首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
越来越多的证据表明,慢性炎症与高血压、动脉粥样硬化等心血管疾病密切相关。半胱天冬氨酸蛋白水解酶(Caspase)亚型Caspase-1、4、5和11被称为炎症Caspase,通过促进炎症因子的成熟与释放,诱导放大炎症反应,激活固有免疫应答。炎症Caspase作用机制包括两方面,一方面激活模式识别受体NLRP3炎症小体,促进炎症因子白细胞介素1β(IL-1β)和IL-18的剪切成熟,另一方面剪切Gasdermin D形成具有膜上打孔作用的N端,导致细胞焦亡,促进炎症因子释放。文章就炎症Caspase在心血管疾病中的作用进行综述。  相似文献   

2.
炎症性肠病的发病与机体自身免疫内环境密切相关,而NLRP3炎症小体参与机体的固有免疫应答和T细胞免疫应答.慢性炎症阶段,典型的NLRP3炎症小体被过度激活,增加IL-1β和IL-18从固有层巨噬细胞和树突状细胞中的释放, IL-1β和IL-18的释放可诱导T细胞向致病性Th1和Th17的表型分化,从而维持炎症反应.急性期IL-1β主要以髓系细胞来源促进肠上皮细胞的愈合和修复,即NLRP3炎症小体对肠上皮细胞具有保护性的功能.而同时, NLRP3炎症小体介导的IL-1β的表达导致Th17/Treg失衡,这也与IBD的发病密切相关.可以说NLRP3作为肠内稳态的分子开关,通过IL-1β使局部免疫细胞向炎症表型转变.  相似文献   

3.
糖尿病相关的代谢异常可导致糖尿病性血管老化,引发一系列血管并发症。糖尿病性血管老化与炎症反应密切相关,核苷酸结合寡聚化结构域样受体蛋白3(NLRP3)炎性小体参与慢性无菌性炎症反应、氧化应激等进程,是糖尿病发展的重要环节。调控NLRP3炎症小体活性的信号通路可分为促进激活与抑制激活两类,核因子κB、活性氧簇(ROS)/硫氧还蛋白互作蛋白信号通路具有促进NLRP3炎症小体的转录、翻译与修饰以及促进ROS生成的作用,能够激活NLRP3炎症小体、诱导炎症反应与氧化应激,从而加速血管内皮细胞的老化;磷酸腺苷活化蛋白激酶、核因子红细胞系2相关因子2信号通路具有抑制NLRP3翻译与转录、阻断炎症小体组装与调节自噬等作用,对NLRP3炎症小体的激活进行负向调节,从而抑制炎症反应、氧化应激反应与细胞焦亡,可有效延缓血管老化。在糖尿病环境下,干预NLRP3炎症小体的启动、激活与分泌,可抑制糖尿病性血管老化的进展,是防治糖尿病慢性血管并发症的潜在靶点。  相似文献   

4.
微小RNA(miR)-155参与血管内皮细胞功能障碍、巨噬细胞炎症,是促进动脉粥样硬化发展的重要微小RNA。核苷酸结合寡聚化结构域样受体蛋白3(NLRP3)炎症体参与动脉粥样硬化斑块的产生,并与斑块不稳定性密切相关。但miR-155调节NLRP3炎症体在动脉粥样硬化中的机制仍不清楚。本文就miR-155与NLRP3炎症体在氧化低密度脂蛋白介导的动脉粥样硬化的相关机制作一综述。  相似文献   

5.
动脉粥样硬化是一种伴有脂质代谢紊乱的慢性炎症反应。NOD样受体蛋白3(NLRP3)炎症小体作为一种多蛋白组成的炎症复合物,与细胞活性、血管炎症、斑块进展密切相关。氧化三甲胺作为肠道菌群主要代谢产物,能启动NLRP3炎症小体的激活,参与粥样硬化斑块形成和斑块破裂的病理学过程。现就氧化三甲胺与NLRP3炎症小体在动脉粥样硬化中的作用进行综述,旨在为动脉粥样硬化的机制研究和临床防治提供新视角。  相似文献   

