mediated VSM contractions utilize distinct pathways.  相似文献   

3.
Kuo TC  Huang C-  Lin-Shiau SY 《Toxicology》2002,176(1-2):113-122
The importance of cytosolic free calcium level intracellular Ca(2+), [Ca(2+)]i, in neutrophil activation prompted us to investigate changes in [Ca(2+)]i of neutrophils caused by methylmercury (MeHg), which has been shown to have immunomodulatory properties. We have shown in this paper that MeHg increased [Ca(2+)]i in the mouse peritoneal neutrophil. The L-type calcium channel blocker verapamil can decrease the elevated [Ca(2+)]i caused by 10 microM MeHg, suggesting that Ca(2+)-influx through L-type Ca(2+) channel mediates the effect of MeHg. Moreover, MeHg potently decreased nitric oxide (NO) production but also the protein and mRNA level of NO synthase induced by lipopolysaccharide. Both verapamil (1 microM) and H-89 (10 microM) can antagonize the inhibitory effect of MeHg (10 microM) on NO production. These findings lead us to conclude that MeHg inhibits NO production mediated at least in part by Ca(2+)-activated adenylate cyclase-cAMP-protein kinase A pathway.  相似文献   

4.
We investigated the role of protein kinase C (PKC) isoforms on changes in sensitivity of contractile mechanisms to intracellular Ca(2+) (force /[Ca(2+)]i) by phenylephrine (0.1-100 microM) in rat tail arterial helical strips using simultaneous measurements of force and [Ca(2+)]i. Force/[Ca(2+)]Ii induced by phenylephrine was greater than that induced by 80 mM K+. Force/[Ca(2+)]i induced by phenylephrine in physiologic saline solution or low Ca(2+) solution was dependent on the agonist concentration. Removal of Ca(2+) completely abolished the phenylephrine-induced contraction. The PKC inhibitors staurosporine and calphostin C inhibited the increase in force/[Ca(2+)]i induced by phenylephrine to a much greater extent than that induced by 80 mM K+. LY379196, a specific PKCbeta inhibitor, did not inhibit the increase of calcium sensitivity due to phenylephrine. The classic PKC isoforms, alpha, betaI, and II not gamma were demonstrated in the artery by immunohistochemistry. These results suggest that in rat tail arterial smooth muscle, PKCalpha, and not beta or gamma, mediates the increase of changes in sensitivity of contractile mechanisms to intracellular Ca(2+) to high dose of alpha1 receptor stimulation (phenylephrine 100 microM) on nonphysiologic conditions.  相似文献   

5.
Mechanism of human urotensin II-induced contraction in rat aorta   总被引:1,自引:0,他引:1  
Urotensin II induced sustained contraction with an EC(50) value of 2.29 +/- 0.12 nM in rat aorta. Urotensin II (100 nM) transiently increased cytosolic Ca(2+) level ([Ca(2+)](i)), followed by a small sustained phase superimposed with rhythmic oscillatory change. In the presence of verapamil and La(3+), the [Ca(2+)](i) oscillation was completely inhibited, although a small transient increase in [Ca(2+)](i) remained. The urotensin II-induced contraction was also partially inhibited by verapamil and La(3+). Combined application of verapamil, La(3+), and thapsigargin completely inhibited the increase in [Ca(2+)](i) with only partial inhibition of the contraction elicited by urotensin II. Urotensin II increased myosin light chain (MLC) phosphorylation to a level greater than that induced by 72.7 mM KCl (high K(+)). Pretreatment with Go6983 (PKC inhibitor), U0126 (MEK inhibitor), or SB203580 (p38MARK inhibitor) partially inhibited the urotensin II-induced contraction with no effects on the high K(+)-induced contractions. Wortmannin (MLC kinase inhibitor) only partially inhibited urotensin II-induced contraction, although it completely inhibited the high K(+)-induced contraction. These results suggest that urotensin II-induced contraction is mediated by the Ca(2+)/calmodulin/MLC kinase system and modulated by the Ca(2+) sensitization mechanisms to increase MLC phosphorylation. In addition, activations of PKC, p38MAPK, and ERK1/2 modulate the contractility mediated by urotensin II in rat aorta.  相似文献   

