首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inhibition by GABA is important for auditory processing, but any adaptations of the ionotropic type A receptors are unknown. Here we describe, using in situ hybridization, the subunit expression patterns of GABA(A) receptors in the rat cochlear nucleus, superior olivary complex, and dorsal and ventral nuclei of the lateral lemniscus. All neurons express the beta3 and gamma2L subunit messenger RNAs, but use different alpha subunits. In the dorsal cochlear nucleus, fusiform (pyramidal) and giant cells express alpha1, alpha3, beta3 and gamma2L. Dorsal cochlear nucleus interneurons, particularly vertical or tuberculoventral cells and cartwheel cells, express alpha3, beta3 and gamma2L. In the ventral cochlear nucleus, octopus cells express alpha1, beta3, gamma2L and delta. Spherical cells express alpha1, alpha3, alpha5, beta3 and gamma2L. In the superior olivary complex, the expression profile is alpha3, alpha5, beta3 and gamma2L. Both dorsal and ventral cochlear nucleus granule cells express alpha1, alpha6, beta3 and gamma2L; unlike their cerebellar granule cell counterparts, they do not express beta2, gamma2S or the delta subunit genes. The delta subunit's absence from cochlear nucleus granule cells may mean that tonic inhibition mediated by extrasynaptic GABA(A) receptors is less important for this cell type. In both the dorsal and ventral nuclei of the lateral lemniscus, alpha1, beta3 and gamma2L are the main subunit messenger RNAs; the ventral nucleus also expresses the delta subunit. We have mapped, using in situ hybridization, the subunit expression patterns of the GABA(A) receptor in the auditory brainstem nuclei. In contrast to many brain regions, the beta2 subunit gene and gamma2S splice forms are not highly expressed in auditory brainstem nuclei. GABA(A) receptors containing beta3 and gamma2L may be particularly well suited to auditory processing, possibly because of the unique phosphorylation profile of this subunit combination.  相似文献   

2.
3.
GABA(A) receptors are ligand-operated chloride channels assembled from five subunits in a heteropentameric manner. Using immunocytochemistry, we investigated the distribution of GABA(A) receptor subunits deriving from 13 different genes (alpha1-alpha6, beta1-beta3, gamma1-gamma3 and delta) in the adult rat brain. Subunit alpha1-, beta1-, beta2-, beta3- and gamma2-immunoreactivities were found throughout the brain, although differences in their distribution were observed. Subunit alpha2-, alpha3-, alpha4-, alpha5-, alpha6-, gamma1- and delta-immunoreactivities were more confined to certain brain areas. Thus, alpha2-subunit-immunoreactivity was preferentially located in forebrain areas and the cerebellum. Subunit alpha6-immunoreactivity was only present in granule cells of the cerebellum and the cochlear nucleus, and subunit gamma1-immunoreactivity was preferentially located in the central and medial amygdaloid nuclei, in pallidal areas, the substantia nigra pars reticulata and the inferior olive. The alpha5-subunit-immunoreactivity was strongest in Ammon's horn, the olfactory bulb and hypothalamus. In contrast, alpha4-subunit-immunoreactivity was detected in the thalamus, dentate gyrus, olfactory tubercle and basal ganglia. Subunit alpha3-immunoreactivity was observed in the glomerular and external plexiform layers of the olfactory bulb, in the inner layers of the cerebral cortex, the reticular thalamic nucleus, the zonal and superficial layers of the superior colliculus, the amygdala and cranial nerve nuclei. Only faint subunit gamma3-immunoreactivity was detected in most areas; it was darkest in midbrain and pontine nuclei. Subunit delta-immunoreactivity was frequently co-distributed with alpha4 subunit-immunoreactivity, e.g. in the thalamus, striatum, outer layers of the cortex and dentate molecular layer. Striking examples of complementary distribution of certain subunit-immunoreactivities were observed. Thus, subunit alpha2-, alpha4-, beta1-, beta3- and delta-immunoreactivities were considerably more concentrated in the neostriatum than in the pallidum and entopeduncular nucleus. In contrast, labeling for the alpha1-, beta2-, gamma1- and gamma2-subunits prevailed in the pallidum compared to the striatum. With the exception of the reticular thalamic nucleus, which was prominently stained for subunits alpha3, beta1, beta3 and gamma2, most thalamic nuclei were rich in alpha1-, alpha4-, beta2- and delta-immunoreactivities. Whereas the dorsal lateral geniculate nucleus was strongly immunoreactive for subunits alpha4, beta2 and delta, the ventral lateral geniculate nucleus was predominantly labeled for subunits alpha2, alpha3, beta1, beta3 and gamma2; subunit alpha1- and alpha5-immunoreactivities were about equally distributed in both areas. In most hypothalamic areas, immunoreactivities for subunits alpha1, alpha2, beta1, beta2 and beta3 were observed. In the supraoptic nucleus, staining of conspicuous dendritic networks with subunit alpha1, alpha2, beta2, and gamma2 antibodies was contrasted by perykarya labeled for alpha5-, beta1- and delta-immunoreactivities. Among all brain regions, the median emminence was most heavily labeled for subunit beta2-immunoreactivity. In most pontine and cranial nerve nuclei and in the medulla, only subunit alpha1-, beta2- and gamma2-immunoreactivities were strong, whereas the inferior olive was significantly labeled only for subunits beta1, gamma1 and gamma2. In this study, a highly heterogeneous distribution of 13 different GABA(A) receptor subunit-immunoreactivities was observed. This distribution and the apparently typical patterns of co-distribution of these GABA(A) receptor subunits support the assumption of multiple, differently assembled GABA(A) receptor subtypes and their heterogeneous distribution within the adult rat brain.  相似文献   

