首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Interleukin-7 is a critical cytokine for lymphoid development and a direct inhibitor of in vitro osteoclastogenesis in murine bone marrow cultures. To explore the role of IL-7 in bone, we generated transgenic mouse lines bearing the 2.3-kb rat collagen 1α1 promoter driving the expression of human IL-7 specifically in osteoblasts. In addition, we crossed these mice with IL-7-deficient mice to determine if the alterations in lymphopoiesis, bone mass, and osteoclast formation observed in the IL-7 knockout (KO) mice could be rescued by osteoblast-specific overexpression of IL-7. Here, we show that mice overexpressing human IL-7 in the osteoblast lineage showed increased trabecular bone volume in vivo by μCT and decreased osteoclast formation in vitro. Furthermore, targeted overexpression of IL-7 in osteoblasts rescued the osteopenic bone phenotype and B-cell development of IL-7 KO mice but did not have an effect on T lymphopoiesis, which occurs in the periphery. The bone phenotypes in IL-7 KO mice and targeted IL-7-overexpressing mouse models were observed only in females. These results likely reflect both direct inhibitory effects of IL-7 on osteoclastogenesis in vivo and sex-specific differences in responses to IL-7.  相似文献   

5.
Hypophosphatemia is an X-linked dominant disorder resulting from a mutation in the PHEX gene. While osteoblast-specific expression of the PHEX transgene has been reported to decrease the phosphate wasting associated with the disease in male hypophosphatemic (HYP) mice, there are reports that the mineralization defect is only partially corrected in young animals. To test the hypothesis that osteoblast-specific expression of the PHEX gene for a longer time would correct the mineralization defect, this study examined the bones of 9-month-old male and female HYP mice and their wild-type controls with or without expression of the transgene under a collagen type I promoter. Serum phosphate levels, alkaline phosphatase activity, and FGF23 levels were also measured. Mineral analyses based on wide-angle X-ray diffraction, Fourier transform-infrared (FT-IR) spectroscopy, and FT-IR imaging confirmed the decreased mineral content and increased mineral crystal size in male HYP humerii compared to wild-type males and females with or without the transgene and in female HYP mice with or without the transgene. There was a significant increase in mineral content and a decrease in crystallinity in the HYP males’ bones with the transgene, compared to those without. Of interest, expression of the transgene in wild-type animals significantly increased the mineral content in both males and females without having a detectable effect on crystallinity or carbonate content. In contrast to the bones, based on micro-computed tomography and FT-IR imaging, at 9 months there were no significant differences between the HYP and the WT teeth, precluding analysis of the effect of the transgene.  相似文献   

6.
7.
Biglycan (bgn) is an extracellular matrix proteoglycan that is enriched in bone and other skeletal connective tissues. Previously, we generated bgn-deficient mice and showed that they developed age-dependent osteopenia. To identify the cellular events that might contribute to this progressive osteoporosis, we measured the number of osteogenic precursors in the bone marrow of normal and mutant mice. The number of colonies, indicative of the colony-forming unit potential of fibroblasts (CFU-F), gradually decreased with age. By 24 weeks of age, colony formation in the bgn knockout (KO) mice was significantly more reduced than that in the wild type (wt) mice. This age-related reduction was consistent with the extensive osteopenia previously shown by X-ray analysis and histological examination of 24-week-old bgn KO mice. Because bgn has been shown previously to bind and regulate transforming growth factor beta (TGF-beta) activity, we also asked whether this growth factor would affect colony formation. TGF-beta treatment significantly increased the size of the wt colonies. In contrast, TGF-beta did not significantly influence the size of the bgn colonies. An increase in apoptosis in bgn-deficient bone marrow stromal cells (BMSCs) was observed also. The combination of decreased proliferation and increased apoptosis, if it occurred in vivo, would lead to a deficiency in the generation of mature osteoblasts and would be sufficient to account for the osteopenia developed in the bgn KO mice. The bgn KO mice also were defective in the synthesis of type I collagen messenger RNA (mRNA) and protein. This result supports the suggestion that the composition of the extracellular matrix may be regulated by specific matrix components including bgn.  相似文献   

