首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Summary Nerve cell types of the neocortex-dependent nuclei of the human thalamus were investigated with the use of a transparent Golgi technique, that allows one to study not only the peculiarities of the cell processes, but also the marking characteristics of the intraneuronal lipofuscin pigment deposits. Three principal types of neurons have been distinguished:Type I is a medium-sized to large neuron with a profusely radiating dendrite system. Numerous large vacuolated pofuscin granules are cotained in one pole of the cell body.Type II is a small to medium-sized neuron with a few sparsely branching dendrites. Small and intensely stained pigment granules are dispersed within the cell body.Type III is a medium-sized to large neuron with only a few thick and almost unbranched dendrites devoid of spiny appendages. The dendrites extend over long distances. The cell body is devoid of lipofuscin granules.  相似文献   

2.
Summary The existence of Golgi type II neurons was verified in the anterior intralaminar central lateral (CL) nucleus of the cat thalamus, and its projection cell types were identified, by means of Golgi impregnation. CL principal neurons were found to display a large- or medium-sized cell body and a radiate dendritic pattern. Their primary dendrites were limited in number, and had a rather long course; they were poorly ramified. The axons of principal neurons were impregnated only occasionally and for a short distance. Projection neurons of the ‘bushy’ or tufted type, described in the main thalamic sensory nuclei, were not identified in the CL in the present study. Typical Golgi type II neurons were found throughout CL. They were mainly small-sized, and displayed a rich dendritic arborization characterized by dendritic appendages. The axons of Golgi type II neurons were seen to give rise to extensive local arborizations. The present findings indicate that in the cat CL, principal cells are mainly represented by radiate neurons. Typical local circuit neurons also are evident in CL, suggesting that the activity of anterior intralaminar structures is regulated by intrinsic mechanisms similar to those operating in the main thalamic relay nuclei.  相似文献   

3.
采用WGA-HRP和CB-HRP法,追踪了16只大鼠屏状核的传入纤维联系,结果表明大脑皮质的躯体感觉区,视皮质及扣带皮质有细胞发出纤维投射到屏状核,后脑腹侧核,未定带,中缝背核及脑脚周核投射到屏状核,下后脑外侧核,视前大细胞核,斜角带核水平支和蓝斑青少量纤维投射到屏状核。  相似文献   

4.
Summary The retrograde fluorescent tracers Fast Blue (FB) and Diamidino Yellow (DY) have been used to study subcortical afferents of the claustrum. DY or FB was injected into the claustrum. The greatest amount of labeled cell bodies were observed in the posterior thalamic nuclear complex. They were especially abundant in its caudal part, lying between the medial geniculate body and the pretectal area. In comparison to the numerous labeled cells near the diencephalic-mesencephalic junction, the number of fluorescing neurons in the brain stem was considerably lower. These neurons were mostly concentrated in the monoaminergic cell groups. The results indicate the presence of a substantial projection from the posterior thalamic and anterior pretectal region to the calustrum.P.S. was a fellow of the Alexander von Humboldt Foundation, on leave from the Department of Anatomy, Medical Academy, Debinki 1, 80-211 Gdansk, Poland  相似文献   

5.
Summary Visual cortex, including areas 17, 18, and sometimes 19, was injected with tritiated leucine. Terminal labelling could be detected by autoradiography in the dorsocaudal part of the ipsilateral claustrum in all cases.  相似文献   

6.
Summary The auditory response properties of single neurons in claustrum and putamen were studied in response to simple dichotic stimuli (viz. noise- and tone-bursts) in chloralose-anaesthetized cats. Neurons in claustrum were commonly weakly driven with long latency, were broadly tuned and were excited by stimulation of either ear (EE). Putamen neurons, in contrast, were securely driven with short latency, showed irregular tuning with a preference for low frequencies and were either EE or excited only by the contralateral ear (EO). The differences between claustrum and putamen responses can be related to differences in connections with the auditory cortical fields and with auditory thalamus. Some neurons were also tested for visual responsiveness: auditory and visual cells were intermingled in both nuclei and only a small percentage of cells were bimodal. In contrast to the visual and somatosensory input to claustrum, which are derived from primary cortical fields, the auditory input to claustrum is apparently derived from non-primary cortical regions, suggesting a fundamentally different role for processing of auditory information in claustrum.  相似文献   

