首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heparin cofactor II is a plasma protein that inhibits thrombin rapidly in the presence of either heparin or dermatan sulfate. We have determined the effects of two glycosaminoglycan-binding proteins, i.e., histidine-rich glycoprotein and platelet factor 4, on these reactions. Inhibition of thrombin by heparin cofactor II and heparin was completely prevented by purified histidine-rich glycoprotein at the ratio of 13 micrograms histidine-rich glycoprotein/microgram heparin. In contrast, histidine-rich glycoprotein had no effect on inhibition of thrombin by heparin cofactor II and dermatan sulfate at ratios of less than or equal to 128 micrograms histidine-rich glycoprotein/microgram dermatan sulfate. Removal of 85-90% of the histidine-rich glycoprotein from plasma resulted in a fourfold reduction in the amount of heparin required to prolong the thrombin clotting time from 14 s to greater than 180 s but had no effect on the amount of dermatan sulfate required for similar anti-coagulant activity. In contrast to histidine-rich glycoprotein, purified platelet factor 4 prevented inhibition of thrombin by heparin cofactor II in the presence of either heparin or dermatan sulfate at the ratio of 2 micrograms platelet factor 4/micrograms glycosaminoglycan. Furthermore, the supernatant medium from platelets treated with arachidonic acid to cause secretion of platelet factor 4 prevented inhibition of thrombin by heparin cofactor II in the presence of heparin or dermatan sulfate. We conclude that histidine-rich glycoprotein and platelet factor 4 can regulate the antithrombin activity of heparin cofactor II.  相似文献   

2.
Serum amyloid P protein (SAP) is a heparin-binding protein that is found in blood and connective tissues including some types of vascular basement membrane. In this article we present evidence that SAP is capable of blocking the anticoagulant effects of glycosaminoglycans. SAP neutralized the catalytic effect of heparin on the thrombin-antithrombin III reaction more effectively than vitronectin, histidine-rich glycoprotein, fibronectin, and high-molecular-weight kininogen and almost as effectively as platelet factor 4. SAP also blocked the effects of heparin and dermatan sulfate on the inhibition of thrombin by heparin cofactor II. We found evidence for the formation of a high-affinity 1:1 complex between SAP and heparin and for inhibition of binding of both thrombin and antithrombin III to heparin-Sepharose by SAP. We conclude that SAP may account for much of the heparin-neutralizing capacity of plasma under some conditions and that basement-membrane-bound SAP may modulate extravascular coagulation by blocking the anticoagulant effects of basement membrane glycosaminoglycans.  相似文献   

3.
刺参酸性粘多糖介导肝素辅因子Ⅱ对凝血酶活性的抑制   总被引:1,自引:2,他引:1  
目的:进一步澄清刺参酸性粘多糖(Sjamp)的抗凝血酶机制。方法:用国产Sjamp作为激动剂,在正常混合血浆体系、纯化的肝素辅因子Ⅱ(HCⅡ)体系以及纯化的抗凝血酶Ⅲ(AT-Ⅲ)体系研究Sjamp的抗凝血酶作用机制。结果:Sjamp对凝血酶的抑制主要呈HCⅡ依赖性,当存在HCⅡ时,Sjamp抗凝血酶作用的二级速率常数K2=1.56×107m-1·min-1,其抑制速率常数是AT-Ⅲ的4.6倍。结论:在抗凝血酶作用方面,Sjamp的效率(K2值)及机制(HCⅡ依赖性)与硫酸皮肤素类似。  相似文献   