8.
9.
Hypophosphatemic transgenic (tg) mice overexpressing FGF23 in osteoblasts display disorganized growth plates and reduced bone mineral density characteristic of rickets/osteomalacia. These FGF23 tg mice were used as an in vivo model to examine the relation between osteoclast polarization, secretion of proteolytic enzymes and resorptive activity. Tg mice had increased mRNA expression levels of the osteoblast differentiation marker Runx2 and mineralization-promoting proteins alkaline phosphatase and bone sialoprotein in the long bones compared to wild type (wt) mice. In contrast, expression of alpha1(I) collagen, osteocalcin, dentin matrix protein 1 and osteopontin was unchanged, indicating selective activation of osteoblasts promoting mineralization. The number of osteoclasts was unchanged in tg compared to wt mice, as determined by histomorphometry, serum levels of TRAP 5b activity as well as mRNA expression levels of TRAP and cathepsin K. However, tg mice displayed elevated serum concentrations of C-terminal telopeptide of collagen I (CTX) indicative of increased bone matrix degradation. The majority of osteoclasts in FGF23 tg mice lacked ultrastructural morphological signs of proper polarization. However, they secreted both cathepsin K and MMP-9 at levels comparable to osteoclasts with ruffled borders. Mineralization of bone matrix thus appears essential for inducing osteoclast polarization but not for secretion of osteoclast proteases. Finally, release of CTX by freshly isolated osteoclasts was increased on demineralized compared to mineralized bovine bone slices, indicating that the mineral component limits collagen degradation. We conclude that ruffled borders are implicated in acidification and subsequent demineralization of the bone matrix, however not required for matrix degradation. The data collectively provide evidence that osteoclasts, despite absence of ruffled borders, effectively participate in the degradation of hypomineralized bone matrix in rachitic FGF23 tg mice.  相似文献   

10.
11.
This study compares the synthesis of mutant type I collagen in cultured dermal fibroblasts and trabecular osteoblasts that were isolated from a patient with moderately severe osteogenesis imperfecta (type IV). Previous study of this patient's dermal fibroblasts revealed a 2000 dalton deletion located in cyanogen bromide peptide 4 of alpha 2(I)-collagen. The phenotype of the bone cell cultures was defined by a 3-4 day logarithmic phase doubling time, predominantly type I collagen production over type III and alkaline phosphatase activity 13.5 times dermal fibroblast levels. The current study revealed that both fibroblasts and osteoblasts synthesized a normal and a shortened alpha 2(I) chain, each as the product of separate alleles. Following pepsin treatment of the procollagens, a shortened alpha 1(I) chain was also seen in both cell types. Cyanogen bromide peptide mapping of osteoblast alpha-chains demonstrated the same deletions in the cyanogen bromide peptide 4 as observed in the fibroblast cyanogen bromide maps. PAGE analysis of oligonucleotide-specific cDNA that was reverse transcribed from RNA isolated from fibroblasts and osteoblasts also demonstrated the presence of two bands, one the normal size of alpha 2(I) cDNA and a second species that was smaller by 54 base pairs. Sequencing of polymerase chain reaction-amplified cDNA fragments revealed an in-frame deletion of exon 12. This finding was confirmed by the RNase protection method. Genomic DNA sequencing detected a T----G point mutation in the second position of the 5' splice donor site of intron 12. Therefore, in this patient with osteogenesis imperfecta there was no qualitative alteration in the osteoblast-specific expression of this mutant alpha 2(I)-collagen allele compared to dermal fibroblasts.  相似文献   

12.
Our recent studies demonstrate that the focal adhesion protein Kindlin-2 is critical for chondrogenesis and early skeletal development. Here, we show that deleting Kindlin-2 from osteoblasts using the 2.3-kb mouse Col1 a1-Cre transgene minimally impacts bone mass in mice, but deleting Kindlin-2 using the 10-kb mouse Dmp1-Cre transgene, which targets osteocytes and mature osteoblasts, results in striking osteopenia in mice. Kindlin-2 loss reduces the osteoblastic population but increases the osteoclastic and adipocytic populations in the bone microenvironment. Kindlin-2 loss upregulates sclerostin in osteocytes,downregulates β-catenin in osteoblasts, and inhibits osteoblast formation and differentiation in vitro and in vivo. Upregulation ofβ-catenin in the mutant cells reverses the osteopenia induced by Kindlin-2 deficiency. Kindlin-2 loss additionally increases the expression of RANKL in osteocytes and increases osteoclast formation and bone resorption. Kindlin-2 deletion in osteocytes promotes osteoclast formation in osteocyte/bone marrow monocyte cocultures, which is significantly blocked by an anti-RANKLneutralizing antibody. Finally, Kindlin-2 loss increases osteocyte apoptosis and impairs osteocyte spreading and dendrite formation.Thus, we demonstrate an important role of Kindlin-2 in the regulation of bone homeostasis and provide a potential target for the treatment of metabolic bone diseases.  相似文献   