6.
1999年Ross提出了"动脉粥样硬化-慢性炎症学说"[1,2], Ross认为:AS是发生在大中动脉血管壁的内皮细胞损伤后,有细胞免疫介导的慢性炎症反应.有研究表明在AS患者中,不仅有炎性因子的表达如C反应蛋白(CRP)、肿瘤坏死因子(TNF-a)、白介素-6(IL-6)、白介素-8(IL-8)、白介素-12(IL-12),也有抗炎因子如白介素-10(IL-10)合成释放增加,而且有CD40,CD40L重要的炎症信号通道的激活,这条通道的激活又进一步促进了炎症介质如血管粘附因子和细胞因子、组织因子等物质的释放[3,4,9].  相似文献   

7.
许倡涛  刘毅  朱迪  辛超  杜志超  穆楠  陶凌 《心脏杂志》2015,27(5):510-513
目的 研究硫氧还蛋白结合蛋白(TXNIP)介导的NLRP3炎症小体激活在心肌微血管内皮细胞(CMECs)缺氧/复氧(H/R)损伤中的作用。方法 分离培养C57BL/6J小鼠CMECs,随机分为对照组、H/R损伤组、H/R+Scrambled siRNA组和H/R+TXNIP siRNA组。各组处理后使用ELISA试剂盒检测细胞IL-1β水平,采用免疫共沉淀的方法检测TXNIP和NLRP3的相互作用,Western blot检测TXNIP和NLRP3的表达水平,乳酸脱氢酶试剂盒检测细胞培养上清LDH释放情况和细胞Caspase-3活性。结果 与对照组相比,H/R后CMECs的NLRP3表达水平明显升高(P<0.05),NLRP3炎症小体激活(IL-1β水平升高,P<0.01),且TXNIP和NLRP3的结合效果明显增强(P<0.01)。运用TXNIP siRNA抑制TXNIP表达后行H/R处理,与H/R+Scrambled siRNA组相比,NLRP3炎症小体激活水平明显下降(IL-1β水平降低),细胞Caspase-3活力和LDH释放水平均显著降低(均P<0.05)。结论 在CMECs发生H/R损伤时,NLRP3炎症小体激活,TXNIP和NLRP3的相互作用增强;抑制TXNIP表达后,NLRP3炎症小体激活水平降低,内皮损伤减轻。说明TXNIP介导的NLRP3炎症小体激活参与CMECs的H/R损伤,可能成为CMECs的H/R损伤的新机制。  相似文献   

8.
动脉粥样硬化能导致多种威胁人类健康的严重心血管疾病。除高血脂等经典危险因素外,炎症免疫因素作为新的危险因素已得到研究者的共识。Nod样受体蛋白3(NLRP3)炎症小体是机体固有免疫系统的一员,能够活化Caspase-1进而产生并释放成熟的促炎因子白细胞介素1β和白细胞介素18,参与体内非感染性炎症反应。研究证实NLRP3炎症小体活性与动脉粥样硬化的病变显著相关,并发现了多条NLRP3炎症小体激活通道。本文拟对NLRP3炎症小体与动脉粥样硬化形成之间关系的研究进展作一综述,并对具有潜力的药物靶点进行阐述。  相似文献   

9.
心血管疾病是全球首要死亡原因,动脉粥样硬化是其潜在病理机制。目前,动脉粥样硬化的炎症理论已深入人心。Canakinumab Anti-Inflammatory Thrombosis Outcome Study(CANTOS)直接验证这一理论,它证明了白介素(IL)-1β的特异性抗体canakinumab的临床治疗前景。IL-1β是IL-1家族中经典的促炎细胞因子,可促进动脉粥样硬化形成及斑块不稳定。炎症小体参与炎症的发生与进展,NLRP3炎症小体是研究最为广泛的炎症小体,激活的NLRP3炎症小体可促进IL-1β的分泌与成熟,导致动脉粥样硬化进展。现主要综述NLPR3/IL-1β途径在动脉粥样硬化中的作用,并结合CANTOS结果探讨抗炎治疗在临床上的应用前景。  相似文献   

