首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Acute necrotizing encephalopathy and acute disseminated encephalomyelitis are 2 rare types of acute postinfectious encephalopathy in children. Acute necrotizing encephalopathy is characterized by multiple symmetric lesions in the thalami, putamena, cerebral and cerebellar white matter, and brainstem. Acute disseminated encephalomyelitis is an immune-mediated demyelinating central nervous system disorder that predominantly affects the white matter. Diffusion magnetic resonance imaging is sensitive to measuring water diffusion in the central nervous system in human and animal models. Recent studies have demonstrated that by using an analytical approach to directional diffusivity-derived parameters, the axial diffusivity and the radial diffusivity, one can assess the extent of axonal or myelin injury in the central nervous system white matter. We applied directional diffusivity to acute necrotizing encephalopathy, acute disseminated encephalomyelitis, and control subjects correlating with neuropathology findings. In acute necrotizing encephalopathy, axonal injury without demyelination, noted on biopsy samples of brain tissue, was suggested by a decreased apparent diffusion coefficient, unchanged fractional anisotropy, and decreased axial and radial diffusivity. In acute disseminated encephalomyelitis, an increased apparent diffusion coefficient, decreased fractional anisotropy, unchanged axial diffusivity, and markedly increased radial diffusivity compatible with active inflammatory demyelination were noted, consistent with tissue biopsy sample neuropathology. In conclusion, diffusion tensor parameters can potentially depict more microstructural changes than conventional magnetic resonance imaging in postinfectious encephalopathy in children.  相似文献   

2.
Several investigators have suggested that the pathological progression of Alzheimer's disease appears to recapitulate the developmental maturation pattern, a process termed retrogenesis. Diffusion tensor imaging was used to test the hypothesis that the microstructural integrity of superior frontal and temporal white matter, one of the last regions to mature, would be reduced in vivo in early Alzheimer's disease. Five consecutive slices, from the orbitofrontal to periventricular frontal regions, as well as temporal and corpus callosal white matter regions, were sampled. Fractional anisotropy, mean diffusivity, axial diffusion, and radial diffusion of 10 patients with early Alzheimer's disease and 10 age-similar healthy control subjects were compared. Patients with Alzheimer's disease were found to have significantly reduced fractional anisotropy, increased mean diffusivity, and increased radial diffusion in superior frontal white matter. These data suggest that the integrity of periventricular frontal white matter rather than orbitofrontal white matter appears to be altered in early Alzheimer's disease and that the white matter abnormalities involve compromised myelin, consistent with the retrogenesis theory.  相似文献   

3.
Semantic (svPPA) and nonfluent (nfPPA) variants of primary progressive aphasia are associated with distinct patterns of cortical atrophy and underlying pathology. Little is known, however, about their contrasting spread of white matter disruption and how this relates to grey matter (GM) loss. We undertook a structural MRI study to investigate this relationship. We used diffusion tensor imaging, tract‐based spatial statistics, and voxel‐based morphometry to examine fractional anisotropy (FA) and directional diffusivities in nine patients with svPPA and nine patients with nfPPA, and compared them to 16 matched controls after accounting for global GM atrophy. Significant differences in topography of white matter changes were found, with more ventral involvement in svPPA patients and more widespread frontal involvement in nfPPA individuals. However, each group had both ventral and dorsal tract changes, and both showed spread of diffusion abnormalities beyond sites of local atrophy. There was a clear dissociation in sensitivity of diffusion tensor imaging measures between groups. SvPPA patients showed widespread changes in FA and radial diffusivity, whereas changes in axial diffusivity were more restricted and proximal to sites of GM atrophy. NfPPA patients showed isolated changes in FA, but widespread axial and radial diffusivity changes. These findings reveal the extent of white matter disruption in these variants of PPA after accounting for GM loss. Further, they suggest that differences in the relative sensitivity of diffusion metrics may reflect differences in the nature of underlying white matter pathology in these two subtypes. Hum Brain Mapp, 2013. © 2011 Wiley Periodicals, Inc.  相似文献   

