首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thrombin-induced platelet aggregation was inhibited in vitro by washed human neutrophils. Aggregation was inhibited in a neutrophil concentration dependent manner but glutaraldehyde fixed neutrophils had no significant effect on platelet aggregation. The neutrophil-derived inhibitory factor had the pharmacological profile of nitric oxide. Its action was potentiated by both superoxide dismutase and M&B22, 948, a selective cyclic guanosine monophosphate (cyclic GMP) phosphodiesterase inhibitor. Haemoglobin lessened this inhibitory action of neutrophils. L-Arginine, the substrate for nitric oxide formation, enhanced inhibition, whereas, L-canavanine, a structural analogue of L-arginine, prevented it. Nitric oxide release by neutrophils antagonized platelet ATP secretion and thromboxane B2 release. Inhibition was mediated by nitric oxide activation of guanylate cyclase with a subsequent rise in cyclic GMP. When neutrophils were stimulated with formyl-met-leu-phe, there was a further increase in platelet cyclic GMP. This was enhanced by superoxide dismutase, but lessened by haemoglobin. Leukotriene B4 stimulation of neutrophils promoted inhibition of platelet aggregation. Leukotriene B4 alone had no direct effect on thrombin-induced aggregation of platelets. Platelets, when incubated with neutrophils and stimulated with calcium ionophore A23187, increased leukotriene B4 production by neutrophils in a platelet concentration dependent manner. Platelets alone were unable to release leukotriene B4. The action of platelets in haemostasis is modified as they come into contact with neutrophils. This may be an important physiological mechanism.  相似文献   

2.
Dipyridamole (DP) is a phosphodiesterase inhibitor that increases the intracellular levels of cyclic adenosine monophosphate (cAMP) and cyclic guanine monophosphate (cGMP) by preventing their conversion to AMP and GMP, respectively. By increasing cAMP and cGMP levels in platelets, DP reversibly inhibits platelet aggregation and platelet-mediated thrombotic disease. In addition, DP may potentiate some of the vascular protective effects of endothelium-derived nitric oxide (NO), which increases cGMP by stimulating soluble guanylyl cyclase. Endothelium-derived NO is an important regulator of vascular tone, blood flow, and tissue perfusion. Indeed, endothelial NO synthase-deficient (eNOS-/-) mice exhibit elevated systemic blood pressure and have larger myocardial and cerebral infarct size after ischemic injury. Other NO/cGMP-dependent effects that may be potentiated by DP include inhibition of vascular smooth muscle proliferation and prevention of endothelial-leukocyte interaction. In addition, DP increases local concentrations of adenosine and prostacyclin, which could affect vascular tone and inflammation. Finally, DP has antioxidant properties, which could stabilize platelet and vascular membranes as well as prevent the oxidation of low-density lipoprotein. These platelet and nonplatelet actions of DP may contribute to some of its therapeutic benefits in vascular disease.  相似文献   

3.
OBJECTIVE: Carbon monoxide (CO) modulates several physiological functions through activation of a cGMP-dependent pathway similar to that of nitric oxide (NO). Here we investigated the possible involvement of soluble guanylate cyclase in the anti-aggregatory effect of micromolar concentrations of CO released by a novel, water-soluble, CO releasing molecule (CORM) in human platelets. METHODS: Human platelet aggregation was induced by collagen or thrombin, and the effects of CO releasing molecule (CORM-3) and an NO donor on platelet aggregation were compared. RESULTS: CORM-3 liberated CO in a time- and concentration-dependent manner as evidenced by the formation of carbon monoxy myoglobin (MbCO) using a spectrophotometric assay. When added to washed platelets, CORM-3 (10-300 microM) inhibited collagen- and thrombin-induced aggregation in a concentration-dependent manner. The anti-aggregatory effect of CORM-3 was reversed by deoxy-Mb (50 microM). Interestingly, in the presence of an inhibitor of guanylate cyclase (ODQ, 5 microM), inhibition of collagen-induced aggregation by CORM-3 was not blocked but potentiated. Under the same experimental conditions, inhibition of platelet aggregation by an NO donor (SNAP, 1 microM) was prevented by ODQ. In collagen-induced or thrombin-induced platelet aggregation, a stimulator of guanylate cyclase (YC-1, 0.3 microM) did not alter the effect of CORM-3, whereas it markedly potentiated the inhibition of platelet aggregation mediated by SNAP. Notably, CORM-3-induced inhibition of platelet aggregation was of similar degree when platelets were activated by a low (20 mU/ml) or by high concentration of thrombin (100-200 mU/ml), whereas NO donors (SNP and SNAP)- or carbaprostacylin (cPGI(2))-induced effects were considerably attenuated when platelets were activated by high concentrations of thrombin. CONCLUSIONS: Inhibition of platelet aggregation by CO released by a novel, water-soluble CORM is not mediated by activation of soluble guanylate cyclase. In contrast to NO and PGI(2), CO effectively inhibits platelets even when cells are activated excessively. We suggest that despite the fact that CO is not a potent inhibitor of platelet activation, it may gain importance when NO and PGI(2) alone are insufficient to overcome excessive platelet activation.  相似文献   

