首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In a natural community of 49 species (12 species of aphids and 37 species of their parasitoids), body lengths of 2,151 parasitoid individuals were, to an excellent approximation, related to the body lengths of their individual aphid hosts by a power law with an exponent close to 3/4. Two alternative models predict this exponent. One is based on surface area to volume relationships. The other is based on recent developments in metabolic ecology. Both models require a changing ratio (in both host and parasitoid) of length to diameter with increasing body length. These changing ratios are manifested differently in the two models and result in testably different predictions for the scaling of body form with increasing size. The estimated exponent of 3/4 for the relationship between individual host body size and individual parasitoid body size degrades to an exponent of nearly 1/2, and the scatter in the relationship between aphid and parasitoid body length is substantially increased, if the average length of a parasitoid species is examined as a function of the average length of its aphid host species instead of using measurements of individuals.  相似文献   

3.
Wheat leaves emit nitrous oxide during nitrate assimilation   总被引:14,自引:0,他引:14       下载免费PDF全文
Nitrous oxide (N(2)O) is a key atmospheric greenhouse gas that contributes to global climatic change through radiative warming and depletion of stratospheric ozone. In this report, N(2)O flux was monitored simultaneously with photosynthetic CO(2) and O(2) exchanges from intact canopies of 12 wheat seedlings. The rates of N(2)O-N emitted ranged from <2 pmol x m(-2) x s(-1) when NH(4)(+) was the N source, to 25.6 +/- 1.7 pmol x m(-2) x s(-1) (mean +/- SE, n = 13) when the N source was shifted to NO(3)(-). Such fluxes are among the smallest reported for any trace gas emitted by a higher plant. Leaf N(2)O emissions were correlated with leaf nitrate assimilation activity, as measured by using the assimilation quotient, the ratio of CO(2) assimilated to O(2) evolved. (15)N isotopic signatures on N(2)O emitted from leaves supported direct N(2)O production by plant NO(3)(-) assimilation and not N(2)O produced by microorganisms on root surfaces and emitted in the transpiration stream. In vitro production of N(2)O by both intact chloroplasts and nitrite reductase, but not by nitrate reductase, indicated that N(2)O produced by leaves occurred during photoassimilation of NO(2)(-) in the chloroplast. Given the large quantities of NO(3)(-) assimilated by plants in the terrestrial biosphere, these observations suggest that formation of N(2)O during NO(2)(-) photoassimilation could be an important global biogenic N(2)O source.  相似文献   

4.
5.
6.
The nitrogen isotopic composition (15N/14N) of forested ecosystems varies systematically worldwide. In tropical forests, which are elevated in 15N relative to temperate biomes, a decrease in ecosystem 15N/14N with increasing rainfall has been reported. This trend is seen in a set of well characterized Hawaiian rainforests, across which we have measured the 15N/14N of inputs and hydrologic losses. We report that the two most widely purported mechanisms, an isotopic shift in N inputs or isotopic discrimination by leaching, fail to explain this climate-dependent trend in 15N/14N. Rather, isotopic discrimination by microbial denitrification appears to be the major determinant of N isotopic variations across differences in rainfall. In the driest climates, the 15N/14N of total dissolved outputs is higher than that of inputs, which can only be explained by a 14N-rich gas loss. In contrast, in the wettest climates, denitrification completely consumes nitrate in local soil environments, thus preventing the expression of its isotope effect at the ecosystem scale. Under these conditions, the 15N/14N of bulk soils and stream outputs decrease to converge on the low 15N/14N of N inputs. N isotope budgets that account for such local isotopic underexpression suggest that denitrification is responsible for a large fraction (24-53%) of total ecosystem N loss across the sampled range in rainfall.  相似文献   