6.
The effect of the oxidizing agent thimerosal on cytosolic free Ca(2+) concentration ([Ca(2+)]i) and proliferation has not been explored in human osteoblast-like cells. This study examined whether thimerosal alters Ca(2+) levels and causes cell death in MG63 human osteosarcoma cells. [Ca(2+)]i and cell death were measured using the fluorescent dyes fura-2 and WST-1, respectively. Thimerosal at concentrations above 5 microM increased [Ca(2+)]i in a concentration-dependent manner. The Ca(2+) signal was reduced by 80% by removing extracellular Ca(2+). The thimerosal-induced Ca(2+) influx was sensitive to blockade of La(3+), and dithiothreitol (50 microM) but was insensitive to nickel and several L-type Ca(2+) channel blockers. After pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor), thimerosal failed to induce [Ca(2+)]i rises. Inhibition of phospholipase C with 2 microM U73122 did not change thimerosal-induced [Ca(2+)]i rises. At concentrations of 5, 10 and 20 microM thimerosal killed 33, 55 and 100% cells, respectively. The cytotoxic effect of 5 microM thimerosal was reversed by 54% by prechelating cytosolic Ca(2+) with BAPTA. Collectively, in MG63 cells, thimerosal induced a [Ca(2+)]i rise by causing Ca(2+) release from endoplasmic reticulum stores and Ca(2+) influx from extracellular space. Furthermore, thimerosal can cause Ca(2+)-related cytotoxicity in a concentration-dependent manner.  相似文献   

7.
1. Measurements of artery contraction, cytosolic [Ca(2+)], and Ca(2+) permeability were made to examine contractile and cytosolic [Ca(2+)] responses of canine pulmonary arteries and isolated cells to 5-hydroxytryptamine (5-HT), and to determine the roles of intracellular Ca(2+) release and extracellular Ca(2+) entry in 5-HT responses. 2. The EC(50) for 5-HT-mediated contractions and cytosolic [Ca(2+)] increases was approximately 10(-7) M and responses were inhibited by ketanserin, a 5-HT(2A)-receptor antagonist. 3. 5-HT induced cytosolic [Ca(2+)] increases were blocked by 20 microM Xestospongin-C and by 2-APB (IC(50)=32 microM inhibitors of InsP(3) receptor activation. 4. 5-HT-mediated contractions were reliant on release of InsP(3) but not ryanodine-sensitive Ca(2+) stores. 5. 5-HT-mediated contractions and cytosolic [Ca(2+)] increases were partially inhibited by 10 microM nisoldipine, a voltage-dependent Ca(2+) channel blocker. 6. Extracellular Ca(2+) removal reduced 5-HT-mediated contractions further than nisoldipine and ablated cytosolic [Ca(2+)] increases and [Ca(2+)] oscillations. Similar to Ca(2+) removal, Ni(2+) reduced cytosolic [Ca(2+)] and [Ca(2+)] oscillations. 7. Mn(2+) quench of fura-2 and voltage-clamp experiments showed that 5-HT failed to activate any significant voltage-independent Ca(2+) entry pathways, including store-operated and receptor-activated nonselective cation channels. Ni(2+) but not nisoldipine or Gd(3+) blocked basal Mn(2+) entry. 8. Voltage-clamp experiments showed that simultaneous depletion of both InsP(3) and ryanodine-sensitive intracellular Ca(2+) stores activates a current with linear voltage dependence and a reversal potential consistent with it being a nonselective cation channel. 5-HT did not activate this current. 9. Basal Ca(2+) entry, rather than CCE, is important to maintain 5-HT-induced cytosolic [Ca(2+)] responses and contraction in canine pulmonary artery.  相似文献   