4.
Pan ZH  Zhang X  Lipton SA 《Neuroscience》2000,98(2):333-338
We previously reported that GABA-evoked currents of rat retinal ganglion cells were modulated by redox agents. In this study, we further characterized the effects of redox modulation on GABA receptors using recombinant human subunits in the Xenopus oocyte expression system with two-electrode voltage-clamp recording. GABA receptors composed of subunits alpha(1-3), beta(1-3), gamma(1), gamma(2S,) and rho(1) were expressed. The sulfhydryl reducing agent dithiothreitol reversibly potentiated the responses of various combinations of functional recombinant GABA(A) subunits, whether expressed as triplets (alpha(1)beta(1-3)gamma(1,2S)), pairs (alpha(1-3)beta(1-3); beta(1-3)gamma(1,2S)), or singly (beta(2)). These effects of dithiothreitol were rapidly reversible, and the oxidizing agent 5-5'-dithiobis-2-nitrobenzoic acid exerted the opposite effect. In contrast to these effects on GABA(A) receptors, dithiothreitol had no effect on the responses of homomeric GABA rho(1) (GABA(C)) receptors. The degree of dithiothreitol potentiation of GABA(A) receptor responses depended on subunit composition. Co-expression of gamma(2S) with alpha(1)beta(1-3) subunits resulted in markedly less dithiothreitol potentiation of GABA-evoked currents than that observed for alpha(1-3)beta(1-3) subunits in the absence of gamma(2S). None the less, the magnitude of dithiothreitol potentiation could be restored by using a combination of lower GABA concentrations (5-10 microM) and higher dithiothreitol concentrations (5-20mM). N,N,N', N'-tetrakis(2-pyridyl-methyl)ethylenediamine, a high-affinity Zn(2+) chelator, also potentiated GABA(A) receptor currents. However, the potentiation produced by 10mM dithiothreitol was larger than that produced by saturating concentrations of N,N,N', N'-tetrakis(2-pyridyl-methyl)ethylenediamine (100 microM), implying that at least part of the effect of dithiothreitol was due to redox modulation rather than Zn(2+) chelation. Dithiothreitol also potentiated the spontaneous current of homomeric GABA(A) receptors composed of beta subunits. Mutation of a single cysteine residue in the M3 domain, yielding homomeric beta(3)(C313A) receptors, abrogated dithiothreitol potentiation of the spontaneous current.In summary, this study further characterizes the modulatory effects of redox agents on recombinant GABA(A) receptors. The degree of redox modulation of GABA(A) receptors depended on subunit composition. In contrast to their effect on GABA(A) receptors, redox agents were not found to modulate GABA(C) receptors composed of homomeric rho(1) subunits. Using site-directed mutagenesis, a cysteine residue was located in the beta(3) subunit which may comprise one of the redox-active sites that underlies the modulation of heteromeric GABA(A) receptors by reducing and oxidizing agents.  相似文献   