7.
The anterior ventral nucleus neurons in of the camel brain were morphologically studied by Golgi impregnation method. Two neuronal types of were found in the camel anterior ventral thalamic nucleus, namely, Golgi-type I neurons and Golgi-type II neurons. Those neurons were generally similar to their counterparts in the human thalamus. The Golgi-type I neurons exhibited medium to large cell body (mean diameter = 25 μm) which was either multipolar or triangular in shape. They had from 3 to 10 primary dendrites with many branches but with no spines or appendages. The Golgi-type II neurons had small to medium size (somatic mean diameter = 17.5 μm), their cell bodies were variable in shape, some were round, and others were multipolar or fusiform. These cells bodies had two to six primary dendrites with few branches that may have spines and/or grape-like appendages. Our findings shed some light on the anterior ventral thalamic nucleus structure of the camel as one of the strongest adaptive mammals to the hard climatic conditions.  相似文献   

8.
The presence of the calcium-binding protein (CaBP) parvalbumin (PV) in the neuronal elements of the cat's dorsal claustrum was studied by immunohistochemistry at the light- and electron-microscopic level. PV-immunoreactive neurons and fibers were detected in all parts of the claustrum. The PV-immunoreactive neurons were divided into several subtypes according to their size and shape. Approximately 7% of all PV-immunoreactive neurons were classified as large, while approximately half of the labeled neurons were medium-sized. The small PV-immunoreactive neurons were 45% of the total PV-immunoreactive neuronal population. Ultrastructurally, many spiny and aspiny dendrites were heavily immunolabeled, and the reaction product was present in dendritic spines as well. Several types of synaptic boutons containing reaction product were also found. These boutons terminated on both labeled and unlabeled postsynaptic targets (soma, dendrites, etc.), forming asymmetric or symmetric synapses. Approximately 70% of all PV-immunoreactive terminals contained round synaptic vesicles and formed asymmetric synapses. The majority of these boutons were of the 'large round' type. A lesser percentage were of the 'small round' type. This paper represents the first study demonstrating the existence of PV, a CaBP, in the cat claustrum, and its distribution at the light and electron microscope level. Beyond the relevance of this research from the standpoint of adding to the paucity of literature on PV immunoreactivity in the claustrum of various other mammals (e.g. monkey, rabbit, rat, mouse), it is of particular significance that the cat claustrum is more similar to the rabbit claustrum than to any other mammalian species studied thus far, noted by the existence of four distinct morphologic subtypes. We also demonstrate a lack of intrinsic, and possibly functional, heterogeneity as evidenced by the uniform distribution of PV throughout the cat claustrum, across the four cell subtypes (i.e. inhibitory interneurons as well as projection neurons). Indeed, the association with, and influence of, the cat claustrum on diverse multisensory mechanisms may have more to do with its afferent than efferent relationships, which speaks strongly for its importance in the sensory hierarchy. Exactly what role PV plays in the claustrum is subject to discussion, but it can be postulated that, since CaBP is associated with GABAergic interneurons, synaptogenesis and neuronal maturation, it may also serve as a neuroprotectant, particularly with regard to pathologies associated with the aging process, such as in Alzheimer's disease.  相似文献   