8.
The mechanism for the perception of bitterness appears to be quite complicated, even for quinine, which is a model bitter substance, and thus has yet to be completely elucidated. To investigate the possibility of being able to predict the bitterness of quinine solutions, we examined the effects of quinine on intracellular calcium ion concentration ([Ca(2+)]i) and membrane potentials in PC 12 cultures. [Ca(2+)]i and membrane potentials were analysed by fluorescence confocal microscopic imaging using the Ca(2+)-sensitive probe Calcium Green 1/AM and the membrane potential-sensitive probe bis-(1,3-dibutylbarbituric acid) trimethine oxonol (DiBAC(4)(3)). Quinine elicited an increase in the membrane potential along with a concentration-dependent increase in [Ca(2+)]i. These increases were inhibited by extracellular Ca(2+)-free conditions, thapsigargin, which is a Ca(2+)-pump inhibitor, and U73122, which is a phospholipase C inhibitor. The quinine-induced increase in [Ca(2+)]i levels was inhibited by nifedipine, an L-type Ca(2+)-channel blocker, omega-conotoxin, a T-type Ca(2+)-channel blocker, and BMI-40, which is a bitterness-masking substance. These results suggest that responses in PC 12 cultures may be used as a simple model of bitterness perception.  相似文献   

9.
Crocetin, a carotenoid compound, was isolated from Gardenia jasminoids Ellis. Our recent study shows that crocetin inhibits angiotensin II-induced extracellular signal-regulated kinases 1/2 (ERK1/2) activation and subsequent proliferation in vascular smooth muscle cells (VSMCs). To further explore the mechanism involved, in the present study, we investigated the effect of Ca(2+) in the activation of ERK1/2 and whether Ca(2+) is involved in the suppression by crocetin of angiotensin II-induced ERK1/2 activation. Our findings showed that crocetin pretreatment partially attenuated both the intracellular Ca(2+) mobilization and the extracellular Ca(2+) influx induced by angiotensin II. Moreover, angiotensin II-induced ERK1/2 activation was completely abolished by acetoxymethyl ester of 1,2-bis(2-aminophenoxy)ethane-N,N,N ',N'-tetraacetic acid (BAPTA-AM), an intracellular Ca(2+) chelator, and partially inhibited by EGTA, an extracellular Ca(2+) chelator, or verapamil, an L-type Ca(2+) channel blocker. These findings suggest that Ca(2+) may play an important role in angiotensin II-induced ERK1/2 activation in VSMCs, and Ca(2+)-dependent pathway may be involved in the inhibitory effect by crocetin of angiotensin II-induced ERK1/2 activation.  相似文献   