5.
Using in situ hybridization, the expression of the GABA receptor subtype B subunit 1 (GABA(B) R1) and subunit 2 (GABA(B) R2) following transient global ischemia in the gerbil hippocampus was investigated. In sham-operated animals, mRNAs of both subunits were mainly detected in hippocampal pyramidal cells and interneurons with lower expression levels of the GABA(B) R2 in the CA1 field. Four days after transient cerebral ischemia, neuronal message decreased in conjunction with neuronal death and both receptor subunits disappeared from the pyramidal cell layer. However, GABA(B) R1 and GABA(B) R2 were still expressed in a few cells. In situ hybridization of the GABA synthesizing enzyme glutamic acid decarboxylase 67 (GAD67) remained unchanged after the ischemic insult. Double-labeling experiments revealed that in the postischemic hippocampus GABA(B) R1 and GABA(B) R2 were not present in GFAP-reactive astrocytes, but that the surviving parvalbumin-containing interneurons possessed GABA(B) R1 and GABA(B) R2 mRNA.  相似文献   

6.
The effect of prolonged benzodiazepine administration on GABA(A) receptor subunit (alpha1-6, beta1-3, gamma2) messenger RNAs was investigated in the rat hippocampus and cortex, among other brain areas. Rats were orally administered flurazepam for one week, a protocol which results in benzodiazepine anticonvulsant tolerance in vivo, and in the hippocampus in vitro, in the absence of behavioral signs of withdrawal. Autoradiographs of brain sections, hybridized with [35S]oligoprobes in situ, were examined immediately (day 0) or two days after drug treatment, when rats were tolerant, or seven days after treatment, when tolerance had reversed, and were compared to sections from pair-handled, vehicle-treated controls. Alpha1 subunit messenger RNA level was significantly decreased in CA1 pyramidal cells and dentate granule cells at day 0, an effect which persisted only in CA1 neurons. Decreased "alpha1-specific" silver grain density over a subclass of interneurons at the pyramidal cell border suggested concomitant regulation of interneuron GABA(A) receptors. A reduction in beta3 subunit messenger RNA levels was more widespread among hippocampal cell groups (CA1, CA2, CA3 and dentate gyrus), immediately and two days after treatment, and was also detected in the frontal and parieto-occipital cortices. Changes in beta2 subunit messenger RNA levels in CA1, CA3 and dentate gyrus cells two days after ending flurazepam treatment suggested a concomitant up-regulation of beta2 messenger RNA. There was a trend toward an increased level of alpha5, beta3 and gamma2 subunit messenger RNAs in CA1, CA3 and dentate gyrus cells, which was significant for the beta3 and gamma2 subunit messenger RNAs in the frontal cortex seven days after ending flurazepam treatment. There were no flurazepam treatment-induced changes in any other GABA(A) receptor subunit messenger RNAs. The messenger RNA levels of three (alpha1, beta2 and beta3) of nine GABA(A) receptor subunits were discretely regulated as a function of time after ending one-week flurazepam treatment related to the presence of anticonvulsant tolerance, but not dependence. The findings suggested that a localized switch in the subunit composition of GABA(A) receptor subtypes involving these specific subunits may represent a minimal requirement for the changes in GABA(A) receptor-mediated function recorded previously at hippocampal CA1 GABAergic synapses, associated with benzodiazepine anticonvulsant tolerance.  相似文献   

