首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 356 毫秒
1.
In this study, we set out to make a fine characterization of the angiogenic response induced by plasma cells obtained from patients with active-multiple myeloma (MM), in comparison with cells obtained from patients with non-active MM and benign lesions such as monoclonal gammopathy of undetermined significance (MGUS), in the chick embryo chorioallantoic membrane (CAM) assay. To achieve this we investigated the time-course of the angiogenic response induced by gelatin sponges soaked in the cell suspensions and implanted on the CAM surface from day 8 to day 12 of incubation by evaluating the number of vessels, of the vessel bifurcation and the intervascular distance at 24, 48, 72 and 96 h after the implants. The results show that plasma cell suspensions obtained from patients with active MM induce a vasoproliferative response that was significantly higher than that induced by cell suspensions obtained from patients with non-active MM or with MGUS, which is also a function of the day of implantation. In fact, implants made from day 8 to day 10 induce a strong angiogenic response, whereas those made from day 11 to day 12 do not. This finding might depend on the fact that CAM endothelium exhibits an intrinsically high mitotic rate until day 10. Thereafter, the endothelial mitotic index declines rapidly, and consequently cell suspensions implanted on the CAM of successively older embryos are not able to induce a vasoproliferative response in parallel with the reduced rates of growth of the CAM's endothelial cells.  相似文献   

2.
Various reports indicate that the process of intussusceptive microvascular growth (IMG) plays a crucial role in capillary network formation of the chorio-allantoic membrane (CAM). In the present study we demonstrate by methylmethacrylate (Mercox) casting and in vivo time-lapse observations that intussusception, i.e. insertion of transcapillary tissue pillars, is also strongly involved in vascular tree formation, a process we refer to as intussusceptive arborization (IAR). From day 7 to day 14 of incubation, several arterial and venous branching generations arise from the capillary plexus. The process is initiated by pillar formation in rows, which are demarcating future large vessels in the capillary meshwork. In a subsequent step the pillars undergo reshaping to form narrow tissue septa that successively merge, which results in the production of new generations of blood vessels. This is followed by growth and maturation of all vascular components. The process of IAR in the CAM is very active at days 10 and 11 of incubation and takes place in preferentially perfused capillary regions determining "dynamic areas". The process of intussusception may be preceded by endothelial division, but the transcapillary pillar formation itself occurs primarily by rearrangement and attenuation of the endothelial cells without local endothelial cell proliferation. We conclude that after the early sprouting phase, the process of intussusception is the basic mechanism of CAM vascularization. It leads to capillary network growth and expansion (IMG) and, at the same time to feed vessel formation with several branching generations (IAR).  相似文献   

3.
 Vascularization and endothelial phenotype expression were analysed in embryonic adrenal tissue grafted onto chorioallantoic membrane (CAM), by means of routine light microscopy and immunocytochemical staining, and of electron microscopy. Adrenal gland tissue from chick or quail embryos (donors) was grafted onto CAMs of chick or quail embryos (host). Vessels of chick origin were discriminated from those of quail origin by monoclonal antibodies, anti-MB1, specific for quail endothelial and haemopoietic cells, and QCPN, which labels quail cell nuclei. Vessels of adrenal type were distinguished from those of CAM-type by their ultrastructural endothelial phenotype – porous in the former and continuous in the latter. The observations carried out 6 days after implantation indicate that the adrenal gland develops and differentiates according to a virtually normal histological pattern. As regards the adrenal and CAM vascularization, the grafting procedure elicits angiogenic events consisting in the formation of peripheral anastomoses between the graft and the CAM original microvasculature and in new-growth of vessels from the CAM into the grafted tissue and vice versa. As to the endothelial phenotype, the ultrastructural results demonstrate that besides its own native vasculature, the adrenal tissue contains vessels with continuous endothelium and the CAM mesenchyme is supplied by adrenal-type, fenestrated vessels. Accepted: 27 April 1998  相似文献   