4.
Propagation of venous thrombi or rethrombosis after coronary thrombolytic therapy can occur despite heparin administration. To explore potential mechanisms, we set out to determine whether clot-bound thrombin is relatively protected from inhibition by heparin-antithrombin III but susceptible to inactivation by antithrombin III-independent inhibitors. Using plasma fibrinopeptide A (FPA) levels as an index of thrombin activity, we compared the ability of thrombin inhibitors to block FPA release mediated by fluid-phase thrombin with their activity against the clot-bound enzyme. Incubation of thrombin with citrated plasma results in concentration-dependent FPA generation, which reaches a plateau within minutes. In contrast, there is progressive FPA generation when fibrin clots are incubated with citrated plasma. Heparin, hirudin, hirudin dodecapeptide (hirugen), and D-phenylalanyl-L-prolyl-L-arginyl chloromethyl ketone (PPACK) produce concentration-dependent inhibition of FPA release mediated by fluid-phase thrombin. However, heparin is much less effective at inhibiting thrombin bound to fibrin because a 20-fold higher concentration is necessary to block 70% of the activity of the clot-bound enzyme than is required for equivalent inhibition of fluid-phase thrombin (2.0 and 0.1 U/ml, respectively). In contrast, hirugen and PPACK are equally effective inhibitors of fluid- and solid-phase thrombin, while hirudin is only 50% as effective against the clot-bound enzyme. None of the inhibitors displace bound 125I-labeled thrombin from the clot. These studies indicate that (a) clot-bound thrombin is relatively protected from inhibition by heparin, possibly because the heparin binding site on thrombin is inaccessible when the enzyme is bound to fibrin, and (b) clot-bound thrombin is susceptible to inactivation by antithrombin III-independent inhibitors because the sites of their interaction are not masked by thrombin binding to fibrin. For these reasons, antithrombin III-independent inhibitors may be more effective than heparin in certain clinical settings.  相似文献   

5.
Heparin cofactor II is a proteinase inhibitor which inhibits both chymotrypsin and thrombin, and displays great similarities with antithrombin III, the main inhibitor of thrombin in human plasma. Since acute pancreatitis is known to be associated with modification of the proteinase-antiproteinase equilibrium, we studied heparin cofactor II and antithrombin III as well as other biochemical and haematological parameters in 10 patients experiencing attacks of acute pancreatitis. Heparin cofactor II activity decreased during the first week of illness, while its antigen concentration remained subnormal. This discrepancy between antigen concentration and activity which persisted during the first week of illness was due both to complex formation of heparin cofactor II with its target proteinases and to partial proteolysis of the inhibitor. Heparin cofactor II was shown to form a complex with chymotrypsin in the plasma of such patients. Antithrombin III levels remained unchanged throughout the study, with no discrepancy between its activity and antigen concentration. No modification of haemostasis was shown either, except for a rise in the fibrinogen level during the first days of illness. It is concluded that, unlike antithrombin III, heparin cofactor II is involved in the proteinase-inhibitor equilibrium in patients with acute pancreatitis, and that heparin cofactor II might react as an inhibitor of pancreatic proteinases rather than an inhibitor of thrombin.  相似文献   

6.
To better understand how heparin structure affects its activity the relationships between the functional domains for inhibitor binding and charge density were investigated to determine how these domains affect heparin-mediated thrombin inhibition by two different heparin-dependent protease inhibitors, antithrombin (AT) and heparin cofactor II (HC II). A series of heparins, fractionated systematically by charge density, was further fractionated on antithrombin agarose to isolate more homogeneous subfractions that were either inactive or highly active with respect to thrombin inhibition by AT. With AT, the activities of the AT-active subfractions increased sharply with heparin charge density, while those with little or no affinity for AT were virtually inactive. In contrast, with HC II inhibitor, the activities of the heparins depended only upon their charge densities and were independent of AT affinity. At any given charge density, the heparin before fractionation by AT affinity and the fractions that were highly active and inactive with AT were all equally active with HC II. The two inhibitors also differed in their reactivity with heparan sulfate and dermatan sulfate. A charge-density effect with the subfractions having similar high affinity for AT demonstrates that charge density represents a heparin functional domain that is independent of the AT-binding domain. The behavior of the AT-inactive heparins, being fully active with HC II, demonstrates the functional domain necessary for AT binding is not needed to produce HC II activity.  相似文献   

