首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
DNA replication in eucaryotic cells involves a variety of proteins which synthesize the leading and lagging strands in an asymmetric coordinated manner. To analyse the effect of this asymmetry on the translesion synthesis of UV-induced lesions, we have incubated SV40 origin-containing plasmids with a unique site-specific cis,syn-cyclobutane dimer or a pyrimidine-pyrimidone (6-4) photoproduct on either the leading or lagging strand template with DNA replication-competent extracts made from human HeLa cells. Two dimensional agarose gel electrophoresis analyses revealed a strong blockage of fork progression only when the UV lesion is located on the leading strand template. Because DNA helicases are responsible for unwinding duplex DNA ahead of the fork and are then the first component to encounter any potential lesion, we tested the effect of these single photoproducts on the unwinding activity of the SV40 T antigen, the major helicase in our in vitro replication assay. We showed that the activity of the SV40 T-antigen helicase is not inhibited by UV-induced DNA lesions in double-stranded DNA substrate.  相似文献   

2.
BACKGROUND: The inhibition of DNA replication fork progression by DNA lesions can lead to cell death or genome instability. However, little is known about how such DNA lesions affect the concurrent synthesis of leading- and lagging-strand DNA catalysed by the protein machinery used in chromosomal replication. Using a system of semi-bidirectional DNA replication of an oriC plasmid that employs purified replicative enzymes and a replication-terminating protein of Escherichia coli, we examined the dynamics of the replication fork when it encounters a single abasic DNA lesion on the template DNA. RESULTS: A DNA lesion located on the lagging strand completely blocked the synthesis of the Okazaki fragment extending toward the lesion site, but did not affect the progression of the replication fork or leading-strand DNA synthesis. In contrast, a DNA lesion on the leading strand stalled the replication fork in conjunction with strongly inhibiting leading-strand synthesis. However, about two-thirds of the replication forks encountering this lesion maintained lagging-strand synthesis for about 1 kb beyond the lesion site, and the velocity with which the replication fork progressed seemed to be significantly reduced. CONCLUSIONS: The blocking DNA lesion affects DNA replication differently depending on which strand, leading or lagging, contains the lesion.  相似文献   

3.
Long inverted repeats (LIRs), often found in eukaryotic genomes, are unstable in Escherichia coli where they are recognized by the SbcCD (the bacterial Mre11/Rad50 homologue), an endonuclease/exonuclease capable of cleaving hairpin DNA. It has long been postulated that LIRs form hairpin structures exclusively on the lagging‐strand template during DNA replication, and SbcCD cleaves these hairpin‐containing lagging strands to generate DNA double‐strand breaks. Using a reconstituted oriC plasmid DNA replication system, we have examined how a replication fork behaves when it meets a LIR on DNA. We have shown that leading‐strand synthesis stalls transiently within the upstream half of the LIR. Pausing of lagging‐strand synthesis at the LIR was not clearly observed, but the pattern of priming sites for Okazaki fragment synthesis was altered within the downstream half of the LIR. We have found that the LIR on a replicating plasmid was cleaved by SbcCD with almost equal frequency on both the leading‐ and lagging‐strand templates. These data strongly suggest that the LIR is readily converted to a cruciform DNA, before the arrival of the fork, creating SbcCD‐sensitive hairpin structures on both leading and lagging strands. We propose a model for the replication‐dependent extrusion of LIRs to form cruciform structures that transiently impede replication fork movement.  相似文献   

4.
The ultraviolet (UV)-induced (6–4) pyrimidine–pyrimidone photoproduct [(6–4) PP] confers a large structural distortion in DNA. Here we examine in human cells the roles of translesion synthesis (TLS) DNA polymerases (Pols) in promoting replication through a (6–4) TT photoproduct carried on a duplex plasmid where bidirectional replication initiates from an origin of replication. We show that TLS contributes to a large fraction of lesion bypass and that it is mostly error-free. We find that, whereas Pol η and Pol ι provide alternate pathways for mutagenic TLS, surprisingly, Pol ζ functions independently of these Pols and in a predominantly error-free manner. We verify and extend these observations in mouse cells and conclude that, in human cells, TLS during replication can be markedly error-free even opposite a highly distorting DNA lesion.  相似文献   