9.
Summary The effect of claustrum (CL) stimulation on the spontaneous unitary activity of ipsi and contralateral frontal oculomotor neurons, was studied in chloralose-anaesthetized cats. A total of 205 units was bilaterally recorded in the medial oculomotor area, homologous of the primate frontal eye fields 127 neurons were identified as projecting to the superior colliculus; for 33 of these last units stimulation of the ipsilateral CL provoked an excitatory effect lasting 10–25 ms and appearing with a latency of 5–15 ms; on 8 units the excitatory effect was followed by an inhibition lasting 100–250 ms. Ninety-eight of the 127 neurons were also tested through activation of the contralateral CL: 13 cells showed an excitatory effect lasting 10–35 ms and appearing with a latency of 20–50 ms. In three of the thirteen units the excitatory effect was followed by an inhibition lasting 100–150 ms. Complete section of the corpus callosum abolished the contralateral CL effect, suggesting the existence of a direct claustro-contralateral oculomotor cortex pathway running through the corpus callosum. The results could support the hypothesis that the CL may play a role in the bilateral control of the visuomotor performance.  相似文献   

10.
《Acta histochemica》2019,121(4):383-391
The claustrum is a bilateral subcortical nucleus situated between the insular cortex and the striatum in the brain of all mammals. It consists of two embryologically distinct subdivisions - dorsal and ventral claustrum. The claustrum has high connectivity with various areas of the cortex, subcortical and allocortical structures. It has long been suggested that the various claustral connections have different types of synaptic contacts at the claustral neurons. However, to the best of our knowledge, the literature data on the ultrastructural organization of the different types of synaptic contacts in the dorsal claustrum are very few. Therefore, the aim of our study was to observe and describe the synaptic organization of the dorsal claustrum in the cat. We used a total of 10 adult male cats and conducted an ultrastructural study under a transmission electron microscope as per established protocol. We described a multitude of dendritic spines, which were subdivided into two types - with and without foot processes. Based on the size and shape of the terminal boutons, the quantity and distribution of vesicles and the characteristic features of the active synaptic zone, we described six types of synaptic boutons, most of which formed asymmetrical synaptic contacts. Furthermore, we reported the presence of axo-dendritic, axo-somatic, dendro-dendritic and axo-axonal synapses. The former two likely represent the morphological substrate of the corticoclaustral pathway, while the remaining two types have the ultrastructural features of inhibitory synapses, likely forming a local inhibitory circuit in the claustrum. In conclusion, the present study shares new information about the neuropil of the claustrum and proposes a systematic classification of the types of synaptic boutons and contacts observed in the dorsal claustrum of the cat, thus supporting its key and complex role as a structure integrating various information within the brain.  相似文献   

11.
Although the detailed structure and function of the claustrum remain enigmatic, its extensive reciprocal connection with the cortex suggests a role in the integration of multisensory information.Claustrum samples, obtained from necropsy of four dogs, were formalin fixed for paraffin embedding. Sections were either stained for morpho-histological analysis or immunostained for parvalbumin (PV). We focused on PV because in cortical and hippocampal areas it is a marker of the fast-spiking interneurons which have an important role in the information transmission and processing. Soma area, perimeter and circularity were considered as morphological parameters to quantitatively group the PV positive somata by k-means clustering.The histological investigation revealed a superior pyramidoid puddle and a posterior puddle characterized by a “cloud” of neurons in its dorso-lateral part. Immunostaining showed positive somata and fibers throughout the rostro-caudal extent of the dog claustrum, localized principally in the dorsal region. k-Means clustering analysis enabled neuron classification according to size, identifying respectively big (radius = 11.42 ± 1.99 μm) and small (radius = 6.33 ± 1.08 μm) cells. No statistical differences in soma shape were observed. The topographical distribution of PV immunoreactivity suggests that the dog dorsal claustrum might be functionally related to the processing of visual inputs.Taken together our findings may help in the understanding the physiology of claustrum when compared with anatomical and functional data obtained in other species.  相似文献   

12.
The functional integrity of the neocortical circuit relies on the precise production of diverse neuron populations and their assembly during development. In recent years, extensive progress has been made in the understanding of the mechanisms that control differentiation of each neuronal type within the neocortex. In this review, we address how the elaborate neocortical cytoarchitecture is established from a simple neuroepithelium based on recent studies examining the spatiotemporal mechanisms of neuronal subtype specification. We further discuss the critical events that underlie the conversion of the stem amniotes cerebrum to a mammalian-type neocortex, and extend these key findings in the light of mammalian evolution to understand how the neocortex in humans evolved from common ancestral mammals.  相似文献   