4.
Increased metastatic and angiogenic potentials of aggressive human colon carcinoma cells were verified in independent chick embryo models by comparing in vivo highly metastatic SW620 colon carcinoma cell line with its isogenic, non-metastatic SW480 cell variant. In the experimental metastasis model, both cell types rapidly arrested in the chorioallantoic membrane (CAM) vasculature as demonstrated by quantitative PCR and immunohistochemistry. Live cell imaging also indicated that both SW620 and SW480 cells efficiently extravasated from the CAM capillary system. However, only few SW480 cells were present in the CAM tissue after 24–48 h. In contrast, the numbers of SW620 cells increased exponentially, indicating proliferative and survival advantages of metastatic colon carcinoma cells in vivo. Multicellular SW620 foci were identified in close proximity to CAM blood vessels. A positive correlation between increased metastatic ability and VEGF-expression of colon carcinoma SW620 cells was demonstrated by the substantial inhibitory effects of anti-VEGF treatment on the levels of metastatic colonization and density of blood vessels adjacent to tumor cell foci. Furthermore, the chick embryo angiogenesis model confirmed high levels of VEGF-dependent angiogenesis induced by SW620 cells, but not SW480 cells. Thus, chick embryo experimental metastasis and CAM angiogenesis models appear to coordinately reflect critical features of advanced colon carcinomas, i.e., the acquisition of enhanced survival and increased angiogenic potentials, both constituting critical determinants of colon cancer progression. The use of rapid and quantitative chick embryo models might provide alternative approaches to conventional mammalian model systems for screening anti-cancer agents.  相似文献   

5.
A close relationship exists between angiogenesis and the formation of vascular lesions. The development of the vascular system in the chick embryo chorioallantoic membrane (CAM) may thus represent a model to study the effects of the deregulation of endothelial cell behaviour. Alterations of the developing vascular tree of the CAM were observed after exposure to murine aortic endothelial (MAE) cells overexpressing human fibroblast growth factor-2 (FGF2) cDNA (pZipFGF2 MAE cells), or to their conditioned medium (CM). pZipFGF2 MAE cells injected into the allantoic sac or applied on to the CAM of day 8-9 chick embryos induce neovascularization and the appearance of haemangioma-like lesions. This activity was not prevented by anti-FGF2 antibodies. The CM from pZipFGF2 MAE cells was also active when adsorbed into a gelatin sponge and applied on to the CAM, both in the absence and in the presence of anti-FGF2 antibodies. No effects on vessel development were exerted by parental MAE cells, FGF2-transfected NIH 3T3 fibroblasts, or their conditioned media. In vitro, pZipFGF2 MAE cell CM caused parental MAE cells to invade fibrin gels and to undergo morphogenesis on Matrigel. This activity was not mimicked by recombinant FGF2 nor affected by anti-FGF2 antibodies, and depended on a M (r) approximately 45 000 heat-labile heparin-binding factor. Size exclusion chromatography of pZipFGF2 MAE cell CM demonstrated that the in vitro activity co-purified with an in vivo angiogenic capacity. Thus, FGF2 overexpression in mouse endothelial cells induces the production of an angiogenic activity distinct from FGF2, which may contribute to the genesis of angioproliferative lesions.  相似文献   

6.
Seeding biomaterial implants with vascular remnants has the potential to facilitate host vessel ingrowth via a vascular templating effect. Vessels from quail embryo were grown into a polyurethane fibroporous mesh and the samples were frozen-thawed and then implanted in rat subcutaneous dorsum. Results show that the process of revascularization, using the quail vessel remnants, occurred over the first 3 days after implantation and resulted in functional vessels. Rat endothelial cells were found in the quail templates on day 1. On day 2 the endothelial cells formed a confluent layer and started producing laminin. By this time approximately 70% of the rat vessel tissue in the implant had grown into quail vascular remnants, indicating that the quail vessels were extensively used as templates for host vessel ingrowth. Laminin production was increased and collagen production started by day 3, at which time the vessels were functional in that rat blood flowed through them. At 2 weeks host vessel density was approximately twice that of control samples; thus the implant substantially enhanced the size of the vascular network. For meshes that additionally received vascular endothelial growth factor (VEGF) seeding before implantation, vessel density at 2 weeks was enhanced over samples with quail embryo alone. However, the quail was found to have the greatest angiogenic effect above any of the implant components-quail, VEGF, and collagen. Tissue engineering of vessel templates may thus be a realistic solution to effective fast vascularization of biomaterials.  相似文献   