7.
Galvan A  Charara A  Pare JF  Levey AI  Smith Y 《Neuroscience》2004,127(3):709-721
The activation of GABA receptor subtype A (GABA(A)) and GABA receptor subtype B (GABA(B)) receptors mediates differential effects on GABAergic and non-GABAergic transmission in the basal ganglia. To further characterize the anatomical substrate that underlies these functions, we used immunogold labeling to compare the subcellular and subsynaptic localization of GABA(A) and GABA(B) receptors in the subthalamic nucleus (STN). Our findings demonstrate major differences and some similarities in the distribution of GABA(A) and GABA(B) receptors in the monkey STN. The immunoreactivity for GABA(A) receptor alpha1 subunits is mostly bound to the plasma membrane, whereas GABA(B) R1 subunit alpha1 immunoreactivity is largely expressed intracellularly. Plasma membrane-bound GABA(A) alpha1 subunit aggregate in the main body of putative GABAergic synapses, while GABA(B) R1 receptors are found at the edges of putative glutamatergic or GABAergic synapses. A large pool of plasma membrane-bound GABA(A) and GABA(B) receptors is extrasynaptic. In conclusion, these findings demonstrate a significant degree of heterogeneity between the distributions of the two major GABA receptor subtypes in the monkey STN. Their pattern of synaptic localization puts forward interesting questions regarding their mechanisms of activation and functions at GABAergic and non-GABAergic synapses.  相似文献   

8.
The postnatal expression of GABA(A) receptor subunit mRNAs in the rat brain, including the hippocampus, exhibits a unique temporal and regional developmental profile in vivo, which may be altered by external stimuli. Using the in situ hybridization technique we have now studied the in vitro expression of alpha1,alpha2, alpha 4, alpha 5, beta 1, beta 3, gamma 2, and gamma 3 subunit mRNAs of GABA(A) receptors in organotypic hippocampal slices cultured for 7 days. To find out whether neuronal activity regulates the subunit expression, a subset of cultures was chronically treated either with a GABA(A) receptor antagonist picrotoxin, or by a non-N-methyl-D-aspartate (non-NMDA)-receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX). In untreated control cultures, the expression pattern of the subunits varied regionally, the most abundantly expressed subunits being alpha 2 and alpha 5 in all subregions. All studied subunits were expressed in CA3a/b and CA1, whereas in CA3c and in granule cells of the dentate gyrus (DG) no signal of alpha 4 and gamma 3 was detected. The drug treatment differently affected the regional subunit expression. In picrotoxin-treated cultures, the expression of alpha1, alpha 5 and gamma 2 mRNAs was significantly increased in pyramidal cell layers, and in DNQX-treated cultures the expression of alpha2 mRNA in CA3c and DG, and that of beta1 in DG. Changes in the expression of GABA(A) receptor subunit mRNAs in treated cultures suggest that neuronal activity can regulate their regional expression in vitro. Since the expression profile in untreated control cultures closely resembled that observed earlier in vivo, organotypic hippocampal slice cultures could serve as a good model system to study the regulatory mechanisms of receptor expression under well-controlled experimental conditions in the developing hippocampus.  相似文献   

9.
GABAergic inhibitory feedback from the cerebellum onto the inferior olivary (IO) nucleus plays an important role in olivo-cerebellar function. In this study we characterized the physiology, subunit composition, and spatial distribution of gamma-aminobutyric acid-A (GABA(A)) receptors in the IO nucleus. Using brain stem slices, we identified two types of IO neuron response to local pressure application of GABA, depending on the site of application: a slow desensitizing response at the soma and a fast desensitizing response at the dendrites. The dendritic response had a more negative reversal potential than did the somatic response, which confirmed their spatial origin. Both responses showed voltage dependence characterized by an abrupt decrease in conductance at negative potentials. Interestingly, this change in conductance occurred in the range of potentials wherein subthreshold membrane potential oscillations usually occur in IO neurons. Immunostaining IO sections with antibodies for GABA(A) receptor subunits alpha 1, alpha 2, alpha 3, alpha 5, beta 2/3, and gamma 2 and against the postsynaptic anchoring protein gephyrin complemented the electrophysiological observation by showing a differential distribution of GABA(A) receptor subtypes in IO neurons. A receptor complex containing alpha 2 beta 2/3 gamma 2 subunits is clustered with gephyrin at presumptive synaptic sites, predominantly on distal dendrites. In addition, diffuse alpha 3, beta 2/3, and gamma 2 subunit staining on somata and in the neuropil presumably represents extrasynaptic receptors. Combining electrophysiology with immunocytochemistry, we concluded that alpha 2 beta 2/3 gamma 2 synaptic receptors generated the fast desensitizing (dendritic) response at synaptic sites whereas the slow desensitizing (somatic) response was generated by extrasynaptic alpha 3 beta 2/3 gamma 2 receptors.  相似文献   