4.
In the current study, the feasibility and reproducibility of in vivo diffusion tensor imaging (DTI) of the spinal cord in normal mice are illustrated followed by its application to mice with experimental allergic encephalomyelitis (EAE) to detect and differentiate axon and myelin damage. Axial diffusivity, describing water movement along the axonal fiber tract, in all regions of spinal cord white matter from EAE-affected C57BL/6 mice was significantly decreased compared to normal mice, whereas there was no statistically significant change in radial diffusivity, describing water movement across the fiber tract. Furthermore, a direct comparison between DTI and histology from a single mouse demonstrated a decrease in axial diffusivity that was supported by widespread staining of antibody against beta-amyloid precursor protein. Regionally elevated radial diffusivity corresponded with locally diminished Luxol fast blue staining in the same tissue from the EAE mouse cord. Our findings suggest that axonal damage is more widespread than myelin damage in the spinal cord white matter of mice with EAE and that in vivo DTI may provide a sensitive and specific measure of white matter injury.  相似文献   

5.
Although gray matter injury appears in heart failure (HF) patients, the presence, extent, and nature of axonal injury impacting on cardiovascular regulation and other functions is unclear. We performed diffusion tensor imaging (3.0-Tesla magnetic resonance imaging scanner) in 16 HF and 26 control subjects, and assessed whole-brain water diffusion parallel (axial diffusivity; axonal status) and perpendicular (radial diffusivity; myelin changes) to fibers. Regions with increased axial diffusivity only, indicating impaired axonal integrity, emerged in cardiovascular, hedonic, and pain regulatory areas, including basal forebrain, hypothalamic and limbic projections through the medial forebrain bundle and raphe magnus projections to the medulla and cerebellum. Other fiber paths between sites implicated in cognition, including limbic, basal-ganglia, thalamic, internal capsule, and corpus callosum were also altered. Sites with increased radial diffusivity only, indicating myelin breakdown, appeared in the corpus callosum, cingulate, and temporal, parietal, occipital, and frontal regions. Both higher axial and radial diffusivity, indicating loss of tissue integrity, appeared in parietal and occipital lobes, limbic regions, insula, internal capsule, cerebellum, and dorsolateral medulla. Axons and myelin are altered in HF, likely resulting from ischemic/hypoxic processes acting chronically and sub-acutely, respectively. The alterations would contribute to the multiple autonomic and neuropsychological symptoms found in HF.  相似文献   

6.
Vanishing white matter disease (VWM) is one of the most frequent inherited childhood white matter disorders. We present the brain and spinal cord disease progression on serial conventional magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) in a 4-year-old boy. Consecutive MRI examinations demonstrated a progression of the signal abnormalities in the cerebral white matter. Globally, apparent diffusion coefficient (ADC) values as well as axial and radial diffusivity increased over time, while fractional anisotropy (FA) values decreased. Involvement of the cervical posterior spinal tracts and mild global spinal cord atrophy was found. In conclusion, serial MRI and DTI studies may help to better understand the selective injury of the myelin and axons in VWM disease. These data may help in monitoring disease progression. Our data also show that complete neuroimaging work-up in VWM should also include the spinal cord.  相似文献   

7.
Diffusion tensor imaging (DTI) is a powerful method to visualize white matter, but its use in patients with acute stroke remains limited because of the lack of corresponding histologic information. In this study, we addressed this issue using a hypoxia–ischemia (HI)-induced thrombotic model of stroke in adult mice. At 6, 15, and 24 hours after injury, animals were divided into three groups for (1) in vivo T2- and diffusion-weighted magnetic resonance imaging, followed by histochemistry, (2) ex vivo DTI and electron microscopy, and (3) additional biochemical or immunochemical assays. The temporal changes of diffusion anisotropy and histopathology were compared in the fimbria, internal capsule, and external capsule. We found that HI caused a rapid reduction of axial and radial diffusivities in all three axonal bundles. A large decrease in fractional anisotropy, but not in axial diffusivity per se, was associated with structural breakdown of axons. Furthermore, the decrease in radial diffusivity correlated with swelling of myelin sheaths and compression of the axoplasma. The gray matter of the hippocampus also exhibited a high level of diffusion anisotropy, and its reduction signified dendritic degeneration. Taken together, these results suggest that cross-evaluation of multiple DTI parameters may provide a fuller picture of axonal and dendritic injury in acute ischemic stroke.  相似文献   