7.
When protamine sulfate was added to heparinized plasma in vitro for neutralization of heparin, the activities on both thrombin and Xa known as heparin cofactor in antithrombin action were completely abolished. However, progressive activities on thrombin and Xa both recovered within 30 minutes after protamine sulfate addition. When equivalent heparin was again added, heparin cofactor activity was immediately restored. Based on the fact that protamine sulfate did not show any direct action on the antithrombin III molecule, the presence of AT III with progressive activity was considered to play an important role in the rebound phenomenon of heparin after heparin neutralization with protamine sulfate.  相似文献   

8.
Inhibition of thrombin by heparin is mediated by at least two plasma proteins, antithrombin III, and heparin cofactor II. The plasma titer of heparin cofactor II was significantly elevated in both pregnant women and users of oral contraceptives.  相似文献   

9.
Two in vitro systems were used to identify an antithrombin III cofactor activity on vascular endothelium. Langendorff rat heart preparations or columns packed with endothelium cultured on microcarrier beads were perfused with mixtures of purified thrombin and antithrombin III. With each preparation, accelerated inhibition of thrombin by antithrombin III occurred during passage over endothelium. Platelet factor 4, protamine sulfate and diisopropylphosphoryl thrombin, all antagonists of the antithrombin III cofactor activity of heparin, significantly reduced the capacity of the preparation to inhibit thrombin. It is concluded that a substance with the functional properties of a stationary phase cofactor for antithrombin III is present on the microvascular endothelium and there catalyzes the inactivation of circulating free thrombin.  相似文献   

10.
Investigation of the in vitro ability of plasma from pregnant women to inhibit exogenous thrombin (25 nM) demonstrated that heparin cofactor II inhibited more thrombin (3.0 +/- 0.7 nM, mean +/- SD) than plasma from women 3-5 d postpartum (1.9 +/- 0.5 nM) or plasma from nonpregnant adults (1.5 +/- 0.4 nM). Levels of heparin cofactor II were only slightly increased over normal in both pregnant and postpartum women and did not account for the observed increase in thrombin bound to heparin cofactor II. Assay of pregnancy plasma for dermatan sulfate anticoagulant activity demonstrated the presence of activity equivalent to 0.23 +/- 0.02 micrograms/ml of porcine mucosal dermatan sulfate. This activity could not be demonstrated in normal adult plasma or plasma from women on the contraceptive pill. The mass of dermatan sulfate in pregnancy and umbilical cord plasmas was increased over adult control plasma by 0.20 micrograms/ml (53%) and 0.29 micrograms/ml (76%), respectively. The glycosaminoglycan-containing fraction of plasma was isolated and an assay for anticoagulant dermatan sulfate confirmed its presence in both pregnancy and cord plasmas but minimal activity in adult plasma. Gel chromatography of isolated fractions from both pregnancy and cord plasmas revealed a polydisperse, active species with apparent Mr 150,000 D. Reductive elimination decreased the apparent Mr of the active species on gel chromatography to 31,000 D for cord and 21,000 D for pregnancy products. This confirmed the presence of an anticoagulant active dermatan sulfate proteoglycan circulating in the plasmas of pregnant women at term and fetuses at delivery.  相似文献   