10.
固有免疫是机体的第一道防线。其家族成员NLRP3炎症小体是炎性免疫反应的重要组成部分,它不仅是炎l生反应的“感受器”,亦是炎性反应的“调节器”。NLRP3炎症小体能够识别内源性危险信号,激活e,aspase-1,继而活化白细胞介素(IL)-1β、IL-18等细胞因子,激发炎性反应瀑布效应,在糖尿病及其并发症中起重要作用。高血糖、高血脂和高血尿酸可激活NLRP3炎症小体,活化的NLRP3炎症小体通过K+通道模型、溶酶体破坏模型及活性氧簇模型介导糖尿病肾病、糖尿病视网膜病变和动脉粥样硬化的发生、发展。  相似文献   

11.
Inflammasomes are multiprotein intracellular complexes which are responsible for the activation of inflammatory responses. Among various subtypes of inflammasomes, NLRP3 has been a subject of intensive investigation. NLRP3 is considered to be a sensor of microbial and other danger signals and plays a crucial role in mucosal immune responses, promoting the maturation of proinflammatory cytokines interleukin 1β(IL-1β) and IL-18. NLRP3 inflammasome has been associated with a variety of inflammatory and autoimmune conditions, including inflammatory bowel diseases(IBD). The role of NLRP3 in IBD is not yet fully elucidated as it seems to demonstrate both pathogenic and protective effects. Studies have shown a relationship between genetic variants and mutations in NLRP3 gene with IBD pathogenesis. A complex interaction between the NLRP3 inflammasome and the mucosal immune response has been reported. Activation of the inflammasome is a key function mediated by the innate immune response and in parallel the signaling through IL-1β and IL-18 is implicated in adaptive immunity. Further research is needed to delineate the precise mechanisms of NLRP3 function in regulating immune responses. Targeting NLRP3 inflammasome and its downstream signaling will provide new insights into the development of future therapeutic strategies.  相似文献   

12.
目的通过建立ApoE-/-小鼠动脉粥样硬化(As)模型,探讨As病程不同时间点NOD样受体热蛋白结构域3(NLRP3)炎症小体表达水平的变化及瓜蒌-薤白的干预作用。方法将高脂饲养6、20、34周的ApoE-/-小鼠均随机分为模型组(M1、M2、M3)和给药组[6 g/(kg·d)](GX1、GX2、GX3),每组10只;另设C57BL/6J小鼠为空白组(C1、C2、C3)。空白组及模型组小鼠给予生理盐水灌胃,给药组小鼠每日给予相应药物灌胃,共4周。实验结束后处死小鼠,油红O染色评估主动脉斑块面积及形态;HE染色观察主动脉病理形态学变化;免疫组织化学法检测主动脉NLRP3表达;ELISA法检测血清中白细胞介素1β(IL-1β)和白细胞介素18(IL-18)水平;Western blot法检测主动脉组织中NLRP3、凋亡相关斑点样蛋白(ASC)、含半胱氨酸的天冬氨酸蛋白水解酶1(Caspase-1)的蛋白表达;qRT-PCR检测主动脉组织中NLRP3、ASC、Caspase-1的mRNA表达。结果在As病程进展过程中,模型组小鼠主动脉脂质累积和斑块面积显著增加,血清中IL-1β和IL-18的表达不断升高,NLRP3和ASC的蛋白及mRNA的表达均不断上调。Caspase-1的蛋白表达也呈上升趋势,但M2与M3组间的比较无统计学差异。与模型组相比,给药组各时间点小鼠主动脉的脂质累积和斑块面积显著减少,血清中IL-1β和IL-18的水平降低;主动脉组织中N LRP3、ASC、Caspase-1蛋白和mRNA表达显著下调。结论NLRP3炎症小体参与了主动脉As的病变过程,瓜蒌-薤白可能通过调节As模型小鼠主动脉不同阶段NLRP3炎症小体的表达,从而发挥抗As的作用。  相似文献   