7.
The Mesozoic is marked by several widespread occurrences of intense organic matter burial. Sediments from the largest of these events, the Cenomanian–Turonian Oceanic Anoxic Event (OAE 2) are characterized by lower nitrogen isotope ratios than are seen in modern marine settings. It has remained a challenge to describe a nitrogen cycle that could achieve such isotopic depletion. Here we use nitrogen-isotope ratios of porphyrins to show that eukaryotes contributed the quantitative majority of export production throughout OAE 2, whereas cyanobacteria contributed on average approximately 20%. Such data require that any explanation for the OAE nitrogen cycle and its isotopic values be consistent with a eukaryote-dominated ecosystem. Our results agree with models that suggest the OAEs were high-productivity events, supported by vigorous upwelling. Upwelling of anoxic deep waters would have supplied reduced N species (i.e., ) to primary producers. We propose that new production during OAE 2 primarily was driven by direct -assimilation supplemented by diazotrophy, whereas chemocline denitrification and anammox quantitatively consumed and . A marine nitrogen reservoir dominated by , in combination with known kinetic isotope effects, could lead to eukaryotic biomass depleted in 15N.  相似文献   

8.
Many eukaryotes have obligate associations with microorganisms that are transmitted directly between generations. A model for heritable symbiosis is the association of aphids, a clade of sap-feeding insects, and Buchnera aphidicola, a gammaproteobacterium that colonized an aphid ancestor 150 million years ago and persists in almost all 5,000 aphid species. Symbiont acquisition enables evolutionary and ecological expansion; aphids are one of many insect groups that would not exist without heritable symbiosis. Receiving less attention are potential negative ramifications of symbiotic alliances. In the short run, symbionts impose metabolic costs. Over evolutionary time, hosts evolve dependence beyond the original benefits of the symbiosis. Symbiotic partners enter into an evolutionary spiral that leads to irreversible codependence and associated risks. Host adaptations to symbiosis (e.g., immune-system modification) may impose vulnerabilities. Symbiont genomes also continuously accumulate deleterious mutations, limiting their beneficial contributions and environmental tolerance. Finally, the fitness interests of obligate heritable symbionts are distinct from those of their hosts, leading to selfish tendencies. Thus, genes underlying the host–symbiont interface are predicted to follow a coevolutionary arms race, as observed for genes governing host–pathogen interactions. On the macroevolutionary scale, the rapid evolution of interacting symbiont and host genes is predicted to accelerate host speciation rates by generating genetic incompatibilities. However, degeneration of symbiont genomes may ultimately limit the ecological range of host species, potentially increasing extinction risk. Recent results for the aphid–Buchnera symbiosis and related systems illustrate that, whereas heritable symbiosis can expand ecological range and spur diversification, it also presents potential perils.  相似文献   

9.
10.
Cloning and nitrate induction of nitrate reductase mRNA   总被引:16,自引:2,他引:16       下载免费PDF全文
Nitrate is the major source of nitrogen taken from the soil by higher plants but requires reduction to ammonia prior to incorporation into amino acids. The first enzyme in the reducing pathway is a nitrate-inducible enzyme, nitrate reductase (EC 1.6.6.1). A specific polyclonal antiserum raised against purified barley nitrate reductase has been used to immunoprecipitate in vivo labeled protein and in vitro translation products, demonstrating that nitrate induction increases nitrate reductase protein and translatable mRNA. A partial cDNA clone for barley nitrate reductase has been isolated and identified by hybrid-selected translation. RNA blot-hybridization analysis shows that nitrate induction also causes a marked increase in the steady-state level of nitrate reductase mRNA.  相似文献   

11.
Lettuce necrotic yellows virus is a type of species in the Cytorhabdovirus genus and appears to be endemic to Australia and Aotearoa New Zealand (NZ). The population of lettuce necrotic yellows virus (LNYV) is made up of two subgroups, SI and SII. Previous studies demonstrated that SII appears to be outcompeting SI and suggested that SII may have greater vector transmission efficiency and/or higher replication rate in its host plant or insect vector. Rhabdovirus glycoproteins are important for virus–insect interactions. Here, we present an analysis of LNYV glycoprotein sequences to identify key features and variations that may cause SII to interact with its aphid vector with greater efficiency than SI. Phylogenetic analysis of glycoprotein sequences from NZ isolates confirmed the existence of two subgroups within the NZ LNYV population, while predicted 3D structures revealed the LNYV glycoproteins have domain architectures similar to Vesicular Stomatitis Virus (VSV). Importantly, changing amino acids at positions 244 and 247 of the post-fusion form of the LNYV glycoprotein altered the predicted structure of Domain III, glycosylation at N248 and the overall stability of the protein. These data support the glycoprotein as having a role in the population differences of LNYV observed between Australia and New Zealand.  相似文献   