11.
Intimal hyperplasia after percutaneous transluminal coronary angioplasty (PTCA) or vascular surgical procedures remains a significant problem despite current antithrombotic therapy. The use of the current antithrombotic drugs, namely heparin + chronic aspirin (ASA) +/- oral anticoagulants, is based upon the assumptions that: i) heparin blocks thrombin generation and/or accelerates thrombin inhibition by antithrombin III (ATIII); ii) aspirin acetylates platelet cyclooxygenase, thereby preventing thromboxane A2 (TxA2) synthesis; and iii) oral anticoagulants reduce the availability of vitamin K-dependent procoagulants, thereby reducing the risk of thrombus formation. Albeit beneficial, this approach has a number of shortcomings and limitations: i) when thrombin binds to an injured vessel wall, it becomes resistant to inhibition by heparin/ATIII; thus, surface-bound thrombin remains active, stimulating further thrombus formation, smooth muscle cell proliferation and subsequent hyperplasia; ii) while TxA2 inhibition reduces platelet reactivity, platelets are able to respond to multiple stimuli generated at the time of, or after, vessel wall injury; and iii) heparin, aspirin and the oral anticoagulants all render the patient hemostatically defective and at risk of bleeding. Recent studies suggest that alternate therapeutic approaches can inhibit thrombogenesis more effectively at the time of injury, thereby not only inhibiting hyperplasia more effectively than the currently used drugs, but also reducing (or eliminating) the need for long-term therapy. For example, we suggest that the heparin cofactor II (HCII) catalysts, dermatan sulfate and Intimatan, inhibit surface-bound thrombin more effectively than heparin/ATIII, thereby inhibiting intimal hyperplasia effectively. Their effects are achieved when the drug is given only at the time of injury; i.e. with no further antithrombotic therapy. Other studies indicate that injured vessel wall thrombogenicity can be reduced by pretreatment with Persantine (dipyridamole) or with certain fatty acid supplements which either increase vessel wall cAMP and/or 13HODE synthesis. These increases are associated with decreased vessel wall thrombogenicity, which, in turn, is associated with decreased intimal hyperplasia. Such results suggest that vessel wall repair is achieved more effectively by targeting antithrombotic drugs directly at the vessel wall thrombogenicity per se rather than indirectly by altering the circulating blood cells and systemic coagulant system.  相似文献   

12.
The anticoagulant, pharmacodynamic, and antithrombotic properties of a low molecular weight dermatan sulfate (molecular weight range 1600 to 8000, peak 4000) were compared with those of unfractionated dermatan sulfate (molecular weight range 12,000 to 45,000, peak 25,000). Anticoagulant activities were evaluated as the ability of the compounds to catalyze the inhibition of thrombin in the presence of heparin cofactor II in a purified system and to prolong the activated partial thromboplastin time or the thrombin clotting time of human and rabbit plasmas. On the basis of weight, low molecular weight dermatan sulfate was two times less potent than unfractionated dermatan sulfate. After bolus intravenous injection into rabbits, the volume of distribution of low molecular weight dermatan sulfate was 10 times larger than that of unfractionated compound, and the half-life of disappearance was two to four times longer despite a 1.4 to 2.3 times higher total clearance. The bioavailability of low molecular weight dermatan sulfate from its subcutaneous depot was 100%; it was absorbed faster from that depot than unfractionated dermatan sulfate. The antithrombotic activities of unfractionated and of low molecular weight dermatan sulfate were also examined with a Wessler-type model with tissue factor as the thrombogenic stimulus. When evaluated 3 minutes after a bolus intravenous injection, unfractionated dermatan sulfate was twice as active as low molecular weight dermatan sulfate on the basis of weight. With subcutaneous injection, 10 mg/kg of low molecular weight dermatan sulfate generated an activity in plasma equivalent to 5.6 micrograms/ml 1 hour later. This concentration was associated with a significant antithrombotic effect that lasted for less than 6 hours.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Interactions between standard heparin and the physiological anticoagulant plasma protein, activated protein C (APC) were studied. The ability of heparin to prolong the activated partial thromboplastin time and the factor Xa- one-stage clotting time of normal plasma was markedly enhanced by addition of purified APC to the assays. Experiments using purified clotting factors showed that heparin enhanced by fourfold the phospholipid-dependent inactivation of factor V by APC. In contrast to factor V, there was no effect of heparin on inactivation of thrombin-activated factor Va by APC. Based on SDS-PAGE analysis, heparin enhanced the rate of proteolysis of factor V but not factor Va by APC. Coagulation assays using immunodepleted plasmas showed that the enhancement of heparin action by APC was independent of antithrombin III, heparin cofactor II, and protein S. Experiments using purified proteins showed that heparin did not inhibit factor V activation by thrombin. In summary, heparin and APC showed significant anticoagulant synergy in plasma due to three mechanisms that simultaneously decreased thrombin generation by the prothrombinase complex. These mechanisms include: first, heparin enhancement of antithrombin III-dependent inhibition of factor V activation by thrombin; second, the inactivation of membrane-bound FVa by APC; and third, the proteolytic inactivation of membrane-bound factor V by APC, which is enhanced by heparin.  相似文献   