13.
李威  刘明鑫  唐艳红 《心脏杂志》2019,31(3):334-338
NLRP3炎性体是先天免疫反应的参与者,通过相关激活信号来触发炎症。NLRP3炎性体在心肌细胞和心脏成纤维细胞中表达,通过水解含半胱氨酸的天冬氨酸蛋白水解酶(caspase-1)前体生成caspase-1促使白介素(IL)-1β、IL-18的成熟和释放而导致细胞焦亡,其浸润影响到心肌病和心律失常等心血管疾病的发生发展过程。在这篇综述中,我们介绍了NLRP3炎性体在心肌病和心律失常中的作用及相关机制,对探索针对NLRP3炎症体在此类疾病中的治疗方案有重要意义。  相似文献   

14.
Macrophages respond to bacterial products by releasing a large array of inflammatory mediators. We demonstrate that, in the presence of IgG immune complexes, macrophages produce high levels of IL-10 and virtually no IL-12, when they are exposed to bacterial products. The production of IL-10 by these cells can dampen innate inflammatory responses to microbial products, such as LPS. This alteration in macrophage cytokine production can also influence an adaptive immune response, preferentially inducing Th2-type immunity. Thus, immune complexes change the physiology of activated macrophages, converting them to anti-inflammatory cells that induce Th2-like immune responses. We have termed these cells type II activated macrophages.  相似文献   

15.
Infections with viral pathogens are widespread and can cause a variety of different diseases. In-depth knowledge about viral triggers initiating an immune response is necessary to decipher viral pathogenesis. Inflammasomes, as part of the innate immune system, can be activated by viral pathogens. However, viral structural components responsible for inflammasome activation remain largely unknown. Here we analyzed glycoproteins derived from SARS-CoV-1/2, HCMV and HCV, required for viral entry and fusion, as potential triggers of NLRP3 inflammasome activation and pyroptosis in THP-1 macrophages. All tested glycoproteins were able to potently induce NLRP3 inflammasome activation, indicated by ASC-SPECK formation and secretion of cleaved IL-1β. Lytic cell death via gasdermin D (GSDMD), pore formation, and pyroptosis are required for IL-1β release. As a hallmark of pyroptosis, we were able to detect cleavage of GSDMD and, correspondingly, cell death in THP-1 macrophages. CRISPR-Cas9 knockout of NLRP3 and GSDMD in THP-1 macrophages confirmed and strongly support the evidence that viral glycoproteins can act as innate immunity triggers. With our study, we decipher key mechanisms of viral pathogenesis by showing that viral glycoproteins potently induce innate immune responses. These insights could be beneficial in vaccine development and provide new impulses for the investigation of vaccine-induced innate immunity.  相似文献   

16.
The role of vascular cells during inflammation is critical and is of particular importance in inflammatory diseases, including atherosclerosis, ischemia/reperfusion, and septic shock. Research in vascular biology has progressed remarkably in the last decade, resulting in a better understanding of the vascular cell responses to inflammatory stimuli. Most of the vascular inflammatory responses are mediated through the IkappaB/nuclear factor-kappaB system. Much recent work shows that vascular inflammation can be limited by anti-inflammatory counteregulatory mechanisms that maintain the integrity and homeostasis of the vascular wall. The anti-inflammatory mechanisms in the vascular wall involve anti-inflammatory external signals and intracellular mediators. The anti-inflammatory external signals include the anti-inflammatory cytokines, transforming growth factor-beta, interleukin-10 and interleukin-1 receptor antagonist, HDL, as well as some angiogenic and growth factors. Physiological laminar shear stress is of particular importance in protecting endothelial cells against inflammatory activation. Its effects are partly mediated through NO production. Finally, endogenous cytoprotective genes or nuclear receptors, such as the peroxisome proliferator-activated receptors, can be expressed by vascular cells in response to proinflammatory stimuli to limit the inflammatory process and the injury.  相似文献   