7.
Lipoma is one of the most common benign mesenchymal tumors. Its ability to trigger an angiogenic response is a critical step for its growth. Because adipose tissue serves as an important conduit for the vasculature, it is conceivable that the angiogenic properties of this tissue may modulate the growth of the vasculature in a paracrine manner. We investigated in vivo the angiogenic potential of bioptic fragments of human lipoma by using the chick embryo chorioallantoic membrane (CAM), a useful model for such an investigation. The angiogenic response in pathological and control implants was assessed on histologic sections by a morphometric method, 96 h after grafting. Results showed that pathological samples were surrounded by numerous allantoic vessels with a radially arranged pattern around the implant. The vascular counts in the CAMs treated with lipoma implants were comparable to that of FGF-2. The role played in vasoproliferative response by angiogenic cytokines (FGF-2, VEGF) released by adipocytes, by endogenous cytokines, such as FGF-2, stored in the CAM extracellular matrix and by angiogenic growth factors released by perivascular mononuclear cells around the newly-formed blood vessels, were supported by this study.  相似文献   

8.
Endometrial angiogenesis throughout the human menstrual cycle   总被引:8,自引:0,他引:8  
BACKGROUND: The timing and mechanisms of new blood vessel formation in the endometrium during the menstrual cycle are still largely unknown. In the present study we used the chick embryo chorioallantoic membrane (CAM) as an in-vivo assay for angiogenesis to assess the angiogenic potential of endometrium obtained at different stages of the menstrual cycle. METHODS: Endometrial fragments were explanted onto the CAM and, after 4 days of incubation, slides of the treated area were taken in ovo through a microscope for computerized image analysis. The vascular density index (VDI), a stereological estimate of vessel number and length, was obtained by counting the intersections of vessels with five concentric circles of a circular grid superimposed on the computerized image. RESULTS: We demonstrated that human endometrium has angiogenic potential throughout the menstrual cycle. Furthermore, there was a significant difference in angiogenic response between the stages of the menstrual cycle (P = 0.01). The VDIs of the early proliferative, early and late secretory stage were significantly higher than the VDI of the late proliferative phase. CONCLUSIONS: Elongation of existing vessels during the early proliferative phase as well as growth and coiling of the spiral vessels during the secretory phase may demand far higher angiogenic activity than outgrowth and maintenance of vessels during the late proliferative phase.  相似文献   

9.
目的 探讨细胞间黏附分子 1(intercellularadhesionmolecule 1,ICAM 1)在血管生成中的作用。 方法采用鸡胚尿囊绒毛膜 (chorioallantoicmembrane ,CAM)法进行在体血管生成实验。 结果  1 10d鸡胚的尿囊绒毛膜经ICAM 1作用 3d后 ,明胶海绵周围放射状走行的微血管非常明显 ,似车辐 ,显微镜下明胶海绵内有垂直长入的微血管 ,明胶海绵周边CAM间充质内微血管数目显著多于对照组 (P <0 0 1)。 2 6d鸡胚的尿囊绒毛膜经Anti ICAM 1作用 3d后 ,明胶海绵周围放射状走行的微血管极不明显 ,显微镜下明胶海绵内几乎没有新生的微血管 ,明胶海绵周边CAM间充质内微血管数目显著少于对照组 (P <0 0 1)。 结论 结果提示 1 ICAM 1有诱导微血管生成的作用 ;2 ICAM 1参与胚胎的血管生成。  相似文献   

10.
Klueh U  Dorsky DI  Kreutzer DL 《Biomaterials》2005,26(10):1155-1163
The in vivo failure of implantable glucose sensors is thought to be largely the result of inflammation and fibrosis-induced vessel regression at sites of sensor implantation. To determine whether increased vessel density at sites of sensor implantation would enhance sensor function, cells genetically engineered to over-express the angiogenic factor (AF) vascular endothelial cell growth factor (VEGF) were incorporated into an ex ova chicken embryo chorioallantoic membrane (CAM)-glucose sensor model. The VEGF-producing cells were delivered to sites of glucose sensor implantation on the CAM using a tissue-interactive fibrin bio-hydrogel as a cell support and activation matrix. This VEGF-cell-fibrin system induced significant neovascularization surrounding the implanted sensor, and significantly enhanced the glucose sensor function in vivo. This model system, for the first time, provides the "proof of principle" that increasing vessel density at the sites of implantation can enhance glucose sensor function in vivo, and demonstrates the potential of gene transfer and tissue interactive fibrin bio-hydrogels in the development of successful implants.  相似文献   