8.
Although epilepsy is historically considered a disease of gray matter, recent diffusion tensor imaging (DTI) studies have shown white matter abnormalities in patients with epilepsy. The histopathologic correlate of these findings, and whether they are a cause or consequence of epilepsy, remains unclear. To characterize these changes and their underlying histopathology, DTI was performed in juvenile rats, 4 and 8 weeks after pilocarpine‐induced status epilepticus (SE). In the medial corpus callosum (CC), mean diffusivity and axial diffusivity (MD and λ1) as well as a myelin staining were significantly reduced at 4 weeks. Only the λ1 decrease persisted at 8 weeks. In the fornix fimbriae (FF), λ1 and myelin staining were decreased at both time points, whereas fractional anisotropy (FA) and MD were significantly reduced at 8 weeks only. We conclude that SE induces both transient and chronic white matter changes in the medial CC and FF that are to some degree related to myelin pathology.  相似文献   

9.
Mild traumatic brain injury (mTBI) is an increasing public health concern as repetitive injuries can exacerbate existing neuropathology and result in increased neurologic deficits. In contrast to other models of repeated mTBI (rmTBI), our study focused on long-term white-matter abnormalities after bilateral mTBIs induced 7 days apart. A controlled cortical impact (CCI) was used to induce an initial mTBI to the right cortex of Single and rmTBI Sprague Dawley rats, followed by a second injury to the left cortex of rmTBI animals. Shams received only a craniectomy. Ex vivo diffusion tensor imaging (DTI), transmission electron microscopy (TEM), and histology were performed on the anterior corpus callosum at 60 days after injury. The rmTBI animals showed a significant bilateral increase in radial diffusivity (myelin), while only modest changes in axial diffusivity (axonal) were seen between the groups. Further, the rmTBI group showed an increased g-ratio and axon caliber in addition to myelin sheath abnormalities using TEM. Our DTI results indicate ongoing myelin changes, while the TEM data show continuing axonal changes at 60 days after rmTBI. These data suggest that bilateral rmTBI induced 7 days apart leads to progressive alterations in white matter that are not observed after a single mTBI.  相似文献   

10.
Alzheimer's disease (AD) is a progressive neurodegenerative disease involving the decline of memory and other cognitive functions. Mild cognitive impairment (MCI) represents a transition phase between normal aging and early AD. The degeneration patterns of the white matter across the brain in AD and MCI remain largely unclear. Here we used diffusion tensor imaging and tract-based spatial statistics (TBSS) to investigate white matter changes in multiple diffusion indices (e.g., fractional anisotropy, axial, radial and mean diffusivities) in both AD and MCI patients. Compared with the normal controls, the AD patients had reduced fractional anisotropy and increased axial, radial and mean diffusivities in widespread white matter structures, including the corpus callosum and the white matter of lateral temporal cortex, the posterior cingulate cortex/precuneus and the fronto-parietal regions. Similar white matter regions with reduced anisotropy were also found in MCI patients but with a much less extent than in AD. Between the AD and MCI groups, there were significant differences in the axial and mean diffusivities of the white matter tracts adjacent to the posterior cingulate cortex/precuneus without anisotropy changes. Taken together, our findings based upon multiple diffusion indices (FA, axial, radial and mean diffusivities) suggest distinct degeneration behaviors of the white matter in AD and MCI.  相似文献   