13.
Glycine (Gly) substitutions in collagen Gly‐X‐Y repeats disrupt folding of type I procollagen triple helix and cause severe bone fragility and malformations (osteogenesis imperfecta [OI]). However, these mutations do not elicit the expected endoplasmic reticulum (ER) stress response, in contrast to other protein‐folding diseases. Thus, it has remained unclear whether cell stress and osteoblast malfunction contribute to the bone pathology caused by Gly substitutions. Here we used a mouse with a Gly610 to cysteine (Cys) substitution in the procollagen α2(I) chain to show that misfolded procollagen accumulation in the ER leads to an unusual form of cell stress, which is neither a conventional unfolded protein response (UPR) nor ER overload. Despite pronounced ER dilation, there is no upregulation of binding immunoglobulin protein (BIP) expected in the UPR and no activation of NF‐κB signaling expected in the ER overload. Altered expression of ER chaperones αB crystalline and HSP47, phosphorylation of EIF2α, activation of autophagy, upregulation of general stress response protein CHOP, and osteoblast malfunction reveal some other adaptive response to the ER disruption. We show how this response alters differentiation and function of osteoblasts in culture and in vivo. We demonstrate that bone matrix deposition by cultured osteoblasts is rescued by activation of misfolded procollagen autophagy, suggesting a new therapeutic strategy for OI. © 2016 American Society for Bone and Mineral Research.  相似文献   

14.
The effects of mechanical loading on the osteoblast phenotype remain unclear because of many variables inherent to the current experimental models. This study reports on utilization of a mouse tooth movement model and a semiquantitative video image analysis of in situ hybridization to determine the effect of mechanical loading on cell-specific expression of type I collagen (collagen I) and alkaline phosphatase (ALP) genes in periodontal osteoblasts, using nonosseous cells as an internal standard. The histomorphometric analysis showed intense osteoid deposition after 3 days of treatment, confirming the osteoinductive nature of the mechanical signal. The results of in situ hybridization showed that in control periodontal sites both collagen I and ALP mRNAs were expressed uniformly across the periodontium. Treatment for 24 hours enhanced the ALP mRNA level about twofold over controls and maintained that level of stimulation after 6 days. In contrast, collagen I mRNA level was not affected after 24 hours of treatment, but it was stimulated 2.8-fold at day 6. This increase reflected enhanced gene expression in individual osteoblasts, since the increase in osteoblast number was small. These results indicate that (1) the mouse model and a semiquantitative video image analysis are suitable for detecting osteoblast-specific gene regulation by mechanical loading; (2) osteogenic mechanical stress induces deposition of bone matrix primarily by stimulating differentiation of osteoblasts, and, to a lesser extent, by an increase in number of these cells; (3) ALP is an early marker of mechanically-induced differentiation of osteoblasts. (4) osteogenic mechanical stimulation in vivo produces a cell-specific 2.8-fold increase in collagen gene expression in mature, matrix-depositing osteoblasts located on the bone surface and within the osteoid layer. Received: 9 August 1999 / Accepted: 4 February 2000  相似文献   