11.
Current methods for assaying angiogenesis in vitro and in vivo   总被引:13,自引:0,他引:13  
Angiogenesis, the development of new blood vessels from an existing vasculature, is essential in normal developmental processes and in numerous pathologies, including diabetic retinopathy, psoriasis and tumour growth and metastases. One of the problems faced by angiogenesis researchers has been the difficulty of finding suitable methods for assessing the effects of regulators of the angiogenic response. The ideal assay would be reliable, technically straightforward, easily quantifiable and, most importantly, physiologically relevant. Here, we review the advantages and limitations of the principal assays in use, including those for the proliferation, migration and differentiation of endothelial cells in vitro, vessel outgrowth from organ cultures and in vivo assays such as sponge implantation, corneal, chamber, zebrafish, chick chorioallantoic membrane (CAM) and tumour angiogenesis models.  相似文献   

12.
BACKGROUND: Many data suggest that the density of mast cells is highly correlated with the extent of both normal and pathological angiogenesis. OBJECTIVE: In this study we have compared in an in vivo assay, the chick embryo chorioallantoic membrane, the angiogenic potential of mast cell suspensions isolated from rats, degranulated mast cells and their secretory granules. METHODS: Gelatin sponges adsorbed with cell suspensions of rat mast cells, degranulated mast cells and their secretory granules were implanted on the top of the chorioallantoic membrane at day 8 of incubation. At day 12 the angiogenic response was evaluated macroscopically, microscopically and by a morphometric method of 'point counting'. RESULTS: Isolated mast cells and their secretory granules, but not degranulated mast cells, induced an angiogenic response in the chorioallantoic membrane. The addition of antifibroblast growth factor-2 or antivascular endothelial growth factor antibodies reduced the angiogenic response of both mast cells and their secretory granules by 50% and 30%, respectively. CONCLUSION: These data support the evidence that the angiogenic properties of mast cells depend on the angiogenic molecules contained in their secretory granules and indicate that fibroblast growth factor-2 and vascular endothelial growth factor are the angiogenic cytokines primarily and perhaps synergistically responsible for this vasoproliferative activity.  相似文献   

13.
The modifications of the endothelial surfaces were analyzed in growing neural microvessels by scanning and transmission electron microscopes in the optic tecta of chick embryos and chickens. The endothelial inner aspect appears regular and smooth in the early stages of the vessel growth (7th incubation day). Later (14th incubation day) both the abluminal and luminal surfaces of the endothelium follow a very sinuous course and the luminal ones appear extremely rich in pleomorphic microprojections. When the endothelium differentiation is concluded (5-day-old chicken), the cells are very thin and again exhibit regular and smooth surfaces. These findings reveal a great mobility of the cell membrane of the endothelial cells when they are growing longer and thinner by a moulding process. Moreover, the presence of a number of pinocytotic pits in the embryo vessels would indicate that the neutral vessels, provided with a typically low pinocytotic activity in the adult life, are engaged in this function during development.  相似文献   

14.
Grafting of mammalian cells and tissues to the chick embryo chorioallantoic membrane (CAM) is a well-established experimental system to evaluate many different parameters of tumor growth, and B16-F10 murine melanoma cell line has been successfully used to study metastatic process in the CAM assay. The aim of this study was to demonstrate the capability of B16-F10 melanoma cells to contribute to the new formation of host blood vessels through a vasculogenic mimicry mode. Results have shown that B16-F10 melanoma cells are able to form in 4 days macroscopic tumor masses and induce a strong angiogenic response comparable to that of a well-known angiogenic cytokine, namely fibroblast growth factor-2. Moreover, tumor cells are able to cross the chorionic epithelium, and to move beneath in the mesenchyme to form tumor masses immunoreactive to specific antibodies anti-S100 and anti-MART-1/Melan-A. Finally, we have shown that CAMs new-formed blood vessels are lined by both pigmented melanoma cells and cells immunoreactive to MART-1/Melan-A and PAS, suggesting the occurrence of a vasculogenic mimicry process.  相似文献   