4.
The discovery of nitric oxide as the endogenous nitrovasodilator   总被引:26,自引:0,他引:26  
Endothelium-derived relaxing factor (EDRF) is a labile humoral agent released by vascular endothelium that mediates the relaxation induced by some vasodilators, including acetylcholine and bradykinin. EDRF also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to vascular endothelium. These actions of EDRF are mediated through stimulation of the soluble guanylate cyclase and the consequent elevation of cyclic guanosine 3',5'-monophosphate. EDRF has been identified as nitric oxide (NO). The pharmacology of NO and EDRF is indistinguishable; furthermore, sufficient NO is released from endothelial cells to account for the biological activities of EDRF. Organic nitrates exert their vasodilator activity following conversion to NO in vascular smooth muscle cells. Thus, NO may be considered the endogenous nitrovasodilator. NO is synthesized by vascular endothelium from the terminal guanido nitrogen atom(s) of the amino acid L-arginine. This indicates the existence of an enzymic pathway in which L-arginine is the endogenous precursor for the synthesis of NO. The discovery of the release of NO by vascular endothelial cells, the biosynthetic pathway leading to its generation, and its interaction with other vasoactive substances opens up new avenues for research into the physiology and pathophysiology of the vessel wall.  相似文献   

5.
In studies on human platelets, nitroprusside (NP) alone at 1-10 micromol/l increased platelet cyclic AMP (cAMP) by 40-70%, whereas increases in cyclic GMP (cGMP) were much larger in percentage though not in concentration terms. Collagen enhanced these increases in cAMP up to fourfold, without affecting cGMP. This effect was partly prevented by indomethacin or aspirin, indicating that platelet cyclo-oxygenase products acted synergistically with NP to increase cAMP. ADP released from the platelets by collagen tended to restrict this cAMP accumulation. Addition of 2',5'-dideoxyadenosine (DDA), an inhibitor of adenylyl cyclase, decreased both the inhibition of collagen-induced platelet aggregation by NP and the associated accumulation of cAMP without affecting cGMP, indicating that cAMP mediates part of the inhibitory effect of NP. Unlike DDA, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of guanylyl cyclase, blocked all increases in both cGMP and cAMP caused by NP, as well as the inhibition of platelet aggregation, suggesting that cAMP accumulation was secondary to that of cGMP. Human platelet cGMP-dependent protein kinase (PKG) coelectrophoresed with the purified bovine type Ibeta isoenzyme. An inhibitor of this enzyme (Rp)-beta-phenyl-1,N2-etheno-8-bromoguanosine 3',5'-cyclic-monophosphorothioate, diminished the inhibition of collagen-induced platelet aggregation by NP, but had little additional effect when DDA was present. This showed that both PKG and cAMP participate in the inhibition of collagen-induced platelet aggregation by NP. Moreover, selective activators of PKG and cAMP-dependent protein kinases had supra-additive inhibitory effects, suggesting that an optimal inhibitory effect of NP requires simultaneous activation of both enzymes.  相似文献   

6.
The inhibitory effect of 6-(10-hydroxydecyl)-2,3-dimethoxy-5-methyl-1,4-benzoquinone (idebenone) on platelet aggregation was studied in rat and human platelets in vitro, and the mechanism of inhibition was examined in rat platelets. Idebenone inhibited the aggregation induced by collagen and thrombin in washed platelets, and by arachidonate and ADP in platelet-rich plasma (PRP). The inhibition was more prominent in collagen- and arachidonate-induced aggregation. In collagen-induced aggregation of human platelets, idebenone was 8-fold more potent than aspirin. In addition, idebenone inhibited prostaglandin synthesis and thromboxane B2 production, and also increased the cyclic AMP content in platelets. However, the concentration of idebenone required to inhibit thromboxane B2 production was much lower than that required to increase cyclic AMP. These results indicate that idebenone inhibits platelet aggregation by inhibiting thromboxane B2 synthesis rather than by increasing cyclic AMP content.  相似文献   

