首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Important metabolic functions have been identified for the gut microbiota in health and disease. Several lines of evidence suggest a role for the gut microbiota in both the etiology of nonalcoholic fatty liver disease (NAFLD) and progression to its more advanced state, nonalcoholic steatohepatitis (NASH). Both NAFLD and NASH are strongly linked to obesity, type 2 diabetes mellitus and the metabolic syndrome and, accordingly, have become common worldwide problems. Small intestinal bacterial overgrowth of Gram-negative organisms could promote insulin resistance, increase endogenous ethanol production and induce choline deficiency, all factors implicated in NAFLD. Among the potential mediators of this association, lipopolysaccharide (a component of Gram-negative bacterial cell walls) exerts relevant metabolic and proinflammatory effects. Although the best evidence to support a role for the gut microbiota in NAFLD and NASH comes largely from animal models, data from studies in humans (albeit at times contradictory) is accumulating and could lead to new therapeutic avenues for these highly prevalent conditions.  相似文献   

2.
Obesity,fatty liver disease and intestinal microbiota   总被引:1,自引:0,他引:1  
Nonalcoholic fatty liver disease(NAFLD) is a chronic liver disorder that is increasing in prevalence with the worldwide epidemic of obesity. NAFLD is the hepatic manifestation of the metabolic syndrome. The term NAFLD describes a spectrum of liver pathology ranges from simple steatosis to steatosis with inflammation nonalcoholic steatohepatitis and even cirrhosis. Metabolic syndrome and NAFLD also predict hepatocellular carcinoma. Many genetic and environmental factors have been suggested to contribute to the development of obesity and NAFLD, but the exact mechanisms are not known. Intestinal ecosystem contains trillions of microorganisms including bacteria, Archaea, yeasts and viruses. Several studies support the relationship between the intestinal microbial changes and obesity and also its complications, including insulin resistance and NAFLD. Given that the gut and liver are connected by the portal venous system, it makes the liver more vulnerable to translocation of bacteria, bacterial products, endotoxins or secreted cytokines. Altered intestinal microbiota(dysbiosis) may stimulate hepatic fat deposition through several mechanisms: regulation of gut permeability, increasing low-grade inflammation, modulation of dietary choline metabolism, regulation of bile acid metabolism and producing endogenous ethanol. Regulation of intestinal microbial ecosystem by diet modifications or by using probiotics and prebiotics as a treatment for obesity and its complications might be the issue of further investigations.  相似文献   

3.
Nonalcoholic fatty liver disease (NAFLD) has emerged as the most common chronic liver disease worldwide with a reported prevalence ranging 6–33%, depending on the studied populations. It encompasses a spectrum of liver manifestations ranging from simple steatosis (also known as nonalcoholic fatty liver, NAFL) to nonalcoholic steatohepatitis (NASH), fibrosis and cirrhosis, which may ultimately progress to hepatocellular carcinoma. NAFLD is strongly associated with the components of metabolic syndrome, mainly obesity and type 2 diabetes mellitus. NAFLD patients are at increased risk of liver‐related as well as cardiovascular mortality. Current paradigm suggests a benign course for NAFL whereas NASH is considered to be the progressive phenotype. Although previously under‐recognized accumulating evidence suggests that NAFL may also progress, suggesting a higher number of patients at risk than previously appreciated. Liver biopsy remains the gold standard for definitive diagnosis, but the majority of patients can be diagnosed accurately by noninvasive methods. Approved therapies for NAFLD are still lacking and lifestyle modifications aiming at weight loss remain the mainstay of NAFLD treatment. Intensive research could identify insulin resistance, lipotoxicity and dysbiosis of the gut microbiota as major pathophysiological mechanisms, leading to the development of promising targeted therapies which are currently investigated in clinical trials. In this review we summarized the current knowledge of NAFLD epidemiology, natural history, diagnosis, pathogenesis and treatment and considered future directions.  相似文献   

4.
ABSTRACT

Introduction: Pediatric nonalcoholic fatty liver disease (NAFLD) is common disorder that has complex pathophysiology and unquantified clinical significance. Though there have been major advances in the field, there is much yet to be understood.

Areas covered: PubMed/MEDLINE and Embase were searched for articles related to pediatric NAFLD and nonalcoholic steatohepatitis (NASH) between January 1998 and January 2018. The areas considered to be ‘unmet needs’ were the relationship between the intestinal microbiome and perinatal events, clinical event risk stratification, and mechanisms underlying portal inflammation.