5.
Mismatch-repair (MMR) systems correct DNA replication errors and respond to a variety of DNA lesions. Previous observations that MMR antagonizes UV mutagenesis, and that the mismatch-recognition protein heterodimer MSH2*MSH6 (MutSalpha) selectively binds DNA containing "mismatched" photoproducts (T[CPD]T/AG, T[6-4]T/AG) but not "matched" photoproducts (T[CPD]T/AA, T[6-4]T/AA), suggested that mismatched photoproducts would provoke MMR excision similar to mismatched bases. Excision of incorrect nucleotides inserted opposite template photoproducts might then prevent UV-induced mutation. We tested T[CPD]T/AG DNA, in a sequence context in which it is bound substantially by hMutSalpha and in three other contexts, for stimulation of 3' MMR excision in mammalian nuclear extracts. T[CPD]T/AG was inactive in HeLa extracts, or in extracts deficient in the photoproduct-binding proteins DDB or XPC* hHR23B, arguing against interference from the nucleotide excision repair pathway. Prior incubation with hMutSalpha and MLH2.PMS2 (hMutLalpha) did not increase excision relative to homoduplex controls. T[6-4]T/AG also failed to provoke excision. T/G, C/A, and T/T substrates, even though bound by hMutSalpha no better than T[CPD]T/AG substrates, efficiently provoked excision. Even a substrate containing three T[CPD]T/AG photoproducts (in different contexts) did not significantly provoke excision. Thus, MMR may suppress UV mutagenesis by non-excisive mechanisms.  相似文献   

6.
DNA polymerase δ (Polδ) carries out DNA replication with extremely high accuracy. This great fidelity primarily depends on the efficient exclusion of incorrect base pairs from the active site of the polymerase domain. In addition, the 3'-5' exonuclease activity of Polδ further enhances its accuracy by eliminating misincorporated nucleotides. It is believed that these enzymatic properties also inhibit Polδ from inserting nucleotides opposite damaged templates. To test this widely accepted idea, we examined in vitro DNA synthesis by human Polδ enzymes proficient and deficient in the exonuclease activity. We chose the UV-induced lesions cyclobutyl pyrimidine dimer (CPD) and 6-4 pyrimidone photoproduct (6-4 PP) as damaged templates. 6-4 PP represents the most formidable challenge to DNA replication, and no single eukaryotic DNA polymerase has been shown to bypass 6-4 PP in vitro. Unexpectedly, we found that Polδ can perform DNA synthesis across both 6-4 PP and CPD even with a physiological concentration of deoxyribonucleotide triphosphates (dNTPs). DNA synthesis across 6-4 PP was often accompanied by a nucleotide deletion and was highly mutagenic. This unexpected enzymatic property of Polδ in the bypass of UV photoproducts challenges the received notion that the accuracy of Polδ prevents bypassing damaged templates.  相似文献   

7.
DNA polymerases delta and epsilon (Poldelta and Polepsilon) are widely thought to be the major DNA polymerases that function in elongation during DNA replication in eukaryotic cells. However, the precise roles of these polymerases are still unclear. Here we comparatively analysed DNA replication in Xenopus egg extracts in which Poldelta or Polepsilon was immunodepleted. Depletion of either polymerase resulted in a significant decrease in DNA synthesis and accumulation of short nascent DNA products, indicating an elongation defect. Moreover, Poldelta depletion caused a more severe defect in elongation, as shown by sustained accumulation of both short nascent DNA products and single-stranded DNA gaps, and also by elevated chromatin binding of replication proteins that function more frequently during lagging strand synthesis. Therefore, our data strongly suggest the possibilities that Poldelta is essential for lagging strand synthesis and that this function of Poldelta cannot be substituted for by Polepsilon.  相似文献   