10.
1. The effect of noradrenaline and the selective alpha 2-adrenoceptor agonist, azepexole, on tone and intracellular Ca2+ ([Ca2+]i) was examined in human isolated subcutaneous resistance arteries. Isolated arteries were mounted on an isometric myograph and loaded with the Ca2+ indicator, fura-2, for simultaneous measurement of force and [Ca2+]i. 2. High potassium solution (KPSS), noradrenaline and azepexole increased [Ca2+]i and contracted subcutaneous arteries in physiological saline. When extracellular Ca2+ was removed and the calcium chelator, BAPTA, added to the physiological saline (PSSo), responses to noradrenaline were transient and reduced, and responses to azepexole were markedly inhibited. 3. Ryanodine, an agent which interferes with Ca2+ release from intracellular stores, had little effect on contractile responses to KPSS, noradrenaline or azepexole in physiological saline. The response to caffeine in physiological saline was inhibited by ryanodine. In PSSo, ryanodine partially inhibited contractile responses to noradrenaline and azepexole, and completely abolished the response to caffeine. 4. Noradrenaline and azepexole both significantly increased maximum force achieved by cumulative addition of Ca2+ to a Ca(2+)-free depolarizing solution and shifted the calculated relationship between [Ca2+]i and force to the left, suggesting these agents increase the sensitivity of the contractile apparatus to [Ca2+]i. 5. (-)-202 791, a dihydropyridine antagonist of voltage-operated calcium channels partially inhibited both the contractile response and the rise in [Ca2+]i induced by azepexole. Pre-treatment of arteries with pertussis toxin inhibited responses to azepexole, but had no significant effect on tone induced by KPSS or noradrenaline.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Ca2+ pathways activated by angiotensin II and carbachol were evaluated in the circular muscle of the guinea-pig ileum by recording mechanical and electrical activities. Transient contractions induced by angiotensin II were greatly reduced by Ca2+ removal from the medium whereas carbachol-induced responses were not significantly altered. Nifedipine had no effect on the responses to both agonists. A high concentration of tetrodotoxin (0.1 microM) inhibited angiotensin II-induced contractile responses without affecting the depolarization, whereas 1 mM Ni2+ inhibited the mechanical and electrical effects. Neither tetrodotoxin nor Ni2+ affected carbachol-induced effects. These results indicate that angiotensin II-induced phasic contractions depend on extracellular Ca2+ but not on voltage-dependent L-type Ca2+ channels. It is suggested that angiotensin II activates Ni2+-sensitive Na+ and non-specific cationic channels, whereas the responses to carbachol are dependent on receptor-activated Ca2+ release. Furthermore the different response of the longitudinal and circular muscles to the inhibitory effects of tetrodotoxin and Ni2+ on the angiotensin II- and carbachol-induced contractions indicates that these agonists exert their own myogenic effects on each layer and are able to trigger different Ca2+ mobilization pathways.  相似文献   

12.
Emodin is known to be used in the treatment of cholesterol stones and cholecystitis. This study sought to investigate the effects of emodin on the contraction of gallbladder smooth muscle (GBSM), intracellular Ca(2+) concentration and L-type calcium current in GBSM cells. Gallbladder muscle strips were obtained from adult guinea pigs and the resting tension was recorded. Gallbladder smooth muscle cells were isolated by enzymatic digestion. Cells were loaded with fluo-3/AM and [Ca(2+)](i) was determined by a laser confocal microscope. Calcium current was recorded by the whole-cell patch clamp method. Emodin increased the resting tension of GBSM strips in a dose-dependent manner. Emodin elevated [Ca(2+)](i) in GBSM cells, and this effect was attenuated by pretreatment with nifedipine. In addition, Emodin increased L-type calcium current at concentrations of 1 to 30 microM (at +10 mV, 10 microM, 45.1+/-5.2% compared to control, EC(50) =3.11 microM). In the presence of protein kinase C (PKC) inhibitor, Staurosporine, emodin did not significantly affect the calcium current. However, phorbol 12, 13-dibutyrate mimicked emodin in enhancement of the calcium current. These results suggest that emodin promotes gallbladder contraction by increasing Ca(2+) influx through L-type calcium channel via PKC pathway.  相似文献   

13.
We investigated the role of angiotensin II type 1 (AT(1)) receptors in angiotensin II-induced actin reorganization and the signaling pathways of the response in pleural mesothelial cells. The effects of angiotensin II on actin reorganization in pleural mesothelial cells were evaluated by dual fluorescence labeling of filamentous (F) and monomeric (G) actin with fluorescein isothiocyanate (FITC)-labeled phalloidin and Texas Red-labeled DNase I, respectively. Angiotensin II (10 microM) induced actin reorganization in the presence and the absence of extracellular Ca(2+). An angiotensin AT(1) receptor antagonist ([Sar(1),Ile(8)]angiotensin II) inhibited angiotensin II-induced actin reorganization. Pretreatment with C3 exoenzyme or tyrosine kinase inhibitors significantly reduced angiotensin II-induced actin reorganization. However, pertussis toxin, phosphatidylinositol-3-kinase and protein kinase C inhibitors had no effect on these responses. These results suggest that angiotensin II-induced actin reorganization in pleural mesothelial cells is extremely dependent on the angiotensin AT(1) receptor coupled with pertussis toxin-insensitive heterotrimeric G proteins, Rho GTPases and tyrosine phosphorylation pathways.  相似文献   