15.
Lack of mechanical stress may result in osteoporosis; however, the underlying mechanisms of disuse osteoporosis remain unclear. It has been indicated that mechanical loading causes extracellular glutamate accumulation in osteoblasts. We hypothesized that the glutamate receptor mediation on bone cells might also be involved in mechanically stimulated osteogenesis. In this study, we investigated the changes of bone formation and the expressions of osteogenic genes and N-methyl D-aspartate (NMDA) receptors, the major glutamate receptors, in disused bones. Rat modeled disuse osteopenia in hind limbs was induced by a 3-week tail suspension in Sprague-Dawley rats. Bone mineral density and trabecular bone volume of distal femurs were measured to verify the osteopenia of disused bones. The mRNA expressions of cbfa1/Runx2, type I collagen, alkaline phosphatase (ALP) and osteocalcin (OC) in bones were measured as osteogenic markers. The influences of mechanical unloading on the expressions of NMDA receptors (NR1 and NR2D) in bones were also examined. The effects of NMDA mediation on osteogenesis were tested by a treatment of MK-801, a non-competitive NMDA receptor antagonist, in cultured osteoblasts and bone marrow stroma cells. Our result showed that mRNA expressions of cbfa1/Runx2, type I collagen, ALP and OC were significantly decreased in disused bones. The mRNA and protein expressions of NR1 and NR2D were significantly decreased in disused bones; furthermore, immunolocalization of both receptors showed decreases in osteoblasts, but not in osteoclasts. The results from the in vitro study showed that MK-801 inhibited mRNA expression of cbfa1/Runx2 in bone marrow stroma cells and also inhibited those of collagen type I, ALP and OC of osteoblasts in a dose-dependent manner. These results suggest that NMDA receptor mediation may play an important role in transmitting mechanical loading in bones, and decreases of the expressions of NMDA receptors in disused bones, especially in osteoblasts, may contribute to the decrease of osteogenesis.  相似文献   

16.
Unloading can prevent bone formation by osteoblasts. To study this mechanism, we focused on a ubiquitin ligase, Cbl-b, which was highly expressed in osteoblastic cells during denervation. Our results suggest that Cbl-b may mediate denervation-induced osteopenia by inhibiting IGF-I signaling in osteoblasts. INTRODUCTION: Unloading, such as denervation (sciatic neurectomy) and spaceflight, suppresses bone formation by osteoblasts, leading to osteopenia. The resistance of osteoblasts to growth factors contributes to such unloading-mediated osteopenia. However, a detailed mechanism of this resistance is unknown. We first found that a RING-type ubiquitin ligase, Cbl-b, was highly expressed in osteoblastic cells after sciatic neurectomy in mice. In this study, we reasoned that Cbl-b played an important role in the resistance of osteoblasts to IGF-I. Materials AND METHODS: Cbl-b-deficient (Cbl-b(-/-)) or wildtype (Cbl-b(+/+)) mice were subjected to sciatic neurectomy. Bone formation in these mice was assessed by calcein labeling and histomorphometric analyses. We examined IGF-I signaling molecules in femora of these mice by Western blot and immunohistochemical analyses. We also examined the mitogenic response of Cbl-b-overexpressing or -deficient osteoblastic cells to various growth factors. RESULTS: In Cbl-b(+/+) mice, denervation decreased femur mass and bone formation, whereas it increased the expression of Cbl-b protein in osteoprogenitor cells and in osteocalcin-positive cells (osteoblastic cells) in hindlimb bone. In contrast, in Cbl-b(-/-) mice, bone mass and bone formation were sustained during denervation. Denervation inhibited the mitogenic response of osteoprogenitor cells most significantly to IGF-I. Therefore, we focused on Cbl-b-mediated modification of IGF-I signaling. Denervation decreased the amounts of insulin receptor substrate-1 (IRS-1), phosphatidly inositol 3-phosphate kinase (PI3K), and Akt-1 proteins in femora of Cbl-b(+/+) mice, whereas the amounts of these IGF-I signaling molecules in femora of Cbl-b(-/-) mice were constant after denervation. On a cellular level, primary osteoblastic cells from Cbl-b(-/-) mice were more stimulated to proliferate by IGF-I treatment compared with those from Cbl-b(+/+) mice. Furthermore, overexpression of Cbl-b increased ubiquitination and degradation of IRS-1 in primary Cbl-b(-/-) osteoblastic cells, leading to their impaired mitogenic response to IGF-I. CONCLUSIONS: These results suggest that Cbl-b induces resistance of osteoblasts to IGF-I during denervation by increasing IRS-1 degradation and that Cbl-b-mediated modification of IGF-I signaling may contribute to decreased bone formation during denervation.  相似文献   