Expert commentary: In utero and ex utero factors have been associated with NAFLD and also with the intestinal microbiome, but it is not yet known how intestinal dysbiosis can be reversed and whether intervention in high-risk neonates could alter their propensity for the metabolic syndrome. Children with NAFLD are at increased risk of cardiovascular, diabetic, and hepatic diseases, but it is unclear how best to stratify children into appropriate risk groups for targeted interventions. Finally, the immune processes underlying pediatric NASH are thought to differ to those in adult NASH, yet the events surrounding activation of periportal lymphocytes are poorly understood. Deepening our understanding of these topics may lead to novel therapeutic targets.  相似文献   

5.
Emerging data have shown a close association between compositional changes in gut microbiota and the development of nonalcoholic fatty liver disease (NAFLD). The change in gut microbiota may alter nutritional absorption and storage. In addition, gut microbiota are a source of Toll-like receptor (TLR) ligands, and their compositional change can also increase the amount of TLR ligands delivered to the liver. TLR ligands can stimulate liver cells to produce proinflammatory cytokines. Therefore, the gut-liver axis has attracted much interest, particularly regarding the pathogenesis of NAFLD. The abundance of the major gut microbiota, including Firmicutes and Bacteroidetes, has been considered a potential underlying mechanism of obesity and NAFLD, but the role of these microbiota in NAFLD remains unknown. Several reports have demonstrated that certain gut microbiota are associated with the development of obesity and NAFLD. For instance, a decrease in Akkermansia muciniphila causes a thinner intestinal mucus layer and promotes gut permeability, which allows the leakage of bacterial components. Interventions to increase Akkermansia muciniphila improve the metabolic parameters in obesity and NAFLD. In children, the levels of Escherichia were significantly increased in nonalcoholic steatohepatitis (NASH) compared with those in obese control. Escherichia can produce ethanol, which promotes gut permeability. Thus, normalization of gut microbiota using probiotics or prebiotics is a promising treatment option for NAFLD. In addition, TLR signaling in the liver is activated, and its downstream molecules, such as proinflammatory cytokines, are increased in NAFLD. To data, TLR2, TLR4, TLR5, and TLR9 have been shown to be associated with the pathogenesis of NAFLD. Therefore, gut microbiota and TLRs are targets for NAFLD treatment.  相似文献   

6.
Nonalcoholic fatty liver disease (NAFLD) is now recognized as the most common cause of chronic liver disease worldwide. Its prevalence has increased to more than 30% of adults in developed countries and its incidence is still rising. The majority of patients with NAFLD have simple steatosis but in up to one third of patients, NAFLD progresses to its more severe form nonalcoholic steatohepatitis (NASH). NASH is characterized by liver inflammation and injury thereby determining the risk to develop liver fibrosis and cancer. NAFLD is considered the hepatic manifestation of the metabolic syndrome. However, the liver is not only a passive target but affects the pathogenesis of the metabolic syndrome and its complications. Conversely, pathophysiological changes in other organs such as in the adipose tissue, the intestinal barrier or the immune system have been identified as triggers and promoters of NAFLD progression. This article details the pathogenesis of NAFLD along with the current state of its diagnosis and treatment.  相似文献   

7.
BACKGROUND: Non-alcoholic fatty liver disease(NAFLD) is a common disorder with poorly understood pathogenesis. Beyond environmental and genetic factors,cumulative data support the causative role of gut microbiota in disease development and progression.DATA SOURCE: We performed a Pub Med literature search with the following key words: "non-alcoholic fatty liver disease","non-alcoholic steatohepatitis","fatty liver","gut microbiota" and "microbiome",to review the data implicating gut microbiota in NAFLD development and progression.RESULTS: Recent metagenomic studies revealed differences in the phylum and genus levels between patients with fatty liver and healthy controls. While bacteroidetes and firmicutes remain the dominant phyla among NAFLD patients,their proportional abundance and genera detection vary among different studies. New techniques indicate a correlation between the methanogenic archaeon(methanobrevibacter smithii) and obesity,while the bacterium akkermanshia municiphila protects against metabolic syndrome. Among NAFLD patients,small intestinal bacterial overgrowth detected by breath tests might induce gut microbiota and host interactions,facilitating disease development.CONCLUSIONS: There is evidence that gut microbiota participates in NAFLD development through,among others,obesity induction,endogenous ethanol production,inflammatory response triggering and alterations in choline metabolism. Further studies with emerging techniques are needed to further elucidate the microbiome and host crosstalk in NAFLD pathogenesis.  相似文献   