12.
Nitrogen (N) isotope ratios (15N/14N) provide integrative constraints on the N inventory of the modern ocean. Anaerobic ammonium oxidation (anammox), which converts ammonium and nitrite to dinitrogen gas (N2) and nitrate, is an important fixed N sink in marine ecosystems. We studied the so far unknown N isotope effects of anammox in batch culture experiments. Anammox preferentially removes 14N from the ammonium pool with an isotope effect of +23.5‰ to +29.1‰, depending on factors controlling reversibility. The N isotope effects during the conversion of nitrite to N2 and nitrate are (i) inverse kinetic N isotope fractionation associated with the oxidation of nitrite to nitrate (−31.1 ± 3.9‰), (ii) normal kinetic N isotope fractionation during the reduction of nitrite to N2 (+16.0 ± 4.5‰), and (iii) an equilibrium N isotope effect between nitrate and nitrite (−60.5 ± 1.0‰), induced when anammox is exposed to environmental stress, leading to the superposition of N isotope exchange effects upon kinetic N isotope fractionation. Our findings indicate that anammox may be responsible for the unresolved large N isotope offsets between nitrate and nitrite in oceanic oxygen minimum zones. Irrespective of the extent of N isotope exchange between nitrate and nitrite, N removed from the combined nitrite and nitrate (NOx) pool is depleted in 15N relative to NOx. This net N isotope effect by anammox is superimposed on the N isotope fractionation by the co-occurring reduction of nitrate to nitrite in suboxic waters, possibly enhancing the overall N isotope effect for N loss from oxygen minimum zones.The nitrogen (N) isotope effect associated with N loss pathways allows the isotopic tracing of N transformations in ocean waters and provides critical constraints on the global marine N budget (15). Culture studies have shown that heterotrophic denitrification exhibits a large N isotope effect (ε)* of up to +30‰ (69). For decades, heterotrophic denitrification was the only known N loss pathway in the ocean (10). Consequently, strong enrichment of 15N in residual nitrite and nitrate (NOx) from oxygen-deficient waters, as for example in the Eastern Tropical North Pacific and the Arabian Sea, was fully attributed to water column denitrification with an N isotope effect around +25‰ (2, 11). Recent studies have highlighted the significance of anaerobic ammonium oxidation (anammox) for regional N fluxes (12, 13), with possible ramifications regarding the global N balance (14, 15). However, N isotope effects associated with the anammox metabolism were unknown and therefore their potential impacts on the distribution of oceanic N isotopes could not be addressed. This lack of knowledge severely hampers the N-isotope–based assessment of the relative importance of water-column N loss compared with sedimentary N loss, the most poorly constrained flux in the marine combined nitrogen budget (16).  相似文献   

13.
14.
Some pathogenesis-related genes are expressed in fungi only when the pathogen is in the host, but the host signals that trigger these gene expressions have not been identified. Virulent Nectria haematococca infects pea plants and requires either pelA, which is induced by pectin, or pelD, which is induced only in planta. However, the host signal(s) that trigger pelD expression was unknown. Here we report the isolation of the host signals and identify homoserine and asparagine, two free amino acids found in uniquely high levels in pea seedlings, as the pelD-inducing signals. N. haematococca has evolved a mechanism to sense the host tissue environment by using the high levels of two free amino acids in this plant, thereby triggering the expression of pelD to assist the pathogenic process.  相似文献   