10.
11.
A GABA(A) receptor delta subunit-deficient mouse line was created by homologous recombination in embryonic stem cells to investigate the role of the subunit in the brain GABA(A) receptors. High-affinity [(3)H]muscimol binding to GABA sites as studied by ligand autoradiography was reduced in various brain regions of delta(-/-) animals. [(3)H]Ro 15-4513 binding to benzodiazepine sites was increased in delta(-/-) animals, partly due to an increment of diazepam-insensitive receptors, indicating an augmented forebrain assembly of gamma 2 subunits with alpha 4 subunits. In the western blots of forebrain membranes of delta(-/-) animals, the level of gamma 2 subunit was increased and that of alpha 4 decreased, while the level of alpha1 subunits remained unchanged. In the delta(-/-) forebrains, the remaining alpha 4 subunits were associated more often with gamma 2 subunits, since there was an increase in the alpha 4 subunit level immunoprecipitated by the gamma 2 subunit antibody. The pharmacological properties of t-butylbicyclophosphoro[(35)S]thionate binding to the integral ion-channel sites were slightly altered in the forebrain and cerebellum, consistent with elevated levels of alpha 4 gamma 2 and alpha 6 gamma 2 subunit-containing receptors, respectively.The altered pharmacology of forebrain GABA(A) receptors and the decrease of the alpha 4 subunit level in delta subunit-deficient mice suggest that the delta subunit preferentially assembles with the alpha 4 subunit. The delta subunit seems to interfere with the co-assembly of alpha 4 and gamma 2 subunits and, therefore, in its absence, the gamma 2 subunit is recruited into a larger population of alpha 4 subunit-containing functional receptors. These results support the idea of subunit competition during the assembly of native GABA(A) receptors.  相似文献   

12.
Diazepam (DZ) and phenobarbital (PH) are commonly used to treat early-life seizures and act on GABAA receptors (GABAR). The developing GABAergic system is highly plastic, and the long-term effects of postnatal treatment with these drugs on the GABAergic system has not been extensively examined. In the present study, we investigated the effects of prolonged DZ and PH treatment during postnatal development and then discontinuation on expression of a variety of genes involved in GABAergic neurotransmission during adulthood. Rat pups were treated with DZ, PH or vehicle from postnatal day (P) 10-P40 and then the dose was tapered for 2 weeks and terminated at P55. Expression of GABAR subunits, GABAB receptor subunits, GABA transporters (GAT) and GABA synthesizing enzymes (glutamic acid decarboxylase: GAD) mRNAs in hippocampal dentate granule neurons (DGNs) were analyzed using antisense RNA amplification at P90. Protein levels for the alpha1 subunit of GABAR, GAD67, GAT1 and 3 were also assessed using Western blotting. At P90, mRNA expression for GAT-1, 3, 4, GABAR subunits alpha4, alpha6, beta3, delta and theta and GABAB receptor subunit R1 was increased and mRNA expression for GAD65, GAD67 and GABAR subunits alpha1 and alpha3 were decreased in DGNs of rats treated with DZ and PH. The current data suggest that prolonged DZ and PH treatment during postnatal development causes permanent alterations in the expression of hippocampal GABA receptor subunits, GATs and GAD long after therapy has ended.  相似文献   