7.
M J Broekman  A M Eiroa  A J Marcus 《Blood》1991,78(4):1033-1040
To determine a role for endothelium-derived relaxing factor/nitric oxide (EDRF/NO) in regulation of human platelet reactivity by human endothelial cells (EC), we studied combined suspensions of human umbilical vein endothelial cells (HU-VEC, passage 2 through 3) and washed human platelets. Confluent HUVEC monolayers were treated with aspirin (1 mmol/L) to prevent prostacyclin (PGI2) formation, washed, and harvested. Aspirin-treated platelets alone (58 x 10(6)) were fully aggregated by thrombin at 0.05 U/mL or more. In the presence of 10(6) HUVEC, however, platelet serotonin release and aggregation in response to thrombin at doses as high as 0.5 U/mL were blocked. We demonstrated for the first time that inhibition of aggregation and serotonin release, due to EDRF/NO, occurred in parallel. HUVEC-dependent inhibition of platelet responsiveness was enhanced by superoxide dismutase (SOD) and reversed by hemoglobin. The inhibitory effect was also reversed by preincubation of HUVEC with NG-monomethyl-L-arginine (NMA) or NG-nitro-L-arginine (NNA) through competitive blockade of arginine metabolism. Pretreatment of platelets with methylene blue indicated that EC-dependent inhibition of platelet reactivity occurred through activation of platelet soluble guanylate cyclase. When platelets and HUVEC were separated by a permeable membrane and both cells were stimulated by thrombin, platelets remained unresponsive. This indicated that inhibition was induced by a fluid-phase mediator, independent of direct cell-cell contact. These data demonstrate that EDRF/NO formation from L-arginine by human EC plays an important role as an aspirin-insensitive fluid-phase inhibitor of human platelet reactivity.  相似文献   

8.
YC-1, a novel activator of platelet guanylate cyclase   总被引:11,自引:0,他引:11  
Ko  FN; Wu  CC; Kuo  SC; Lee  FY; Teng  CM 《Blood》1994,84(12):4226-4233
YC-1 [3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole] inhibited the aggregation of and ATP release from washed rabbit platelets induced by arachidonic acid (AA), collagen, U46619, platelet-activating factor (PAF), and thrombin in a concentration-dependent manner. YC-1 also disaggregated the clumped platelets caused by these inducers. The thromboxane B2 formation caused by collagen, PAF, and thrombin was inhibited by concentrations of YC-1 that did not affect formation of thromboxane B2 and prostaglandin D2 caused by AA. YC-1 suppressed the increase of intracellular Ca2+ concentration and generation of inositol 1,4,5-trisphosphate caused by these five aggregation inducers. Both the cAMP and cGMP contents of platelets were increased by YC-1 in a concentration- and time-dependent manner. Like sodium nitroprusside, YC- 1 potentiated formation of cAMP caused by prostaglandin E1 but not that by 3-isobutyl-1-methylxanthine. Adenylate cyclase and cAMP phosphodiesterase activities were not altered by YC-1. Activity of cGMP phosphodiesterase was unaffected by YC-1. Activities of guanylate cyclase in platelet homogenate and cytosolic fraction were activated by YC-1, whereas particulate guanylate cyclase activity was unaffected. The antiplatelet effect of sodium nitroprusside but not that of YC-1 was blocked by hemoglobin and potentiated by superoxide dismutase. After intraperitoneal administration for 30 minutes, YC-1 prolonged the tail bleeding time of conscious mice. These data indicate that YC-1 is a direct soluble guanylate cyclase activator in rabbit platelets. It may also possess antithrombotic potential in vivo.  相似文献   