14.
Activation of coagulation during treatment with haemodialysis   总被引:2,自引:0,他引:2  
Generation of factor XII, thrombin antithrombin complexes, prothrombin fragment 1+2 and thrombus precursor protein has been monitored in 16 subjects during haemodialysis. Immediately after starting treatment, contact of blood with the negatively charged surfaces of the polyacrylnitril membrane AN-69 resulted in a 9-45% decrease in factor XII activity. Peak concentrations for thrombin antithrombin complexes (50 to 120 microg/L) were observed 30 min after the start of haemodialysis. Establishment of thrombus precursor protein concentrations yielded steadily increasing results without any tendency to decrease during treatment. Determination of thrombin antithrombin complexes is considered to establish the most sensitive short-term reacting parameter indicating activation of coagulation. A steady generation of fibrin and fibrinogen-fibrin complexes during treatment with haemodialysis is indicated by increasing results for thrombus precursor protein. In order to prevent clotting during haemodialysis, an additional supplementation of anticoagulant is needed.  相似文献   

15.
16.
Heparin cofactor II (HCII) is a plasma protein that inhibits thrombin rapidly in the presence of dermatan sulfate, heparan sulfate, or heparin. HCII has been proposed to regulate coagulation or to participate in processes such as inflammation, atherosclerosis, and wound repair. To investigate the physiologic function of HCII, about 2 kb of the mouse HCII gene, encoding the N-terminal half of the protein, was deleted by homologous recombination in embryonic stem cells. Crosses of F1 HCII(+/-) animals produced HCII(-/-) offspring at the expected mendelian frequency. Biochemical assays confirmed the absence of dermatan sulfate-dependent thrombin inhibition in the plasma of HCII(-/-) animals. Crosses of HCII(-/-) animals produced litters similar in size to those obtained from heterozygous matings. At 1 year of age, HCII-deficient animals were grossly indistinguishable from their wild-type littermates in weight and survival, and they did not appear to have spontaneous thrombosis or other morphologic abnormalities. In comparison with wild-type animals, however, they demonstrated a significantly shorter time to thrombotic occlusion of the carotid artery after photochemically induced endothelial cell injury. This abnormality was corrected by infusion of purified HCII but not ovalbumin. These observations suggest that HCII might inhibit thrombosis in the arterial circulation.  相似文献   

17.
A simple amidolytic method for the determination of the concentration of functionally active antithrombin III is described. Plasma is diluted with buffer containing EDTA and Polybrene®. In stage I, diluted plasma is incubated with thrombin. EDTA retards fibrin polymerization, and plasma fibrinogen does not influence the assay. Polybrene makes the assay result independent of heparin. In stage II, remaining thrombin is determined with the chromogenic substrate benzoyl-Phe-Arg-p-NA. The method is simpler and has a higher accuracy than clotting methods. There is a close correlation between the results obtained with this assay and with immunoassay of antithrombin III.  相似文献   