8.
The RecQ protein family is a highly conserved group of DNA helicases that play roles in maintaining genomic stability. In this study, we present biochemical and genetic evidence that Escherichia coli RecQ processes stalled replication forks and participates in SOS signaling. Cells that carry dnaE486, a mutation in the DNA polymerase III alpha-catalytic subunit, induce an RecA-dependent SOS response and become highly filamented at the semirestrictive temperature (38 degrees C). An recQ mutation suppresses the induction of SOS response and the filamentation in the dnaE486 mutant at 38 degrees C, causing appearance of a high proportion of anucleate cells. In vitro, RecQ binds and unwinds forked DNA substrates with a gap on the leading strand more efficiently than those with a gap on the lagging strand or Holliday junction DNA. RecQ unwinds the template duplex ahead of the fork, and then the lagging strand is unwound. Consequently, this process generates a single-stranded DNA (ssDNA) gap on the lagging strand adjacent to a replication fork. These results suggest that RecQ functions to generate an initiating signal that can recruit RecA for SOS induction and recombination at stalled replication forks, which are required for the cell cycle checkpoint and resumption of DNA replication.  相似文献   

9.
DNA polymerase η (pol η), of the Y‐family, is well known for its in vitro DNA lesion bypass ability. The most well‐characterized lesion bypassed by this polymerase is the cyclobutane pyrimidine dimer (CPD) caused by ultraviolet (UV) light. Historically, cellular and whole‐animal models for this area of research have been conducted using UV‐C (λ = 100–280 nm) owing to its ability to generate large quantities of CPDs and also the more structurally distorting 6‐4 photoproduct. Although UV‐C is useful as a laboratory tool, exposure to these wavelengths is generally very low owing to being filtered by stratospheric ozone. We are interested in the more environmentally relevant wavelength range of UV‐B (λ = 280–315 nm) for its role in causing cytotoxicity and mutagenesis. We evaluated these endpoints in both a normal human fibroblast control line and a Xeroderma pigmentosum variant cell line in which the POLH gene contains a truncating point mutation, leading to a nonfunctional polymerase. We demonstrate that UV‐B has similar but less striking effects compared to UV‐C in both its cytotoxic and its mutagenic effects. Analysis of the mutation spectra after a single dose of UV‐B shows that a majority of mutations can be attributed to mutagenic bypass of dipyrimidine sequences. However, we do note additional types of mutations with UV‐B that are not previously reported after UV‐C exposure. We speculate that these differences are attributed to a change in the spectra of photoproduct lesions rather than other lesions caused by oxidative stress. Environ. Mol. Mutagen. 55:375–384, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
Deficiencies of DNA polymerase eta—an enzyme mediating replication past UV-induced DNA damage—predispose individuals to xeroderma pigmentosum variant (XPV) and result in a high incidence of skin cancers. We designed, developed and assessed several complementary molecular approaches to detect a genetically inherited deletion within DNA polymerase eta. RNA was reverse transcribed from XPV fibroblasts and from normal human cells, and standard polymerase chain reaction (PCR) was conducted on the cDNA targeting a region with a 13 base pair deletion within the polymerase eta gene. PCR products were subjected to restriction fragment length polymorphism (RFLP) analysis and cycle DNA sequencing. The deletion was found to eliminate a BsrGI restriction site and affected the number of resultant fragments visualized after gel electrophoresis. Cycle sequencing of polymerase eta-specific amplicons from XPV and normal cells provided a second approach for detecting the mutation. Additionally, the use of a fluorescent nucleic acid dye—EvaGreen—in real-time PCR and melt curve analysis distinguished normal and XPV patient-derived amplicons as well as heteroduplexes that represent heterozygotic carriers without the need for high resolution melt analysis-compatible software. Our approaches are easily adaptable by diagnostic laboratories that screen for or verify genetically inherited disorders and identify carriers of a defective gene.  相似文献   