9.
In this study, Escherichia coli LPS dose-dependently (100-500 microg/ml) and time-dependently (10-60 min) inhibited platelet aggregation in human and rabbit platelets stimulated by agonists. LPS also dose-dependently inhibited the intracellular Ca2+ mobilization in human platelets stimulated by collagen. In addition, LPS (200 and 500 microg/ml) significantly increased the formation of cyclic GMP but not cyclic AMP in platelets. LPS (200 microg/ml) significantly increased the production of nitrate within a 10-min incubation period. Furthermore, LPS also dose-dependently inhibited platelet aggregation induced by PDBu (30 nmol/l), a protein kinase C activator. These results indicate that the antiplatelet activity of E. coli LPS may be involved in the activation of a nitric oxide/cyclic GMP pathway in platelets, resulting in inhibition of platelet aggregation. Therefore, LPS-mediated alteration of platelet function may contribute to bleeding diathesis in septicemic and endotoxemic patients.  相似文献   

10.
Platelet hyperaggregability and associated thrombosis have been documented in a number of cardiovascular disease states. While one of the current mainstays of anti-thrombotic treatment (i.e. aspirin, clopidogrel, glycoprotein IIb/IIIa antagonists) has been directed at reducing platelet activation and aggregation, it is apparent that there are limitations to the effectiveness of these therapies. Nitric oxide (NO) plays an important role in platelet physiology. The ability of NO to regulate cyclic guanosine-3,'5'-monophosphate (cGMP), via activation of soluble guanylate cyclase, is the principal mechanism of negative control over platelet activity. NO is not only of the endothelial source, it is also released from activated platelets, providing a negative feedback. Studies in patients with symptomatic ischemia, chronic heart failure, diabetes and various risk factors for cardiovascular disease have demonstrated that platelets from these subjects exhibit reduced responsiveness to the anti-aggregating efficacy of NO: a phenomenon termed "platelet NO resistance". It constitutes an impaired physiological response to endogenous NO (endothelium-derived relaxing factor or EDRF), and as such may contribute to the increased risk of ischemic events. NO resistance also accounts for reduced pharmaco-activity of exogenous NO donors, e.g. organic nitrates. Platelet NO resistance results largely from a combination of "scavenging" of NO by superoxide anion radical and inactivation of soluble guanylate cyclase. NO resistance has both diagnostic and prognostic implications. The current review examines the association of platelet NO resistance with pathological hyperaggregability and discusses potential therapeutic strategies targeting this abnormality.  相似文献   

11.
Role of cyclic nucleotides in rapid platelet adhesion to collagen   总被引:1,自引:1,他引:1  
Polanowska-Grabowska  R; Gear  AR 《Blood》1994,83(9):2508-2515
Adhesion of human platelets to type I collagen under arterial flow conditions is extremely fast, being mediated primarily by the alpha 2 beta 1 integrin (glycoprotein Ia/IIa). We have investigated the involvement of cyclic nucleotides in platelet adhesion to soluble native collagen immobilized on Sepharose beads using a new microadhesion assay under arterial flow conditions. To prevent platelet stimulation by thromboxanes and adenosine diphosphate (ADP), experiments were performed with aspirin-treated platelets in the presence of ADP-removing enzyme systems such as creatine phosphate/creatine phosphokinase or apyrase. Rapid reciprocal changes in platelet adenosine 3'5'-cyclic monophosphate (cAMP) and guanosine 3'5'-cyclic monophosphate (cGMP) occurred during adhesion. cAMP levels in adherent platelets were 2.4-fold lower than in effluent platelets or in static controls, whereas cGMP levels were increased 2.4-fold. These results suggest that contact between platelets and collagen stimulates guanylate cyclase and inhibits adenylate cyclase. This occurs in the absence of the platelet release reaction. We also studied short-term effects of agents that regulate cyclic nucleotide synthesis, prostaglandin E1 (PGE1) and sodium nitroprusside (SNP). After only 3.8 seconds at 10 to 30 dyne/cm2, PGE1 (10 mumol/L) increased cAMP 16.4- fold, whereas SNP (50 mumol/L) increased cGMP ninefold and caused a 3.2- fold increase in cAMP. Both PGE1 and SNP rapidly (< 5 seconds) inhibited platelet adhesion in a dose-dependent manner that was correlated with the increase in cyclic nucleotides. Our data suggest that cAMP and cGMP play a regulatory role in the initial phases of platelet adhesion to collagen mediated by the alpha 2 beta 1 integrin receptor.  相似文献   