18.
We compared concentrations of antithrombin III (AT-III) in plasma, as determined by an immunological method and by a functional thrombin inhibition method, in the presence of heparin in 160 blood samples from Type I diabetics. Although the correlation was highly significant (P less than 0.001) between the results obtained by the two methods, our data demonstrated that results by the thrombin inhibition assay, 121 (SD 15)%, expressed as percentages of the results for a normal plasma pool, were significantly (P less than 0.001) higher than by the immunoreactive method, 104 (SD 15)%, indicating an overestimation of functionally active AT-III. Concentrations of functionally active AT-III determined by a factor Xa inhibition assay, 105 (SD 13)%, were in the same range as immunoreactive AT-III. Addition of IgG antiserum to normal pooled plasma quenched only about 90% of the AT-III activity determined by the thrombin inhibition assay, but all of the AT-III activity determined by a factor Xa inhibition assay. These results demonstrate that the factor Xa inhibition assay is more specific for the determination of AT-III than the thrombin inhibition assay. We suggest that the high concentrations of heparin cofactor II, 117 (SD 17)%, might have caused an overestimation of AT III in this group of patients with diabetes Type I, and should not be overlooked in other clinical situations.  相似文献   

19.
A woman, aged 68, with multiple myeloma (immunoglobulin[Ig]A kappa type) developed an anticoagulant with properties suggestive of heparin. The anticoagulant prolonged the thrombin time but not the reptilase time and was resistant to boiling, proteolytic enzyme digestion, and trichloracetic acid precipitation. The thrombin time was corrected by the addition (in vitro) of protamine sulfate or the addition of purified platelet Factor 4 (PF4) to the plasma. The anticoagulant was isolated by PF4-Sepharose affinity chromatography and analyzed in terms of its molecular weight, uronic acid, and amino acid composition. The proteoglycan isolated had a mol wt of 116,000 and appears to consist of two 38,000 dalton polysaccharide units interconnected by peptide material totaling 39,000 daltons. Electrophoretic analysis of the pronase digested peptidoglycan using the lithium acetate-agarose technique suggested the material was of the heparan sulfate type. The peptidoglycan had about one-tenth the specific activity of commercially available heparin on a weight basis. The isolated proteoglycan was indistinguishable from commercial heparin when analyzed in terms of its ability to act as a cofactor in the antithrombin III inhibition of thrombin.  相似文献   

20.
BACKGROUND: A significant need exists for new chronic oral anticoagulation therapies to replace warfarin. Previous studies have shown that beta-D-xylosides, which prime glycosaminoglycan (GAG) synthesis, have antithrombin and antithrombotic activity. In the following report, a new orally active beta-D-xyloside (odiparcil) has been characterized in a rat model of venous thrombosis and its efficacy and bleeding liability compared to warfarin. Additionally, studies were conducted to investigate odiparcil's ex vivo antithrombin and antiplatelet activity, and also to explore the potential utility of protamine sulfate as a neutralizing agent. METHODS AND RESULTS: In vivo thrombosis studies were conducted in a rat inferior vena cava model, and bleeding studies in a rat tail transection model. Following oral dosing, warfarin and odiparcil produced dose-related suppression of thrombus formation. A therapeutically relevant dose of warfarin in this model (international normalized ratio; INR 3.0) achieved approximately 65% inhibition of thrombus formation. Warfarin caused dose-related significant increases in bleeding indices. Odiparcil antithrombotic activity was limited by its mechanism to a maximum suppression of thrombus formation of 65-70%, and did not prolong bleeding indices. Additionally, odiparcil-induced heparin cofactor II (HCII)-dependent antithrombin activity was shown to be a function of dermatan sulfate-like GAG production. Other than thrombin-related effects, no odiparcil effects on platelet function were observed. In antidote studies, it was demonstrated that odiparcil-induced antithrombotic activity could be partially neutralized by protamine sulfate. CONCLUSIONS: These experiments suggest that an antithrombotic approach based upon xyloside induction of circulating GAGs may have the potential to approximate the efficacy of warfarin and yet with a reduced risk to hemostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号