11.
Brain injury underlying the state‐related loss of ventilatory drive, autonomic, cognitive, and affective deficits in congenital central hypoventilation syndrome (CCHS) patients appears throughout the brain, as demonstrated by magnetic resonance (MR) T2 relaxometry and mean diffusivity studies. However, neither MR measure is optimal to describe types of axonal injury essential for assessing neural interactions responsible for CCHS characteristics. To evaluate axonal integrity and partition the nature of tissue damage (axonal vs. myelin injury) in CCHS, we measured water diffusion parallel (axial diffusivity) and perpendicular (radial diffusivity) to rostral brain fibers, indicative of axonal and myelin changes, respectively, with diffusion tensor imaging (DTI). We performed DTI in 12 CCHS (age 18.5 ± 4.9 years, 7 male) and 30 control (17.7 ± 4.6 years, 18 male) subjects, using a 3.0‐Tesla MR imaging scanner. Axial and radial diffusivity maps were calculated, spatially normalized, smoothed, and compared between groups (analysis of covariance; covariates, age and gender). Significantly increased radial diffusivity, primarily indicative of myelin injury, emerged in fibers of the corona radiata, internal capsule, corpus callosum, hippocampus through the fornix, cingulum bundle, and temporal and parietal lobes. Increased axial diffusivity, suggestive of axonal injury, appeared in fibers of the internal capsule, thalamus, corona radiata, and occipital and temporal lobes. Multiple brain regions showed both higher axial and radial diffusivity, indicative of loss of tissue integrity with a combination of myelin and axonal injury, including basal ganglia, bed nucleus, and limbic, occipital, and temporal areas. The processes underlying injury are unclear, but likely stem from both hypoxic and developmental processes. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
Chan W‐Y, Yang G‐L, Chia M‐Y, Woon P‐S, Lee J, Keefe R, Sitoh Y‐Y, Nowinski WL, Sim K. Cortical and subcortical white matter abnormalities in adults with remitted first‐episode mania revealed by Tract‐Based Spatial Statistics.
Bipolar Disord 2010: 12: 383–389. © 2010 The Authors. Journal compilation © 2010 John Wiley & Sons A/S. Objectives: Abnormalities of brain white matter have been noted in structural magnetic resonance imaging and diffusion tensor imaging (DTI) studies of bipolar disorder, but there are fewer investigations specifically examining white matter integrity early in the course of illness. In this study, we employed DTI to elucidate white matter changes in adult patients with remitted first‐episode mania and hypothesized that first‐episode mania was associated with decreased fractional anisotropy in cortical (frontal) and subcortical (thalamus, striatum) white matter as well as white matter tracts (cingulum, corpus callosum). Methods: Diffusion tensor images were acquired from 16 patients with remitted first‐episode mania and 16 healthy controls matched for age, gender, handedness, and years of education. Fractional anisotropy and radial and axial diffusivities were analyzed using Tract‐Based Spatial Statistics. Results: Patients had lower fractional anisotropy and higher radial diffusivity in the left anterior frontal white matter, right posterior thalamic radiation, left cingulum, and bilateral sagittal striatum. In addition, increased radial diffusivity was found in the left corpus callosum. Conclusion: Our findings highlighted that white matter abnormalities were present by the time of remission of first‐episode mania. The widespread occurrence of these white matter abnormalities both in first‐episode mania and chronic bipolar disorder suggested that disruption of white matter cortical‐subcortical networks as well as projection, associative, and commissural tracts is a hallmark of the illness.  相似文献   

13.
Neonatal hypoxic–ischemic encephalopathy is a major cause of brain damage in infants, and is associated with periventricular white matter injury and chronic neurological dysfunctions. However, the mechanisms of the chronic white matter injury and reorganization are still unclear. In this study, in vivo diffusion tensor imaging (DTI) was employed to evaluate the late changes of white matter microstructural integrity in the rat brains at 10 weeks after severe neonatal hypoxic–ischemic insults at postnatal day 7. In the fractional anisotropy directionality map, qualitative evaluation showed that a dorsoventrally oriented fiber bundle extended from the corpus callosum into the cyst in the anterior brain, whilst the posterior peri-infarct areas had similar fiber orientations as the contralateral internal capsule, optic tract and fimbria of hippocampus. Compared to the contralateral hemisphere, significantly higher fractional anisotropy, axial diffusivity and diffusion trace value were observed quantitatively in the distal end of the extended fiber bundle connecting the anterior and posterior white matters rostrocaudally. A significantly lower fractional anisotropy but higher axial and radial diffusivities and trace were also found in the ipsilateral corpus callosum, proximal external capsule and anterior commissure, while slightly lower fractional anisotropy and axial diffusivity were noticed in the ipsilateral internal capsule and optic nerve. It was suggested that increased fractional anisotropy, axial diffusivity and trace characterize white matter reorganization in chronic neonatal hypoxic–ischemic insults, whereas reduction in fractional anisotropy appears to characterize two types of white matter lesions, with significantly higher axial and radial diffusivities and trace being primary and slightly lower axial diffusivity being secondary. Combined with fractional anisotropy directionality map, in vivo DTI provides important indices to differentiate the chronic effects of severe neonatal hypoxic–ischemic injury and recovery globally, quantitatively and non-invasively.  相似文献   