12.
The objective of this study was to determine whether the vascular smooth muscle contractile effect of NG-methyl-L-arginine (NMA) is endothelium dependent and attributed to a decline in smooth muscle levels of cyclic GMP. Vascular smooth muscle levels of cyclic GMP are severalfold greater in endothelium-intact than in endothelium-denuded preparations because of the continuous formation and release of a lipophilic endothelium-derived chemical factor that diffuses into the underlying smooth muscle and activates cytosolic guanylate cyclase. This chemical substance, believed to be nitric oxide (NO) or a labile nitroso precursor, appears to account for the biological actions of endothelium-derived relaxing factor. NMA inhibits the formation of NO from endogenous L-arginine in endothelial cells. In the present study, NMA caused marked endothelium-dependent contraction of isolated rings of bovine pulmonary artery and vein, and this was similar to the contraction elicited by hemoglobin, an inhibitor of the relaxant action of NO. Both NMA and hemoglobin caused endothelium-dependent potentiation of contractile responses to phenylephrine in artery and vein. NMA caused endothelium-dependent decreases in the resting or basal levels of cyclic GMP in artery and vein to levels that were characteristic of those in endothelium-denuded vessels. Finally, NMA inhibited endothelium-dependent relaxant responses and cyclic GMP formation stimulated by acetylcholine and bradykinin. These observations reveal that interference with the continuous or basal generation of endothelium-derived NO in artery and vein can cause marked increases in vascular smooth muscle tone as a result of inhibition of cyclic GMP formation.  相似文献   

13.
S ummary . Three pyrimidine compounds (dipyridamole, RA233 and VK 744) produced variable degrees of direct inhibition as well as potentiation of adenosineinduced inhibition of ADP aggregation of blood platelets. RA233 and VK744 were more potent direct inhibitors of platelet aggregation, whereas RA233 was a more powerful potentiator of adenosine–induced inhibition. A relation between the effect of these compounds on platelet aggregation and on adenosine phosphorylation and phosphodiesterase activity of platelets was looked for in an attempt to elucidate possible modes of action.
RA233 and dipyridamole were powerful inhibitors of [14C]adenosine phosphorylation by platelets and VK744 had no effect. There was no correlation with inhibition of platelet aggregation. Adenosine-induced inhibition of platelet aggregation in the presence of dipyridamole could be maintained for at least 10 min after the rapid clearance of the adenosine with exogenous deaminase. The presence of the pyrimidine so modified the inhibition response that there was no correlation between the concentration of adenosine in the system and the degree or rate of recovery from the inhibition.
Dipyridamole, VK744 and RA233 produced 45%, 45% and 55% inhibition of phosphodiesterase activity as measured by the rate of breakdown of [3H]cyclic AMP to AMP in platelet lysates. There was possible correlation between the effect of the three pyrimidine compounds on platelet phosphodiesterase activity and their potentiatory action on adenosine-induced inhibition of platelet aggregation. These findings suggested that adenosine might induce inhibition of platelet aggregation through the adenyl cyclase, cyclic AMP, phosphodiesterase system.  相似文献   

14.
L J Ignarro 《Blood vessels》1991,28(1-3):67-73
The interaction between nitric oxide (NO) synthesized in one cell and cytosolic guanylate-cyclase-bound heme located in adjacent target cells to generate the NO-heme adduct of guanylate cyclase represents a novel and widespread signal transduction mechanism that links extracellular stimuli to the biosynthesis of cyclic GMP in target cells. A variety of chemical factors interact with selective extracellular receptors and trigger the biosynthesis of NO from L-arginine. The unique chemistry of NO endows this molecule with the capacity to diffuse rapidly into nearby cells and stimulate cyclic GMP formation. Cyclic GMP acts as a messenger in each cell type to trigger different but complementary cellular responses within a localized environment. This transcellular signaling is a form of rapid intercellular communication allowing the simultaneous local initiation of increased blood flow, inhibition of platelet-induced thrombosis and other cellular functions.  相似文献   