11.
The eukaryotic genome is in a constant state of modification and repair. Faithful transmission of the genomic information from parent to daughter cells depends upon an extensive system of surveillance, signaling, and DNA repair, as well as accurate synthesis of DNA during replication. Often, replicative synthesis occurs over regions of DNA that have not yet been repaired, presenting further challenges to genomic stability. DNA polymerase δ (pol δ) occupies a central role in all of these processes: catalyzing the accurate replication of a majority of the genome, participating in several DNA repair synthetic pathways, and contributing structurally to the accurate bypass of problematic lesions during translesion synthesis. The concerted actions of pol δ on the lagging strand, pol ? on the leading strand, associated replicative factors, and the mismatch repair (MMR) proteins results in a mutation rate of less than one misincorporation per genome per replication cycle. This low mutation rate provides a high level of protection against genetic defects during development and may prevent the initiation of malignancies in somatic cells. This review explores the role of pol δ in replication fidelity and genome maintenance. Environ. Mol. Mutagen. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
Trinucleotide repeats (TNRs) are highly unstable in genomes, and their expansions are linked to human disorders. DNA replication is reported to be involved in TNR instability, but the current models are insufficient in explaining TNR expansion is induced during replication. Here, we investigated replication fork progression across huntingtin (HTT)‐gene‐derived fragments using an Escherichia coli oriC plasmid DNA replication system. We found most of the forks to travel smoothly across the HTT fragments even when the fragments had a pathological length of CAG/CTG repeats (approximately 120 repeats). A little fork stalling in the fragments was observed, but it occurred within a short 3′‐flanking region downstream of the repeats. This region contains another short TNR, (CCG/CGG)7, and the sense strand containing CCG repeats appeared to impede the replicative DNA polymerase Pol III. Examining the behavior of the human leading and lagging replicative polymerases Pol epsilon (hPolε) and Pol delta (hPolδ) on this sequence, we found hPolδ replicating DNA across the CCG repeats but hPolε stalling at the CCG repeats even if the secondary structure is eliminated by a single‐stranded binding protein. These findings offer insights into the distinct behavior of leading and lagging polymerases at CCG/CGG repeats, which may be important for understanding the process of replication arrest and genome instability at the HTT gene.  相似文献   

13.
The human XPV (xeroderma pigmentosum variant) gene is responsible for the cancer-prone xeroderma pigmentosum syndrome and encodes DNA polymerase eta (pol eta), which catalyses efficient translesion synthesis past cis-syn cyclobutane thymine dimers (TT dimers) and other lesions. The fidelity of DNA synthesis by pol eta on undamaged templates is extremely low, suggesting that pol eta activity must be restricted to damaged sites on DNA. Little is known, however, about how the activity of pol eta is targeted and restricted to damaged DNA. Here we show that pol eta binds template/primer DNAs regardless of the presence of TT dimers. Rather, enhanced binding to template/primer DNAs containing TT dimers is only observed when the 3'-end of the primer is an adenosine residue situated opposite the lesion. When two nucleotides have been incorporated into the primer beyond the TT dimer position, the pol eta-template/primer DNA complex is destabilized, allowing DNA synthesis by DNA polymerases alpha or delta to resume. Our study provides mechanistic explanations for polymerase switching at TT dimer sites.  相似文献   

14.
Origins of replication are expected to recruit initiation proteins like origin recognition complex (ORC) and Cdc6 in eukaryotes and provide a platform for unwinding DNA. Here we test whether localization of initiation proteins onto DNA is sufficient for origin function. Different components of the ORC complex and Cdc6 stimulated prereplicative complex (pre-RC) formation and replication initiation when fused to the GAL4 DNA-binding domain and recruited to plasmid DNA containing a tandem array of GAL4-binding sites. Replication occurred once per cell cycle and was inhibited by Geminin, indicating that the plasmid was properly licensed during the cell cycle. The GAL4 fusion protein recruits other polypeptides of the ORC-Cdc6 complex, and nascent strand abundance was highest near the GAL4-binding sites. Therefore, the artificial origin recapitulates many of the regulatory features of physiological origins and is valuable for studies on replication initiation in mammalian cells. We demonstrated the utility of this system by showing the functional importance of the ATPase domains of human Cdc6 and Orc1 and the dispensability of the N-terminal segments of Orc1 and Orc2 in this assay. Artificial recruitment of a eukaryotic cellular replication initiation factor to a DNA sequence can create a functional origin of replication, providing a robust genetic assay for these factors and a novel approach to generating episomal vectors for gene therapy.  相似文献   