8.
Gut microbiota is the largest collection of commensal micro‐organisms in the human body, engaged in reciprocal cellular and molecular interactions with the liver. This mutually beneficial relationship may break down and result in dysbiosis, associated with disease phenotypes. Altered composition and function of gut microbiota has been implicated in the pathobiology of nonalcoholic fatty liver disease (NAFLD), a prevalent condition linked to obesity, insulin resistance and endothelial dysfunction. NAFLD may progress to cirrhosis and portal hypertension, which is the result of increased intrahepatic vascular resistance and altered splanchnic circulation. Gut microbiota may contribute to rising portal pressure from the earliest stages of NAFLD, although the significance of these changes remains unclear. NAFLD has been linked to lower microbial diversity and weakened intestinal barrier, exposing the host to bacterial components and stimulating pathways of immune defence and inflammation. Moreover, disrupted host‐microbial metabolic interplay alters bile acid signalling and the release of vasoregulatory gasotransmitters. These perturbations become prominent in cirrhosis, increasing the risk of clinically significant portal hypertension and leading to bacterial translocation, sepsis and acute‐on‐chronic liver failure. Better understanding of the gut‐liver axis and identification of novel microbial molecular targets may yield specific strategies in the prevention and management of portal hypertension.  相似文献   

9.
Nonalcoholic fatty liver disease (NAFLD) is a chronic condition characterized by fat accumulation combined with low‐grade inflammation in the liver. A large body of clinical and experimental data shows that increased flux of free fatty acids from increased visceral adipose tissue and de novo lipogenesis can lead to NAFLD and insulin resistance. Thus, individuals with obesity, insulin resistance, and dyslipidaemia are at the greatest risk of developing NAFLD. Conversely, NAFLD is a phenotype of cardiometabolic syndrome. Notably, researchers have discovered a close association between NAFLD and impaired glucose metabolism and focused on the role of NAFLD in the development of type 2 diabetes. Moreover, recent studies provide substantial evidence for an association between NAFLD and atherosclerosis and cardiometabolic disorders. Even if NAFLD can progress into severe liver disorders including nonalcoholic steatohepatitis (NASH) and cirrhosis, the majority of subjects with NAFLD die from cardiovascular disease eventually. In this review, we propose a potential pathological link between NAFLD/NASH and cardiometabolic syndrome. The potential factors that can play a pivotal role in this link, such as inflammation, insulin resistance, alteration in lipid metabolism, oxidative stress, genetic predisposition, and gut microbiota are discussed.  相似文献   

10.
Recently, the gut microbiota has been recognized as an obvious active player in addition to liver steatosis/steatohepatitis in the pathophysiological mechanisms of the development of hepatocellular carcinoma (HCC), even in the absence of cirrhosis. Evidence from clinical and experimental studies shows the association of specific changes in the gut microbiome and the direct contribution to maintaining liver inflammation and/or cancerogenesis in nonalcoholic fatty liver disease-induced HCC. The composition of the gut microbiota differs significantly in obese and lean individuals, especially in the abundance of pro-inflammatory lipopolysaccharide-producing phyla, and, after establishing steatohepatitis, it undergoes minor changes during the progression of the disease toward advanced fibrosis. Experimental studies proved that the microbiota of obese subjects can induce steatohepatitis in normally fed mice. On the contrary, the transplantation of healthy microbiota to obese mice relieves steatosis. However, further studies are needed to confirm these findings and the mechanisms involved. In this review, we have evaluated well-documented clinical and experimental research on the role of the gut microbiota in the manifestation and promotion of HCC in nonalcoholic steatohepatitis (NASH). Furthermore, a literature review of microbiota alterations and consequences of dysbiosis for the promotion of NASH-induced HCC was performed, and the advantages and limitations of the microbiota as an early marker of the diagnosis of HCC were discussed.  相似文献   