15.
Hypercholesterolemia reduces production of nitric oxide (NO), a potent inhibitor of platelet aggregation, in endothelial cells. Recently platelet has been found to have NO synthase. Hypercholesterolemia may influence platelet NO production. We investigated NO-dependent inhibition of platelet aggregation in elderly hypercholesterolemic patients with total cholesterol (Tchol) of 240 mg/dl or more (n = 21). In elderly controls with Tchol less than 240 mg/dl (n = 61), L-arginine (5-50 mM) inhibited ADP-induced platelet aggregation in a dose-dependent manner (42.4% inhibition at 50 mM). However, L-arginine did not inhibit platelet aggregation in elderly hypercholesterolemic patients. L-arginine increased cyclic GMP production in elderly controls, but not in hypercholesterolemic patients (p < 0.02). Hypercholesterolemic patients showed increased platelet aggregation compared with elderly controls(p = 0.018). L-nitro-arginine methyl ester 12.5-50 uM increased platelet aggregation in both groups. Superoxide dismutase improved L-arginine inhibition of platelet aggregation in elderly hypercholesterolemic patients (p = 0.02). LDL cholesterol of 160 mg/dl or more was an independent predictor for loss of L-arginine inhibition of platelet aggregation (relative risk 3.9, p = 0.0098). This result suggests that hypercholesterolemia causes decreased NO-dependent inhibition of platelet aggregation due to reduced NO utilization. NO-dependent platelet aggregation may be a powerful tool for detection of vascular injury.  相似文献   

16.
L J Ignarro 《Hypertension》1990,16(5):477-483
Nitric oxide first captured the interest of biologists when this inorganic molecule was found to activate cytosolic guanylate cyclase and stimulate cyclic guanosine monophosphate (GMP) formation in mammalian cells. Further studies led to the finding that nitric oxide causes vascular smooth muscle relaxation and inhibition of platelet aggregation by mechanisms involving cyclic GMP and that several clinically used nitrovasodilators owe their biological actions to nitric oxide. Nitric oxide possesses physicochemical and pharmacological properties that make it an ideal candidate for a short-term regulator or modulator of vascular smooth muscle tone and platelet function. Nitric oxide is synthesized by various mammalian tissues including vascular endothelium, macrophages, neutrophils, hepatic Kupffer cells, adrenal tissue, cerebellum, and other tissues. Nitric oxide is synthesized from endogenous L-arginine by a nitric oxide synthase system that possesses different cofactor requirements in different cell types. The nitric oxide formed diffuses out of its cells of origin and into nearby target cells, where it binds to the heme group of cytosolic guanylate cyclase and thereby causes enzyme activation. This interaction represents a novel and widespread signal transduction mechanism that links extracellular stimuli to the biosynthesis of cyclic GMP in nearby target cells. The small molecular size and lipophilic nature of nitric oxide enable communication with nearby cells containing cytosolic guanylate cyclase. The extent of transcellular communication is limited by the short half-life of nitric oxide, thereby ensuring a localized response. Labile nitric oxide-generating molecules such as S-nitrosothiols may be involved as precursors or effectors. Further research will provide a deeper understanding of the biology of nitric oxide and the nature of associated pathophysiological states.  相似文献   

17.
The transplantable pituitary tumor MtT-F4 secretes several pituitary hormones in Fisher rats, resulting in severe cardiovascular disease with a mineralocorticoid type of hypertension and hyperlipidemia. The mineralocorticoid-dependent hypertension possesses particular characteristics in humans and animals. It was of interest to study cyclic nucleotides and platelet aggregation in the Fisher rat with an MtT-F4 tumor in order to evaluate the type of abnormalities in this form of hypertension. The effect of administration of an anti-hyperlipidemic agent (clofibrate) was also evaluated. The animals bearing the tumor showed anomalies of platelet aggregation induced by the divalent cation ionophore A 23187, in that there was an apparent enhanced change in shape and a decreased rate of aggregation. Although the basal concentrations of cyclic nucleotides were normal, as were the increases in cyclic GMP induced by epinephrine, cyclic AMP concentrations increased less (about 2.7-fold) in response to PGE1 than in control Fisher rats (about 6-fold). A decreased stimulation of adenylate cyclase activity by PGE1 was observed in platelets of tumor-bearing rats. The administration of clofibrate to sham-operated animals somewhat lowered the increase of cyclic AMP in response to PGE1. In tumor-bearing animals, clofibrate considerably reduced plasma lipids, blood pressure and the degree of abnormalities in platelet aggregation and cyclic AMP in platelets. Thus, the abnormalities of platelet aggregation and regulation of cyclic nucleotides in the mineralocorticoid-type of hypertension induced by MtT-F4 were opposite to those found previously in spontaneous hypertension in rats. Hyperlipidemic and hypertensive rats with MtT-F4 tumor may provide a useful model for the study of the relatioship between hyperlipidemia and hypertension.  相似文献   