13.
In women, the late luteal phase or "premenstrual" period is commonly associated with psychological disturbances, which include mood changes and increased aggression. The underlying cause is unknown but one possibility is that fluctuations in levels of neuroactive steroids precipitate changes in expression of GABA(A) receptor subunits that result in functional changes in inhibitory control systems. The present study investigated the levels of expression of alpha4, beta1 and delta GABA(A) receptor subunits in the periaqueductal gray matter (PAG) in rats and whether plasticity occurs during the oestrous cycle in females. In male rats alpha4, beta1 and delta subunit immunoreactive neurones were present throughout the PAG in similar numbers. In female rats in proestrus, oestrus and early dioestrus, the density of alpha4, beta1 and delta subunit immunoreactive cells was similar to males. However, in late dioestrus, the numbers increased significantly, especially in the dorsolateral PAG, a region which is particularly rich in GABAergic interneurones. These parallel changes may reflect an increase in expression of the alpha4beta1delta GABA(A) receptor subtype. Recombinant alpha4beta1delta receptors, expressed in Xenopus oocytes, exhibited and EC(50) for GABA an order of magnitude lower (2.02+/-0.33 microM; mean+/-S.E.M.) than that found for the most ubiquitous alpha1beta2gamma2 GABA(A) receptor (32.8+/-2.5 microM). Increased expression of alpha4beta1delta GABA(A) receptors in the interneurones of the PAG could render the panic circuitry abnormally excitable by disinhibiting the ongoing GABAergic inhibition. Similar changes in neuronal excitability within the PAG in women consequent to falling steroid levels in the late luteal phase of the menstrual cycle could contribute to the development of pre-menstrual dysphoria.  相似文献   

14.
Deletion of the beta3 subunit of the GABA(A) receptor produces severe behavioral deficits and epilepsy. GABA(A) receptor-mediated miniature inhibitory postsynaptic currents (mIPSCs) in cortical neurons in cultures from beta3 -/- mice were significantly faster than those in beta3 +/+ mice and were more prolonged by zolpidem. Surface staining revealed that the number of beta2/3, alpha2, and alpha3 (but not of alpha1) subunit-expressing neurons and the intensity of subunit clusters were significantly reduced in beta3 -/- mice. Transfection of beta3 -/- neurons with beta3 cDNA restored beta2/3, alpha2, and alpha3 subunits immunostaining and slowed mIPSCs decay. We show that the deletion of the beta3 subunit causes the loss of a subset of GABA(A) receptors with alpha2 and alpha3 subunits while leaving a receptor population containing predominantly alpha1 subunit with fast spontaneous IPSC decay and increased zolpidem sensitivity.  相似文献   

15.
In Parkinson's disease, changes in GABAergic activity occurring downstream of the striatal dopamine loss are accompanied by reciprocal changes in GABA(A) receptor binding, the underlying molecular mechanisms for which are unknown. This study examined whether changes in expression of the genes encoding known GABA(A) receptor subunits (alpha(1-4), beta(1-3), gamma(1-3) and delta) could account for this receptor plasticity using a rodent model of Parkinson's disease with a 6-hydroxydopamine-induced nigrostriatal lesion. Analysis of autoradiograms of the basal ganglia and thalamus revealed changes in expression of only four of the 11 subunits studied. Expression of alpha1 and beta2 subunit genes was altered in a parallel manner following a 6-hydroxydopamine lesion; messenger RNA levels for both were significantly increased in the substantia nigra pars reticulata (11 +/- 4% and 17 +/- 1%, respectively), and significantly reduced in the globus pallidus (18 +/- 3% and 16 +/- 3%, respectively) and parafascicular nucleus (19 +/- 3% and 16 +/- 5%, respectively). Smaller changes in the messenger RNA levels encoding the alpha1 subunit in the lateral amygdala (8 +/- 1% decrease) and the alpha4 and gamma2 subunits in the striatum (10 +/- 2% and 6 +/- 1% increase, respectively) were also observed. No changes in expression were noted for any other subunits in any region studied. Clearly, both region- and subunit-specific regulation of GABA(A) receptor subunit gene expression occurs following a nigrostriatal tract lesion. The changes in expression of the alpha1 and beta2 subunit genes probably contribute to the documented changes in GABA(A) receptor binding following striatal dopamine depletion. Moreover, they provide a molecular basis by which the pathological changes in GABAergic activity in Parkinson's disease may be partially compensated.  相似文献   