14.
Hair-pulling disorder (trichotillomania, HPD) is a disabling condition that is characterized by repetitive hair-pulling resulting in hair loss. Although there is evidence of structural grey matter abnormalities in HPD, there is a paucity of data on white matter integrity. The aim of this study was to explore white matter integrity using diffusion tensor imaging (DTI) in subjects with HPD and healthy controls. Sixteen adult female subjects with HPD and 13 healthy female controls underwent DTI. Hair-pulling symptom severity, anxiety and depressive symptoms were also assessed. Tract-based spatial statistics were used to analyze data on fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD). There were no differences in DTI measures between HPD subjects and healthy controls. However, there were significant associations of increased MD in white matter tracts of the fronto-striatal-thalamic pathway with longer HPD duration and increased HPD severity. Our findings suggest that white matter integrity in fronto-striatal-thalamic pathways in HPD is related to symptom duration and severity. The molecular basis of measures of white matter integrity in HPD deserves further exploration.  相似文献   

15.
Here, we report the structural evidence of cerebral white matter abnormalities in Charcot‐Marie‐Tooth (CMT) patients and the relationship between these abnormalities and clinical disability. Brain diffusion tensor imaging (DTI) was performed in CMT patients with demyelinating (CMT1A/CMT1E), axonal (CMT2A/CMT2E), or intermediate (CMTX1/DI‐CMT) peripheral neuropathy. Although all patients had normal brain magnetic resonance imaging, all genetic subgroups except CMT1A had abnormal DTI findings indicative of significant cerebral white matter abnormalities: decreased fractional anisotropy and axial diffusivity, and increased radial diffusivity. DTI abnormalities were correlated with clinical disability, suggesting that there is comorbidity of central nervous system damage with peripheral neuropathy in CMT patients. ANN NEUROL 2017;81:147–151  相似文献   

16.
Magnetic resonance diffusion tensor imaging (DTI) was used to examine the integrity of midline white matter tracts in APPsw (Tg2576) transgenic mice, a mouse-model of cerebral amyloid deposition. Ex vivo DTI was performed on formalin-fixed brains from APPsw and age-matched transgene-negative control mice at the ages of 12, 15, and 17 months. The characteristics of water diffusion in six midline white matter tracts were quantified using four metrics: relative anisotropy (RA), mean diffusivity, axial diffusivity, and radial diffusivity. Two-way ANOVA analyses indicated a significant main effect of transgene on RA in the corpus callosum (CC) and ventral hippocampal commissure (VHC), due to small reductions (2-6%) in RA in APPsw mice relative to age-matched control mice. However, these reductions were not significant at any specific age group and were not progressive with increasing age. The other diffusion metrics exhibited no significant differences between APPsw and control mice in the CC and VHC, nor did any of the diffusion metrics exhibit significant differences between APPsw and control mice in other midline white matter tracts (anterior commissure, posterior commissure, fornix, and dorsal fornix). Overall, these results indicate that white matter integrity, as measured by ex vivo DTI, is predominately unaltered in formalin-fixed brains from amyloid plaque-bearing APPsw mice.  相似文献   

17.
PURPOSE: Focal cortical dysplasia (FCD) is one of the most common underlying pathologic substrates in patients with medically intractable epilepsy. While magnetic resonance imaging (MRI) evidence of FCD is an important predictor of good surgical outcome, conventional MRI is not sensitive enough to detect all lesions. Previous reports of diffusion tensor imaging (DTI) abnormalities in FCD suggest the potential of DTI in the detection of FCD. The purpose of this study was to study subcortical white matter underlying small lesions of FCD using DTI. METHODS: Five patients with medically intractable epilepsy and FCD were investigated. Diffusion tensor imaging images were acquired (20 contiguous 3 mm thick axial slices) with maps of fractional anisotropy (FA), trace apparent diffusion coefficient (trace/3 ADC), and principal eigenvalues (ADC parallel and ADC perpendicular to white matter tracts) being calculated for each slice. Region of interest analysis was used to compare subcortical white matter ipsilateral and contralateral to the lesion. RESULTS: Three subjects with FCD associated with underlying white matter hyperintensities on T2 weighted MRI were observed to have increased trace/3 ADC, reduced fractional anisotropy and increased perpendicular water diffusivity which was greater than the relative increase in the parallel diffusivity. No DTI abnormalities were identified in two patients with FCD without white matter hyperintensities on conventional T2-weighted MRI. CONCLUSIONS: While DTI abnormalities in FCD with obvious white matter involvement are consistent with micro-structural degradation of the underlying subcortical white matter, DTI changes were not identified in FCD lesions with normal appearing white matter.  相似文献   