17.
The NLRP3 inflammasome consists of NLRP3, ASC, and pro-caspase-1 and is an important arm of the innate immune response against influenza A virus (IAV) infection. Upon infection, the inflammasome is activated, resulting in the production of IL-1β and IL-18, which recruits other immune cells to the site of infection. It has been suggested that in the presence of stress molecules such as nigericin, the trans-Golgi network (TGN) disperses into small puncta-like structures where NLRP3 is recruited and activated. Here, we investigated whether IAV infection could lead to TGN dispersion, whether dispersed TGN (dTGN) is responsible for NLRP3 inflammasome activation, and which viral protein is involved in this process. We showed that the IAV causes dTGN formation, which serves as one of the mechanisms of NLRP3 inflammasome activation in response to IAV infection. Furthermore, we generated a series of mutant IAVs that carry mutations in the M2 protein. We demonstrated the M2 proton channel activity, specifically His37 and Trp41 are pivotal for the dispersion of TGN, NLRP3 conformational change, and IL-1β induction. The results revealed a novel mechanism behind the activation and regulation of the NLRP3 inflammasome in IAV infection.  相似文献   

18.
PURPOSE OF REVIEW: Atherosclerosis is a chronic inflammatory/immune disease involving multiple cell types including monocytes-macrophages, T-lymphocytes, mast cells, and endothelial cells. Through recent studies the role of the immune system on development of atherosclerosis and approaches to modulate this response are being elucidated. RECENT FINDINGS: The use of statins, PPARgamma agonists or lipoprotein-associated phospholipase A2 (Lp-PLA2) inhibitors may play a role in reducing progression of atherosclerosis through immunomodulatory pathways. Oxidized LDL biases development toward the pro-inflammatory T-cell Th1 subset and recruits macrophages into the vascular wall. IFNgamma, produced by Th1 cells, inhibits PPARgamma effects. Lp-PLA2 levels correlate with an increased risk of recurrent ischemic events in patients presenting with acute coronary syndromes or myocardial infarction. SUMMARY: Recent research has shown that immune pathways play a major role in the development and progression of atherosclerosis. Commonly used medications, specifically statins and some PPARgamma agonists, have demonstrated anti-inflammatory/immune effects unrelated to their primary mode of action. Treatment of infectious agents has proven elusive in the clinical arena. Novel agents targeting immune and inflammatory pathways may prove beneficial in reducing progression and instability of the atherosclerotic plaque.  相似文献   

19.
Leukocyte-derived microparticles (LMPs) may originate from neutrophils, monocytes/macrophages, and lymphocytes. They express markers from their parental cells and harbor membrane and cytoplasmic proteins as well as bioactive lipids implicated in a variety of mechanisms, maintaining or disrupting vascular homeostasis. When they carry tissue factor or coagulation inhibitors, they participate in hemostasis and pathological thrombosis. Both proinflammatory and anti-inflammatory processes can be affected by LMPs, thus ensuring an appropriate inflammatory response. LMPs also play a dual role in the endothelium by either improving the endothelial function or inducing an endothelial dysfunction. LMPs are implicated in all stages of atherosclerosis. They circulate at a high level in the bloodstream of patients with high atherothrombotic risk, such as smokers, diabetics, and subjects with obstructive sleep apnea, where their prolonged contact with the vessel wall may contribute to its overall deterioration. Numbering microparticles, including LMPs, might be useful in predicting cardiovascular events. LMPs modify the endothelial function and promote the recruitment of inflammatory cells in the vascular wall, necessary processes for the progression of the atherosclerotic lesion. In addition, LMPs favor the neovascularization within the vulnerable plaque and, in the ruptured plaque, they take part in coagulation and platelet activation. Finally, LMPs participate in angiogenesis. They might represent a novel therapeutic tool to reset the angiogenic switch in pathologies with altered angiogenesis. Additional studies are needed to further investigate the role of LMPs in cardiovascular diseases. However, large-scale studies are currently difficult to set up because microparticle measurement still requires elaborate techniques which lack standardization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号