16.
The hypothalamus influences a number of autonomic functions. The activity of hypothalamic neurons is modulated in part by release of the inhibitory neurotransmitter GABA onto these neurons. GABA(A) receptors are formed from a number of distinct subunits, designated alpha, beta, gamma, delta, epsilon, and theta, many of which have multiple isoforms. Little data exist, however, on the functional characteristics of the GABA(A) receptors present on hypothalamic neurons. To gain insight into which GABA(A) receptor subunits are functionally expressed in the hypothalamus, we used an array of pharmacologic assessments. Whole cell recordings were made from thin hypothalamic slices obtained from 1- to 14-day-old rats. GABA(A) receptor-mediated currents were detected in all neurons tested and had an average EC(50) of 20 +/- 1.6 microM. Hypothalamic GABA(A) receptors were modulated by diazepam (EC(50) = 0.060 microM), zolpidem (EC(50) = 0.19 microM), loreclezole (EC(50) = 4.4 microM), methyl-6,7-dimethoxy-4-ethyl-beta-carboline (EC(50) = 7.7 microM), and 5alpha-pregnan-3alpha-hydroxy-20-one (3alpha-OH-DHP). Conversely, these receptors were inhibited by Zn(2+) (IC(50) = 70.5 microM), dehydroepiandrosterone sulfate (IC(50) = 16.7 microM), and picrotoxin (IC(50) = 2.6 microM). The alpha4/6-selective antagonist furosemide (10-1,000 microM) was ineffective in all hypothalamic neurons tested. The results of our pharmacological analysis suggest that hypothalamic neurons express functional GABA(A) receptor subtypes that incorporate alpha1 and/or alpha2 subunits, beta2 and/or beta3 subunits, and the gamma2 subunit. Our results suggest receptors expressing alpha3-alpha6, beta1, gamma1, and delta, if present, represent a minor component of functional hypothalamic GABA(A) receptors.  相似文献   

17.
Prolonged flurazepam exposure regulates the expression of selected (alpha1, beta2, beta3) GABA(A) receptor subunit messenger RNAs in specific regions of the hippocampus and cortex with a time-course consistent with benzodiazepine tolerance both in vivo and in vitro. In this report, the immunostaining density of six specific GABA(A) receptor subunit (alpha1, beta2, beta1-3 and gamma2) antibodies was measured in the hippocampus and cortex, among other brain areas, in slide-mounted brain sections from flurazepam-treated and control rats using quantitative computer-assisted image analysis techniques. In parallel with the localized reduction in alpha1 and beta3 subunit messenger RNA expression detected in a previous study, relative alpha1 and beta3 subunit antibody immunostaining density was significantly decreased in flurazepam-treated rat hippocampal CA1, CA3 and dentate dendritic regions, and in specific cortical layers. Quantitative western blot analysis showed that beta3 subunit protein levels in crude homogenates of the hippocampal dentate region from flurazepam-treated rats, an area which showed fairly uniform decreases in beta3 subunit immunostaining (16-21%), were reduced to a similar degree (18%). The latter findings provide independent support that relative immunostaining density may provide an accurate estimate of protein levels. Consistent with the absence of the regulation of their respective messenger RNAs immediately after ending flurazepam administration, no changes in the density of alpha2, beta1 or beta2 subunit antibody immunostaining were found in any brain region. gamma2 subunit antibody staining was changed only in the dentate molecular layer. The selective changes in GABA(A) receptor subunit antibody immunostaining density in the hippocampus suggested that a change in the composition of GABA(A) receptors involving specific subunits (alpha1 and beta3) may be one mechanism underlying benzodiazepine anticonvulsant tolerance.  相似文献   