15.
Diatoms survive in dark, anoxic sediment layers for months to decades. Our investigation reveals a correlation between the dark survival potential of marine diatoms and their ability to accumulate NO(3)(-) intracellularly. Axenic strains of benthic and pelagic diatoms that stored 11-274 mM NO(3)(-) in their cells survived for 6-28 wk. After sudden shifts to dark, anoxic conditions, the benthic diatom Amphora coffeaeformis consumed 84-87% of its intracellular NO(3)(-) pool within 1 d. A stable-isotope labeling experiment proved that (15)NO(3)(-) consumption was accompanied by the production and release of (15)NH(4)(+), indicating dissimilatory nitrate reduction to ammonium (DNRA). DNRA is an anaerobic respiration process that is known mainly from prokaryotic organisms, and here shown as dissimilatory nitrate reduction pathway used by a eukaryotic phototroph. Similar to large sulfur bacteria and benthic foraminifera, diatoms may respire intracellular NO(3)(-) in sediment layers without O(2) and NO(3)(-). The rapid depletion of the intracellular NO(3)(-) storage, however, implies that diatoms use DNRA to enter a resting stage for long-term survival. Assuming that pelagic diatoms are also capable of DNRA, senescing diatoms that sink through oxygen-deficient water layers may be a significant NH(4)(+) source for anammox, the prevalent nitrogen loss pathway of oceanic oxygen minimum zones.  相似文献   

16.
17.
18.
The identification of alternate hosts that can act as virus inoculum sources and vector reservoirs in the landscape is critical to understanding virus epidemics. Cotton leafroll dwarf virus (CLRDV) is a serious pathogen in cotton production and is transmitted by the cotton/melon aphid, Aphis gossypii, in a persistent, circulative, and non-propagative manner. CLRDV was first reported in the United States in Alabama in 2017, and thereafter in several cotton-producing states. CLRDV has since established itself in the southeastern United States. The role of alternate hosts in CLRDV establishment is not clear. Fourteen common plant species in the landscape, including crops, weeds, and ornamentals (cotton, hollyhock, marshmallow, country mallow, abutilon, arrowleaf sida, okra, hibiscus, squash, chickpea, evening primrose, henbit, Palmer amaranth, and prickly sida) were tested as potential alternate hosts of CLRDV along with an experimental host (Nicotiana benthamiana) via aphid-mediated transmission assays. CLRDV was detected following inoculation in hibiscus, okra, N. benthamiana, Palmer amaranth, and prickly sida by RT-PCR, but not in the others. CLRDV accumulation determined by RT-qPCR was the highest in N. benthamiana compared with cotton and other hosts. However, aphids feeding on CLRDV-infected prickly sida, hibiscus, and okra alone were able to acquire CLRDV and back-transmit it to non-infected cotton seedlings. Additionally, some of the alternate CLRDV hosts supported aphid development on par with cotton. However, in a few instances, aphid fitness was reduced when compared with cotton. Overall, this study demonstrated that plant hosts in the agricultural landscape can serve as CLRDV inoculum sources and as aphid reservoirs and could possibly play a role in the reoccurring epidemics of CLRDV in the southeastern United States.  相似文献   

19.
20.
The identification of host factors involved in virus replication is important to understand virus life cycles better. Accordingly, we sought host factors that interact with the influenza viral nonstructural protein 2 by using coimmunoprecipitation followed by mass spectrometry. Among proteins associating with nonstructural protein 2, we focused on the β subunit of the F1Fo-ATPase, which received a high probability score in our mass spectrometry analysis. The siRNA-mediated down-regulation of the β subunit of the F1Fo-ATPase reduced influenza virion formation and virus growth in cell culture. We further found that efficient influenza virion formation requires the ATPase activity of F1Fo-ATPase and that plasma membrane-associated, but not mitochondrial, F1Fo-ATPase is important for influenza virion formation and budding. Hence, our data identify plasma membrane-associated F1Fo-ATPase as a critical host factor for efficient influenza virus replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号