17.
Osteoporosis is a common skeletal disease characterized by low bone mass and microarchitectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fracture. We previously demonstrated that Col1a1-SOX9 transgenic (TG) mice, in which SOX9 specifically expresses in osteoblasts driven by a 2.3-kb Col1a1 promoter, display osteopenia during the early postnatal stage. In this study, to further analyze the osteopenia phenotype and especially the effect of the osteoblast-specific expression of SOX9 on bone mechanical properties, we performed bone geometry and mechanical property analysis of long bones from Col1a1-SOX9 TG mice and wild-type littermates (WT) at different time points. Interestingly, after body weight adjustment, TG mice had similar whole-bone strength as WT mice but significantly thinner cortical bone, lower elastic modulus, and higher moment of inertia. Thus, osteoblast-specific SOX9 expression results in altered bone structure and material properties. Furthermore, the expression levels of Pcna, Col1a1, osteocalcin, and the Opg/Rankl ratio in TG mice were significantly lower until 4 months of age compared with WT mice, suggesting that TG mice have dysregulated bone homeostasis. Finally, bone marrow stromal cells (MSCs) isolated from TG mice display enhanced adipocyte differentiation and decreased osteoblast differentiation in vitro, suggesting that osteoblast-specific expression of SOX9 can lead to altered mesenchymal stem cell differentiation potentials. In conclusion, our study implies that SOX9 activity has to be tightly regulated in the adult skeleton to ensure optimal bone quality.  相似文献   

18.
19.
Gene transfer is a promising approach to the delivery of chondrotrophic growth factors to promote cartilage repair. It is unlikely that a single growth factor transgene will optimally regulate these cells. The aim of this study was to identify those growth factor transgene combinations that optimally regulate aggrecan, collagen type II and collagen type I gene expression by articular chondrocytes. We delivered combinations of the transgenes encoding fibroblast growth factor-2, insulin-like growth factor I, transforming growth factor beta1, bone morphogenetic protein-2, and/or bone morphogenetic protein-7 and assessed chondrocyte responses by measuring changes in the expression of aggrecan, type II collagen and type I collagen genes. These growth factor transgenes differentially regulated the magnitude and time course of all three-matrix protein genes. In concert, the transgenes regulated matrix gene expression in an interactive fashion that ranged from synergistic to inhibitory. Maximum stimulation of aggrecan (16-fold) and type II collagen (35-fold) expression was with the combination of IGF-I, BMP-2, and BMP-7 transgenes. The results indicate that the optimal choice of growth factor genes for cell-based cartilage repair cannot be predicted from observations of individual transgenes. Rather, such gene therapy will require an empirically based selection of growth factor gene combinations.  相似文献   

20.
Osteosclerosis is a pathologic bone disease characterized by an increase in bone formation over bone resorption. Genetic factors that contribute to the pathogenesis of this disease are poorly understood. Dysregulation or mutation in many components of the Notch signaling pathway results in a wide range of human developmental disorders and cancers, including bone diseases. Our previous study found that activation of the Notch signaling in osteoblasts promotes cell proliferation and inhibits differentiation, leading to an osteosclerotic phenotype in transgenic mice. In this study we report a longer‐lived mouse model that also develops osteosclerosis and a genetic manipulation that completely rescues the phenotype. Conditionally cre‐activated expression of Notch1 intracellular domain (NICD) in vivo exclusively in committed osteoblasts caused massive osteosclerosis with growth retardation and abnormal vertebrae. Importantly, selective deletion of a Notch nuclear effector—Rbpj—in osteoblasts completely suppressed the osteosclerotic and growth‐retardation phenotypes. Furthermore, cellular and molecular analyses of bones from the rescued mice confirmed that NICD‐dependent molecular alterations in osteoblasts were completely reversed by removal of the Rbpj pathway. Together, our observations show that the osteosclerosis owing to activation of Notch signaling in osteoblasts is canonical in nature because it depends solely on Rbpj signaling. As such, it identifies Rbpj as a specific target for manipulating Notch signaling in a cell‐autonomous fashion in osteoblasts in bone diseases where Notch may be dysregulated. © 2010 American Society for Bone and Mineral Research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号