14.
The anti-breast cancer drug tamoxifen has recently been shown to cause an increase in [Ca(2+)]i in renal tubular cells, breast cells and bladder cells. Because tamoxifen is known to interact with oestrogens leading to modulation of bone metabolism, the present study was aimed at exploring whether tamoxifen could alter Ca(2+) signaling in human osteoblast-like MG63 cells. Cytosolic free Ca(2+) levels were recorded by using the Ca(2+)-sensitive dye fura-2. Tamoxifen induced a sustained [Ca(2+)]i increase at concentrations above 1 microM with an EC(50) of 8 microM. Removal of extracellular Ca(2+) reduced the response by 40%, suggesting that tamoxifen induced both Ca(2+) influx and store Ca(2+) release. Tamoxifen-induced Ca(2+) influx was confirmed as tamoxifen caused Mn(2+) influx-induced quench of fura-2 fluorescence. In Ca(2+)-free medium, pretreatment with 10 microM tamoxifen abolished the [Ca(2+)]i increase induced by 1 microM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor), and by 2 microM carbonylcyanide m-chlorophenylhydrazone (a mitochondrial uncoupler). Conversely, pretreatment with thapsigargin and carbonylcyanide m-chlorophenylhydrazone only reduced 64% of tamoxifen-induced [Ca(2+)]i increases. Addition of 2 microM U73122 to inhibit phospholipase C activity abolished the [Ca(2+)]i increase induced by 1 microM histamine, a phospholipase C-dependent Ca(2+) mobilizer, without affecting 10 microM tamoxifen-induced Ca(2+) release. The [Ca(2+)]i increase induced by 10 microM tamoxifen was not altered by 10 microM of nifedipine, verapamil and diltiazem. Together, the data show that tamoxifen induced a lasting increase in [Ca(2+)]i in human osteoblast-like cells by causing Ca(2+) influx and releasing Ca(2+) from multiple stores in a phospholipase C-independent manner.  相似文献   

15.
1. The purpose of this investigation was to determine whether enhanced contractile responses to noradrenaline (NA) of mesenteric arteries from rats with chronic streptozotocin-induced diabetes are associated with increases in mean cytosolic [Ca(2+)]i. 2. [Ca(2+)]i was measured with fura 2-AM, and was monitored simultaneously with tension in perfused endothelium-denuded mesenteric arterial rings from 12 - 14 week diabetic rats and age- and gender-matched control rats. 3. Basal [Ca(2+)]i (expressed as R(n), the normalized fura 2 ratio) was not significantly different in arteries from control and diabetic rats. Similarly, no differences between control and diabetic arteries in the tension or [Ca(2+)]i responses to 80 mM KCl in the presence of phentolamine were detected. 4. The rate of tension development, peak tension and integrated tension in response to 30 microM NA were all significantly greater in diabetic than control arteries. However, this was not associated with enhancement of the corresponding [Ca(2+)]i responses in the diabetic arteries. 5. Peak contractile responses to perfusion with both 0.3 and 3 microM NA, but peak [Ca(2+)]i only in response to 0.3 microM NA, were significantly greater in diabetic than control arteries. 6. NA (30 microM) produced a greater increase in both peak tension and [Ca(2+)]i in diabetic than control arteries perfused with Ca(2+)-free solution containing 1 mM EGTA. Neither the rate nor the magnitude of NA-induced Ca(2+) influx appeared to be altered in the diabetic arteries. 7. The enhanced sustained contractile response of diabetic arteries to NA appears to be dissociated from increases in [Ca(2+)]i, and may be due to other factors, such as an increase in the Ca(2+) sensitivity of the contractile proteins.  相似文献   