13.
The claustrum is a telencephalic nucleus located ventrolateral to the basal ganglia in the mammalian brain. It has an extensive reciprocal connectivity with most if not all of the cerebral cortex, in particular, primary sensory areas. However, despite renewed and growing interest amongst investigators, there remains a paucity of data concerning its peptidergic profile. The aim of the present study was to examine the presence, morphology, distribution and ultrastructure of neuropeptide Y-immunoreactive (NPY-ir) neurons and fibers in the claustrum of the cat. Ten adult healthy cats from both sexes were used. All animals received human and ethical treatment in accordance with the Principles of Laboratory Animal Care. Subjects were irreversibly anesthetized and transcardially perfused with fixative solution containing glutaraldehyde and paraformaldehyde. Brains were promptly removed, postfixed and sectioned. Slices were incubated with polyclonal anti-NPY antibodies according to the standard avidin–biotin–peroxidase complex method adopted by our Department of Anatomy, Histology and Embryology. NPY-ir neurons and fibers were found to be diffusely distributed throughout the claustrum, with no obvious topographic or functional patterning other than larger numbers in its central/broadest part (stereotaxic planes A12–A16). Neurons were generally classified by diameter into three sizes: small (under 17 μm), medium (17–25 μm) and large (over 25 μm). Staining density is varied with some neurons appearing darker than others. At the electron-microscopic level NPY immunoproduct was observed within neurons, dendrites and terminal boutons, each differing relative to their ultrastructural attributes. Two types of NPY-ir synaptic boutons were found. Lastly, it is of interest to note that gender-specific differences were not observed.  相似文献   

14.
Cannabinoid receptor 1 (CB1R) and fatty acid amide hydrolase (FAAH) are part of the endocannabinoid system (ECB) which exerts a neuromodulatory activity on different brain functions and plays a key role in neurogenesis. Although many studies have reported FAAH and CB1R expression in the brain of different animal species, to the best of our knowledge they have never been described in the canine claustrum. Claustrum samples, obtained from necropsy of four neurologically normal dogs, were formalin fixed for paraffin embedding. Sections were either stained for morpho-histological analysis or immunostained for CB1R and FAAH. Analysis of adjacent sections incubated with the two antisera showed a complementary labeling pattern in the claustrum, with CB1R antibody staining fibers while anti-FAAH antibody stained cell bodies and the proximal portion of dendrites; this particular anatomical relationship suggests a retrograde endocannabinoid action via CB1R. CB1R and FAAH complementary immunostaining and their cellular localization reported here provide the first anatomical evidence for existence of the ECB in the dog claustrum.  相似文献   

15.
We investigated Lewy pathologies in the claustrum and the related cerebral cortices and subcortical nuclei of dementia with Lewy bodies (DLB) brains using alpha-synuclein-immunohistochemistry to clarify the relationship between Lewy pathology in the claustrum and visual misidentification of DLB patients. The claustrum is known to have strong reciprocal connections with the visual areas. Consequently, the claustrum demonstrated many Lewy bodies (LB) and LB-related neurites. The insular and inferior temporal cortices, amygdala, BA 18, 19, transentohrinal and cingulate cortices showed stronger or similar Lewy pathology as compared with the claustrum, while BA 17, precentral, postcentral and transverse temporal cortices showed weaker Lewy pathology. Comparing the correlation coefficient of Lewy pathology between the clausturm and other regions, BA 18 and 19 as well as the insular and transentorhinal cortices demonstrated a higher correlation coefficient. These findings suggest that Lewy pathology in the claustrum is more closely associated with that in visual areas than in auditory, somatosensory or motor areas, and that dysfunction of the visuo-claustral pathway participates in visual misidentification in addition to the visuo-amygdaloid pathway. The paralimbic cortices including the insular and transentorhinal cortices may connect visual areas with limbic areas by relay of the visuo-claustral or visuo-amygdaloid pathway.  相似文献   