18.
Both sleep disturbances and decline in white matter microstructure are commonly observed in ageing populations, as well as in age‐related psychiatric and neurological illnesses. A relationship between sleep and white matter microstructure may underlie such relationships, but few imaging studies have directly examined this hypothesis. In a study of 448 community‐dwelling members of the Whitehall II Imaging Sub‐Study aged between 60 and 82 years (90 female, mean age 69.2 ± 5.1 years), we used the magnetic resonance imaging technique diffusion tensor imaging to examine the relationship between self‐reported sleep quality and white matter microstructure. Poor sleep quality at the time of the diffusion tensor imaging scan was associated with reduced global fractional anisotropy and increased global axial diffusivity and radial diffusivity values, with small effect sizes. Voxel‐wise analysis showed that widespread frontal‐subcortical tracts, encompassing regions previously reported as altered in insomnia, were affected. Radial diffusivity findings remained significant after additional correction for demographics, general cognition, health, and lifestyle measures. No significant differences in general cognitive function, executive function, memory, or processing speed were detected between good and poor sleep quality groups. The number of times participants reported poor sleep quality over five time‐points spanning a 16‐year period was not associated with white matter measures. In conclusion, these data demonstrate that current sleep quality is linked to white matter microstructure. Small effect sizes may limit the extent to which poor sleep is a promising modifiable factor that may maintain, or even improve, white matter microstructure in ageing. Hum Brain Mapp 38:5465–5473, 2017. © 2017 Wiley Periodicals, Inc.  相似文献   

19.
White matter (WM) microstructural declines have been demonstrated in Alzheimer's disease and amnestic mild cognitive impairment (aMCI). However, the pattern of WM microstructural changes in aMCI after controlling for WM atrophy is unknown. Here, we address this issue through joint consideration of aMCI alterations in fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity, as well as macrostructural volume in WM and gray matter compartments. Participants were 18 individuals with aMCI and 24 healthy seniors. Voxelwise analyses of diffusion tensor imaging data was carried out using tract-based spatial statistics (TBSS) and voxelwise analyses of high-resolution structural data was conducted using voxel based morphometry. After controlling for WM atrophy, the main pattern of TBSS findings indicated reduced fractional anisotropy with only small alterations in mean diffusivity/radial diffusivity/axial diffusivity. These WM microstructural declines bordered and/or were connected to gray matter structures showing volumetric declines. However, none of the potential relationships between WM integrity and volume in connected gray matter structures was significant, and adding fractional anisotropy information improved the classificatory accuracy of aMCI compared to the use of hippocampal atrophy alone. These results suggest that WM microstructural declines provide unique information not captured by atrophy measures that may aid the magnetic resonance imaging contribution to aMCI detection.  相似文献   

20.
The developing human brain shows rapid myelination and axonal changes during childhood, adolescence, and early adulthood, requiring successive evaluations to determine normative values for potential pathological assessment. Fiber characteristics can be examined by axial and radial diffusivity procedures, which measure water diffusion parallel and perpendicular to axons and show primarily axonal status and myelin changes, respectively. Such measures are lacking from widespread sites for the developing brain. Diffusion tensor imaging data were acquired from 30 healthy subjects (age 17.7 ± 4.6 years, range 8-24 years, body mass index 21.5 ± 4.5 kg/m(2), 18 males) using a 3.0-Tesla MRI scanner. Diffusion tensors were calculated, principal eigenvalues determined, and axial and radial diffusivity maps calculated and normalized to a common space. A set of regions of interest was outlined from widespread brain areas within rostral, thalamic, hypothalamic, cerebellar, and pontine regions, and average diffusivity values were calculated using normalized diffusivity maps and these regions of interest masks. Age-related changes were assessed with Pearson's correlations, and gender differences evaluated with Student's t-tests. Axial and radial diffusivity values declined with age in the majority of brain areas, except for midhippocampus, where axial diffusivity values correlated positively with age. Gender differences emerged within putamen, thalamic, hypothalamic, cerebellar, limbic, temporal, and other cortical sites. Documentation of normal axial and radial diffusivity values will help assess disease-related tissue changes. Axial and radial diffusivities change with age,with fiber structure and organization differing between sexes in several brain areas. The findings may underlie gender-based functional characteristics, and mandate partitioning age- and gender-related changes during developmental brain pathology evaluation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号