16.
1. The mechanisms of action of semotiadil fumarate, a novel Ca2+ antagonist, were examined by measuring the cytosolic Ca2+ level ([Ca2+]i) and force of contraction in porcine coronary arteries, and by determining [3H]-pyrilamine binding to bovine cerebellar membranes. 2. Semotiadil or verapamil (0.1 and 1 microM) inhibited both the high KCl-induced increases in [Ca2+]i and force in a concentration-dependent manner. 3. Histamine (30 microM) produced transient increases followed by sustained increases in [Ca2+]i and force, which were inhibited by semotiadil and verapamil (1 and 10 microM). The agents were different in that semotiadil reduced the maximum [Ca2+]i and force responses to histamine, but not pD2 values, whereas verapamil did reduce the pD2 values for histamine, but not the maximum responses. 4. Verapamil (10 microM), but not semotiadil, inhibited histamine-induced increases in [Ca2+]i and force in Ca(2+)-free solution. Neither semotiadil nor verapamil affected the increases in [Ca2+]i and force induced by caffeine. Semotiadil even at the higher concentration (10 microM) did not displace specific binding of [3H]-pyrilamine to bovine cerebellar membranes. 5. These results suggest that semotiadil inhibits both KCl- and histamine-induced contractions mainly by blocking voltage-dependent L-type Ca2+ channels.  相似文献   

17.
1. Zooxanthellatoxin-A (ZT-A), a novel polyhydroxylated long chain compound, isolated from a symbiotic marine alga Simbiodinium sp., caused aggregation in rabbit washed platelets in a concentration-dependent manner (1-4 microM), accompanied by an increase in cytosolic Ca2+ concentration ([Ca2+]i). 2. ZT-A did not cause platelet aggregation or increase [Ca2+]i in a Ca(2+)-free solution, and Cd2+ (0.1-1 mM), Co2+ (1-10 mM) and Mn2+ (1-10 mM) inhibited ZT-A-induced aggregation. SK&F96365 (1-100 microM), a receptor operated Ca2+ channel antagonist, and mefenamic acid (0.1-10 microM), a non-specific divalent cation channel antagonist, inhibited platelet aggregation and the increase in [Ca2+]i induced by ZT-A. 3. Indomethacin (0.1-10 microM), a cyclo-oxygenase inhibitor, and SQ-29548 (0.1-10 microM), a thromboxane A2 (TXA2) receptor antagonist, inhibited platelet aggregation and the increase in [Ca2+]i induced by ZT-A. 4. Methysergide (0.01-1 microM), a 5-HT2 receptor antagonist, inhibited ZT-A-induced platelet aggregation but did not affect the increase in [Ca2+]i induced by ZT-A. 5. Tetrodotoxin (1 microM), a Na+ channel blocker and chlorpheniramine (1 microM), a H1-histamine receptor antagonist, neither affected ZT-A-induced platelet aggregation nor the increase in [Ca2+]i induced by ZT-A. 6. Genistein (1-100 microM), a protein tyrosine kinase inhibitor, and staurosporine (0.01-1 microM), a protein kinase C inhibitor, also inhibited ZT-A-induced platelet aggregation. 7. The present results suggest that ZT-A elicits Ca(2+)-influx from platelet plasma membranes. The resulting increase in [Ca2+]i subsequently stimulates the secondary release of TXA2 from platelets.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
1. Using pharmacological analysis and fura-2 spectrofluorimetry, we examined the effects of gamma-aminobutyric acid (GABA) and related substances on intracellular Ca(2+) concentration ([Ca(2+)]i) of hybrid neurones, called MD3 cells. The cell line was produced by fusion between a mouse neuroblastoma cell and a mouse dorsal root ganglion (DRG) neurone. 2. MD3 cells exhibited DRG neurone-like properties, such as immunoreactivity to microtubule-associated protein-2 and neurofilament proteins. Bath applications of capsaicin and alpha, beta-methylene adenosine triphosphate reversibly increased [Ca(2+)]i. However, repeated applications of capsaicin were much less effective. 3. Pressure applications of GABA (100 microM), (Z)-3-[(aminoiminomethyl) thio] prop-2-enoic acid sulphate (ZAPA; 100 microM), an agonist at low affinity GABA(A)-receptors, or KCl (25 mM), transiently increased [Ca(2+)]i. 4. Bath application of bicuculline (100 nM - 100 microM), but not picrotoxinin (10 - 25 microM), antagonized GABA-induced increases in [Ca(2+)]i in a concentration-dependent manner (IC(50)=9.3 microM). 5. Ca(2+)-free perfusion reversibly abolished GABA-evoked increases in [Ca(2+)]i. Nifedipine and nimodipine eliminated GABA-evoked increases in [Ca(2+)]i. These results imply GABA response dependence on extracellular Ca(2+). 6. Baclofen (500 nM - 100 microM) activation of GABA(B)-receptors reversibly attenuated KCl-induced increases in [Ca(2+)]i in a concentration-dependent manner (EC(50)=1.8 microM). 2-hydroxy-saclofen (1 - 20 microM) antagonized the baclofen-depression of the KCl-induced increase in [Ca(2+)]i. 7. In conclusion, GABA(A)-receptor activation had effects similar to depolarization by high external K(+), initiating Ca(2+) influx through high voltage-activated channels, thereby transiently elevating [Ca(2+)]i. GABA(B)-receptor activation reduced Ca(2+) influx evoked by depolarization, possibly at Ca(2+)-channel sites in MD3 cells.  相似文献   