16.
17.
The claustrum is a subcortical structure lying under the insular and piriform cortices, whose function is still not clear. Although data exist on connections of the claustrum and the limbic cortex, the topography of the limbic zone in the rabbit and rat claustrum has not been studied extensively. The study was performed on 17 adult Wistar rats and 12 New Zealand rabbits. Two percent water solutions of fluorescent retrograde tracers fast blue and nuclear yellow were injected into the various regions of the limbic cortex. The limbic zone is localized throughout the whole rostrocaudal extent of the claustrum, mainly in its ventromedial portion lying close to the external capsule. Although this zone of the claustrum is localized similarly in both rat and rabbit, some differences between these two species exist. In the rat, neurons projecting to all limbic areas are localized mainly in the anterior and central parts of the claustrum, whereas in the rabbit, the majority of the neurons projecting to the cingulate cortex are present in the anterior and central parts of this structure, while neurons sending axons to the retrosplenial cortex are localized in the central and posterior parts. In both species, double-labeling study showed that neurons projecting to various limbic regions are intermingled and that neurons sending axons into two different limbic regions are seen only occasionally. Our findings give support to the role of the claustrum in integrating information between different areas of the cerebral cortex and the limbic system. Accepted: 11 June 1999  相似文献   

18.
The neuronal composition of the thalamic reticular nucleus was studied in serial sections of the sagittal and frontal projections impregnated with silver nitrate by the Golgi method. The neuronal composition of the reticular nucleus of the human thalamus was wider than has previously been described in animals and humans. This nucleus, apart from two types of large, sparsely branched, long-dendrite, reticular, aspiny, neurons, i.e., types R1 and R2, contained cells with spines. Intermediate and small, sparsely-branched, short-dendrite neurons and densely-branched cells with spines were demonstrated. The principles of the organization of the reticular nucleus of the human thalamus are described. __________ Translated from Morfologiya, Vol. 127, No. 3, pp. 21–26, May–June, 2005. Candidate of Biological Sciences  相似文献   

19.
Summary Horizontal (H-)cells were recorded intracellularly in the retinae of optically intact feline eyes in vivo. A small light spot orbiting slowly around the receptive field centers was used to quantify the fine structure and diameter of the receptive fields. Receptive field diameters measured in this way were larger than those measured with centered spots of increasing diameter. All H-units studied showed clearly anisotropic receptive field structures. These results are summarized in polar plots representing the local response generating sites with their corresponding response plus transport latencies. It is shown that the anisotropic receptive field properties are not incompatible with the approximately homogenous spatial distribution of H-cell somata reported by Wässle and Rieman (1978) for the axonless type of horizontal cell. Finally it is concluded that each H-cell might be involved in many different locally specialized signal processing activities.  相似文献   

20.
Summary The cortex of the superior, middle and inferior temporal gyri of the human cerebral hemispheres was investigated using Nissl, Golgi and fibre staining techniques. Brodmann's (1909) area 41, corresponding to the primary auditory cortex in Heschl's transverse temporal gyri, consisted of typical koniocortex, and formed the middle part of the superior temporal plane (the buried lower bank of the Sylvian fissure). Anteriorly the superior temporal plane contained area 22, and posteriorly the planum temporale (part of area 42). The lateral surfaces of the superior, middle and inferior temporal gyri respectively correspond to areas 22, 21 and 20. Neurons in much of the left temporal cortex, apart from area 41, formed radial columns. This columnar organisation was most pronounced posteriorly and superiorly, so that anterior area 20 was the least columnar and area 42 the most. The right temporal cortex was markedly less columnar than the left. Golgi studies showed a variety of pyramidal and non-pyramidal neurons, with specific varieties typical of individual cortical layers.This paper represents part of a study for the degree of Ph.D. in the National University of Singapore by WYO  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号