15.
16.
The chorioallantoic membrane (CAM) assay is a widely used bioassay for testing angiogenic activities. In the present study we compared the gross and micromorphological effects of three angiogenic factors applied in Elvax carriers on the CAM: Tumor necrosis factor-alpha (TNF-alpha), human angiogenic factor (h-AF), and basic fibroblast growth factor (bFGF). Our question was whether the CAM responds to these factors which have very different actions with a stereotype or with a factor specific reaction. By microangiography and light microscopy, all positive reactions appeared as a spoke-wheel vascular pattern with a bundle of small capillary blood vessels in the center. These vessels were predominantly of a distended type in h-AF and TNF experiments, while narrower capillary vessels followed bFGF application. Chorioallantoic ectoderm and endoderm were thickened by cell accumulation and the mesenchymal stroma of the CAM was edematous and infiltrated with leucocytes in all three reactions. Additionally, bFGF experiments showed areas of densely arranged fibroblasts. Observations in vivo showed chorioallantoic tissue movements as a possible mechanism for the spokewheel vascular pattern. As compared with our results from studies of cytokinetics with bromodeoxyuridine, these current findings indicate that chemotaxis is responsible for the chorioallantoic angiogenic reaction rather than cellular proliferation.  相似文献   

17.
OBJECTIVE AND DESIGN: Angiogenesis plays an important role in the pathogenesis of rheumatoid arthritis (RA) and correlates with clinical score, synovial hyperplasia and infiltration of inflammatory cells. Many of the available treatments for RA have been shown to possess some degree of anti-angiogenic activity. Here, we studied the effect of cyclosporine, which exerts anti-angiogenic activity in vitro and in vivo [1] on angiogenesis induced in vivo in the chick embryo chorioallantoic membrane (CAM) by synovial RA and osteoarthritis (OA) tissues. MATERIAL AND METHODS: Wet synovial biopsies from 10 RA and 6 OA patients were treated with vehicle alone or with cyclosporine and implanted on the CAM at day 8 of incubation. On day 12, CAM tissues were assessed for the extent of angiogenesis and mononuclear cell infiltration. RESULTS: Cyclosporine inhibited angiogenesis and reduced the number of mononuclear cells in the CAM extracellular matrix only in RA implants. CONCLUSIONS:These data provide further evidence for a central role of new-formed blood vessels in RA. Moreover, cyclosporine on account of both its immunosuppressive and its anti-angiogenic activity can be proposed for the treatment of RA.  相似文献   

18.
The bursa of Fabricius is a lymphoid organ of the chick which plays an important role in the development of the immune system. The role of angiogenic factors in the development of the vascular system of this organ has been poorly investigated. Vascular endothelial growth factor (VEGF) is a major regulator of endothelial cell proliferation, angiogenesis and vascular permeability, and its activities are mediated by two receptors, VEGFR-1 and VEGFR-2. In this study we have investigated by immunohistochemistry the VEGF and VEGFR-2 immunoreactivity in developing bursa of Fabricius. Starting from day 10 of incubation, the endodermal epithelium reacts with VEGF and gives rise to the lymphoid follicles, while the vascular endothelium reacts with VEGFR-2. These data support the view that VEGF acts as a paracrine stimulator of angiogenesis in the avian embryo and confirm the requirement of the endodermal layer for the normal formation of blood vessels by mesodermal cells.  相似文献   

19.
20.
The effect of low energy laser (He-Ne) irradiation (LELI) on the process of angiogenesis in the infarcted rat heart and in the chick chorioallantoic membrane (CAM), as well as the proliferation of endothelial cells in tissue culture, was investigated. Formation of new blood vessels in the infarcted rat heart was monitored by counting proliferating endothelial cells in blood vessels. In the CAM model, defined areas were laser-irradiated or nonirradiated and blood vessel density was recorded in each site in the CAM at various time intervals. Laser irradiation caused a 3.1-fold significant increase in newly formed blood vessels 6 days post infarction, as compared with nonirradiated rats. In the CAM model, a slight inhibition of angiogenesis up to 2 days post irradiation and a significant enhancement of angiogenesis in the laser-irradiated foci as compared with control nonirradiated spots were evident. The LELI caused a 1.8-fold significant increase in the rate of proliferation in endothelial cells in culture over nonirradiated cells. It is concluded that LELI can promote the proliferation of endothelial cells in culture, which may partially explain the augmentation of angiogenesis in the CAM model and in the infarcted heart. These results may have clinical significance by offering therapeutic options to ameliorate angiogenesis in ischemic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号