15.
A partial revertant (RH1–26) of the UV-sensitive Chinese hamster V79 cell mutant V-H1 (complementation group 2) was isolated and characterized. It was used to analyze the mutagenic potency of the 2 major UV-induced lesions, cyclobutane pyrimidine dimers and (6-4) photoproducts. Both V-H1 and RH1–26 did not repair pyrimidine dimers measured in the genome overall as well as in the active hprt gene. Repair of (6-4) photoproducts from the genome overall was slower in V-H1 than in wild-type V79 cells, but was restored to normal in RH1–26. Although V-H1 cells have a 7-fold enhanced mutagenicity, RH1–26 cells, despite the absence of pyrimidine dimer repair, have a slightly lower level of UV-induced mutagenesis than observed in wild-type V79 cells. The molecular nature of hprt mutations and the DNA-strand specificity were similar in V79 and RH1–26 cells but different from that of V-H1 cells. Since in RH1–26 as well as in V79 cells most hprt mutations were induced by lesions in the non-transcribed DNA strand, in contrast to the transcribed DNA strand in V-H1, the observed mutation-strand bias suggests that normally (6-4) photoproducts are preferentially repaired in the transcribed DNA strand. The dramatic influence of the impaired (6-4) photoproduct repair in V-H1 on UV-induced mutability and the molecular nature of hprt mutations indicate that the (6-4) photoproduct is the main UV-induced mutagenic lesion.  相似文献   

16.
17.
By the use of an SV40 origin of replication plasmid vector and the COS-1 cell system, expression of the gene encoding the herpes simplex virus type-2 (HSV-2) major DNA binding protein (ICP8) has been achieved. The HSV-2 4.5 kb BgIII 0 DNA fragment containing the ICP8 coding region was inserted into the plasmid vector pSVOd containing the SV40 origin of replication. Transfection of COS-1 cells by the resultant recombinant plasmid (pSVOd20), and subsequent multiplication of this plasmid, led to the production of the HSV-2 major DNA binding protein in sufficient quantities to allow its detection with either monoclonal or polyclonal antibodies as well as sera taken from HSV-2 patients.  相似文献   

18.
19.
Xeroderma pigmentosum-variant (XPV) is one type of XP, a rare autosomal recessive disorder, and caused by defects in the post replication repair machinery while nucleotide-excision repair (NER) is not impaired. In the present study, we reported a Chinese family with XPV phenotype, which was confirmed by histopathological results. Genetic variants were detected by polymerase chain reaction and exon sequencing. Furthermore, the reported molecular defects in XPV patients from previous literatures were reviewed. A homozygous c.67C>T mutation in the exon 2 of DNA polymerase eta (POLH), a novel non-sense mutation in POLH, was discovered.  相似文献   

20.
 The major genotoxicity of methyl methanesulfonate (MMS) is due to the production of a lethal 3-methyladenine (3MeA) lesion. An alkylation-specific base-excision repair pathway in yeast is initiated by a Mag1 3MeA DNA glycosylase that removes the damaged base, followed by an Apn1 apurinic/ apyrimidinic endonuclease that cleaves the DNA strand at the abasic site for subsequent repair. MMS is also regarded as a radiomimetic agent, since a number of DNA radiation-repair mutants are also sensitive to MMS. To understand how these radiation-repair genes are involved in DNA methylation repair, we performed an epistatic analysis by combining yeast mag1 and apn1 mutations with mutations involved in each of the RAD3, RAD6 and RAD52 groups. We found that cells carrying rad6, rad18, rad50 and rad52 single mutations are far more sensitive to killing by MMS than the mag1 mutant, that double mutants were much more sensitive than either of the corresponding single mutants, and that the effects of the double mutants were either additive or synergistic, suggesting that post-replication and recombination-repair pathways recognize either the same lesions as MAG1 and APN1, or else some differ- ent lesions produced by MMS treatment. Lesions handled by recombination and post replication repair are not simply 3MeA, since over-expression of the MAG1 gene does not offset the loss of these pathways. Based on the above analyses, we discuss possible mechanisms for the repair of methylation damage by various pathways. Received: 13 June/24 July 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号