18.
When the vertebrate retina is stimulated by light, a class of amacrine or interplexiform cells release dopamine, a modulator responsible for neural adaptation to light. In the intact retina, dopamine release can be pharmacologically manipulated with agonists and antagonists at GABA(A) receptors, and dopaminergic (DA) cells receive input from GABAergic amacrines. Because there are only 450 DA cells in each mouse retina and they cannot be distinguished in the living state from other cells on the basis of their morphology, we used transgenic technology to label DA cells with human placental alkaline phosphatase, an enzyme that resides on the outer surface of the cell membrane. We could therefore identify DA cells in vitro after dissociation of the retina and investigate their activity with whole cell voltage clamp. We describe here the pharmacological properties of the GABA(A) receptors of solitary DA cells. GABA application induces a large inward current carried by chloride ions. The receptors are of the GABA(A) type because the GABA-evoked current is blocked by bicuculline. Their affinity for GABA is very high with an EC(50) value of 7.4 microM. Co-application of benzodiazepine receptor ligands causes a strong increase in the peak current induced by GABA (maximal enhancement: CL-218872 220%; flunitrazepam 214%; zolpidem 348%) proving that DA cells express a type I benzodiazepine-receptor (BZ1). GABA-evoked currents are inhibited by Zn(2+) with an IC(50) of 58.9 +/- 8.9 microM. Furthermore, these receptors are strongly potentiated by the modulator alphaxalone with an EC(50) of 340 +/- 4 nM. The allosteric modulator loreclezole increases GABA receptor currents by 43% (1 microM) and by 107% (10 microM). Using outside-out patches, we measured in single-channel recordings a main conductance (29 pS) and two subconductance (20 and 9 pS) states. We have previously shown by single-cell RT-PCR and immunocytochemistry that DA cells express seven different GABA(A) receptor subunits (alpha1, alpha3, alpha4, beta1, beta3, gamma1, gamma2(S), and gamma2(L)) and by immunocytochemistry that all subunits are expressed in the intact retina. We show here that at least alpha1, beta3 and gamma2 subunits are assembled into functional receptors.  相似文献   

19.
We compared gamma-aminobutyric acid (GABA)-activated currents and their modulation by benzodiazepines in cultured human cells transfected with complementary desoxyribonucleic acid (cDNA) encoding different GABAA receptor subunits. Flunitrazepam, a benzodiazepine agonist which potentiates GABA responses in both neurons and astrocytes was only effective in receptors containing the gamma 2 subunit (alpha 1 beta 1 gamma 2 and alpha 5 beta 1 gamma 2). The beta-carboline methyl-4-ethyl-6,7-dimethoxy-beta-carboline-3-carboxylate (DMCM) decreased GABA-activated currents in receptors composed of alpha 1 beta 1 gamma 1 and alpha 1 beta 1 gamma 2 subunits but increased GABA-activated currents in receptors containing the alpha 5 subunit (alpha 5 beta 1 gamma 1 and alpha 5 beta 1 gamma 2). These results strongly suggest that flunitrazepam and DMCM do not act on isosteric sites and that differences in the responsiveness of GABAA receptors to these compounds are based on different subunit compositions of GABAA receptors.  相似文献   

20.
According to the rules of GABA(A) receptor (GABA(A)R) subunit assembly, alpha4 and alpha6 subunits are considered to be the natural partners of delta subunits. These GABA(A)Rs are a preferred target of low, sobriety-impairing concentrations of ethanol. Here we demonstrate a new naturally occurring GABA(A)R subunit partnership: delta subunits of hippocampal interneurons are coexpressed and colocalized with alpha1 subunits, but not with alpha4, alpha6 or any other alpha subunits. Ethanol potentiates the tonic inhibition mediated by such native alpha1/delta GABA(A)Rs in wild-type and in alpha4 subunit-deficient (Gabra4(-/-)) mice, but not in delta subunit-deficient (Gabrd(-/-)) mice. We also ruled out any compensatory upregulation of alpha6 subunits that might have accounted for the ethanol effect in Gabra4(-/-) mice. Thus, alpha1/delta subunit assemblies represent a new neuronal GABA(A)R subunit partnership present in hippocampal interneurons, mediate tonic inhibitory currents and are highly sensitive to low concentrations of ethanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号