19.
The effect of taurine on calcium homeostasis of isolated cochlear spiral ganglion neurons under normal and ototoxic conditions was investigated using fluo-3 calcium imaging. Sole application of taurine (15 mM) induced an increase in intracelluar Ca(2+) concentration ([Ca(2+)](i)), which was largely inhibited either by the application of an L-type calcium-channel blocker nifedipine or a calcium-free medium. Preincubation with 1 mM gentamicin induced an inhibition of the high K(+)-evoked elevation of [Ca(2+)](i). Short-term exposure to taurine prevented this inhibition. The results suggested that taurine at this concentration was able to increase [Ca(2+)](i) mainly by calcium influx through L-type calcium channels in isolated spiral ganglion neurons and to antagonize gentamicin-induced inhibition of calcium elevation evoked by high K(+) by its calcium homeostatic effect.  相似文献   

20.
Activation of 4E-binding protein 1 (4E-BP1) by growth factors regulates protein synthesis in vascular smooth muscle cells. The interaction between G protein-coupled receptors and activated 4E-BP1 is unclear. We examined phosphadityl inositol (PI) 3-kinase in angiotensin II-induced 4E-BP1 phosphorylation in cultured rat vascular smooth muscle cells. Angiotensin II time and dose dependently stimulated phosphorylation of 4E-BP1 through the angiotensin AT(1) receptor. Pretreatment with wortmannin or 2-(4-Morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002), a PI 3-kinase inhibitor, suppressed angiotensin II-induced phosphorylation, but a mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinases (ERK) kinase-1 (MEK-1) inhibitor, 2'-Amino-3'-methoxyflavone (PD98059), and a p38 MAPK inhibitor, 4-(4-Fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole (SB203580), had no effect. With regard to the involvement of mammalian target of rapamycin (mTOR) and p70 S6 kinase, angiotensin II-induced phosphorylation was abolished by pretreatment with rapamycin, but not by tosylphenylalanine chloromethyl ketone or tosyllysine chloromethyl ketone. Ca(2+) was involved, since intracellular Ca(2+) chelation inhibited angiotensin II-induced phosphorylation while a Ca(2+) ionophore, A23187, stimulated phosphorylation. Thus, angiotensin II induces the phosphorylation of 4E-BP1 via the PI 3-kinase/mTOR pathway, but not via ERK or p70 S6 kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号