18.
Platelet activation is strongly affected by nitric oxide/cyclic GMP (NO/cGMP) signaling involving cGMP-dependent protein kinase I (cGKI). Previously it was shown that interaction of the cGKI substrate IRAG with InsP(3)RI is essential for NO/cguanosine monophosphate (GMP)-dependent inhibition of platelet aggregation in vitro and in vivo. However, the role of Inositol-trisphosphate receptor associated cGMP kinase substrate (IRAG) for platelet adhesion or granule secretion was unknown. Here, we analysed the functional role of IRAG for platelet activation. Murine IRAG-deficient platelets displayed enhanced aggregability towards several agonists (collagen, thrombin and TxA2). NO- or cGMP-dependent inhibition of agonist induced ATP- or 5-HT secretion from dense granules, and P-selectin secretion from alpha granules was severely affected in IRAG-deficient platelets. Concomitantly, the effect of NO/cGMP on platelet aggregation was strongly reduced in IRAG-deficient platelets. Furthermore, GPIIb/IIIa-mediated adhesion of platelets to fibrinogen could only weakly be inhibited in IRAG-deficient mice contrary to wild-type (WT) mice. Our results suggest that signaling via IRAG is essential for NO/cGMP-dependent inhibition of platelet activation regarding granule secretion, aggregation and adhesion. This platelet disorder might cause that the bleeding time of IRAG-deficient mice was reduced.  相似文献   

19.
Adenylate cyclase and cyclic AMP phosphodiesterase activities in the thyroid gland were significantly reduced after hypophysectomy, followed by a gradual restoration of the enzyme activities to the levels seen in sham-operated rats whereas a slight and persistent reduction was evident in guanylate cyclase and cyclic GMP phosphodiesterase activities in the same tissue. These changes in enzyme activities were restored by TSH administration but not by ACTH. The recovery of activity produced by TSH administration was inhibited by cycloheximide. Hypophysectomy, or TSH and cycloheximide administration, did not produce any significant changes in the concentrations of calmodulin, suggesting that the alteration of these enzyme activities is not induced by a decrease in the concentration of calmodulin. Since forskolin activation of adenylate cyclase did not restore the reduced activity in the hypophysectomized rat thyroid to the level found in the sham-operated control rat thyroid, we conclude that there is a reduction of the amount of enzyme after hypophysectomy rather than a change of the active site on adenylate cyclase. The spontaneous restoration of adenylate cyclase and cyclic AMP phosphodiesterase activities after hypophysectomy implies that cyclic AMP-metabolizing enzymes are responsive to an autoregulatory mechanism in thyroid follicular cells.  相似文献   

20.
Nitric oxide gas (NO) increased guanylate cyclase [GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2] activity in soluble and particulate preparations from various tissues. The effect was dose-dependent and was observed with all tissue preparations examined. The extent of activation was variable among different tissue preparations and was greatest (19- to 33-fold) with supernatant fractions of homogenates from liver, lung, tracheal smooth muscle, heart, kidney, cerebral cortex, and cerebellum. Smaller effects (5- to 14-fold) were observed with supernatant fractions from skeletal muscle, spleen, intestinal muscle, adrenal, and epididymal fat. Activation was also observed with partially purified preparations of guanylate cyclase. Activation of rat liver supernatant preparations was augmented slightly with reducing agents, decreased with some oxidizing agents, and greater in a nitrogen than in an oxygen atmosphere. After activation with NO, guanylate cyclase activity decreased with a half-life of 3-4 at 4 degrees but re-exposure to NO resulted in reactivation of preparations. Sodium azide, sodium nitrite, hydroxylamine, and sodium nitroprusside also increased guanylate cyclase activity as reported previously. NO alone and in combination with these agents produced approximately the same degree of maximal activation, suggesting that all of these agents act through a similar mechanism. NO also increased the accumulation of cyclic GMP but not cyclic AMP in incubations of minces from various rat tissues. We propose that various nitro compounds and those capable of forming NO in incubations activate guanylate cyclase through a similar but undefined mechanism. These effects may explain the high activities of guanylate cyclase in certain tissues (e.g., lung and intestinal mucosa) that are exposed to environmental nitro compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号