11.
The intestine of the human contains a dynamic population of microbes that have a symbiotic relationship with the host. In addition, there is an effect of the intestinal microbiota on metabolism and digestion. Non-alcoholic fatty liver disease (NAFLD) is a common cause worldwide of hepatic pathology and is thought to be the hepatic manifestation of the metabolic syndrome. In this review we examine the effect of the human microbiome on the components and pathogenesis of the metabolic syndrome. We are now on the threshold of therapeutic interventions on the human microbiome in order to effect human disease including NAFLD.  相似文献   

12.
13.
Fatty liver has been present in the lives of patients and physicians for almost two centuries. Vast knowledge has been generated regarding its etiology and consequences, although a long path seeking novel and innovative diagnostic biomarkers for nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) is still envisioned. On the one hand, proteomics and lipidomics have emerged as potential noninvasive resources for NAFLD diagnosis. In contrast, metabolomics has been able to distinguish between NAFLD and NASH, even detecting degrees of fibrosis. On the other hand, genetic and epigenetic markers have been useful in monitoring disease progression, eventually functioning as target therapies. Other markers involved in immune dysregulation, oxidative stress, and inflammation are involved in the instauration and evolution of the disease. Finally, the fascinating gut microbiome is significantly involved in NAFLD and NASH. This review presents state-of-the-art biomarkers related to NAFLD and NASH and new promises that could eventually be positioned as diagnostic resources for this disease. As is evident, despite great advances in studying these biomarkers, there is still a long path before they translate into clinical benefits.  相似文献   

14.
The worldwide epidemic of obesity and the metabolic syndrome has made nonalcoholic fatty liver disease (NAFLD), one of the most important liver diseases of our time. NAFLD is now the commonest cause of abnormal liver test results in industrialized countries and its incidence is rising. The current treatment of nonalcoholic steatohepatitis (NASH) has focused on lifestyle modification to achieve weight loss and modification of risk factors, such as insulin resistance, dyslipidemia, and hyperglycemia associated with the metabolic syndrome. With our increasing understanding of the pathogenesis of NASH, have come a plethora of new pharmacologic options with great potential to modify the natural history of NAFLD and NASH. This article focuses on a number of novel molecular targets for the treatment of NASH as well as the evidence for currently available therapy. It should be noted, however, that in part because of the long natural history of NASH and NAFLD, no therapy to date has been shown to unequivocally alter liver-related morbidity and mortality in these patients.  相似文献   

15.
《Annals of hepatology》2019,18(3):416-421
Genetic predisposition, the intestinal microbiota (IM) and environmental factors, such as sedentary lifestyle and inadequate diet, should be considered as critical factors for the development of nonalcoholic fatty liver disease (NAFLD). Recently, some studies have demonstrated an association between dysbiosis and NAFLD; however, the exact mechanisms that lead to intestinal membrane damage, bacterial translocation and inflammation are not well elucidated. Due to the relevance of this theme, the IM and its metabolites have received special attention in recent years in an attempt to better understand the mechanisms related to the prevention, physiopathology, and treatment of NAFLD. In this paper, we provide a review of the human IM and its role in diet, obesity, and the development/progression of NAFLD/NASH, as well as the use of prebiotics and probiotics in the modulation of IM.  相似文献   

16.
Non-alcoholic fatty liver disease(NAFLD)ranges from simple steatosis to nonalcoholic steatohepatitis(NASH),leading to fibrosis and potentially cirrhosis,and it is one of the most common causes of liver disease worldwide.NAFLD is associated with other medical conditions such as metabolic syndrome,obesity,cardiovascular disease and diabetes.NASH can only be diagnosed through liver biopsy,but noninvasive techniques have been developed to identify patients who are most likely to have NASH or fibrosis,reducing the need for liver biopsy and risk to patients.Disease progression varies between individuals and is linked to a number of risk factors.Mechanisms involved in the pathogenesis are associated with diet and lifestyle,influx of free fatty acids to the liver from adipose tissue due to insulin resistance,hepatic oxidative stress,cytokines production,reduced very low-density lipoprotein secretion and intestinal microbiome.Weight loss through improved diet and increased physical activity has been the cornerstone therapy of NAFLD.Recent therapies such as pioglitazone and vitamin E have been shown to be beneficial.Omega 3 polyunsaturated fatty acids and statins may offer additional benefits.Bariatric surgery should be considered in morbidly obese patients.More research is needed to assess the impact of these treatments on a long-term basis.The objective of this article is to briefly review the diagnosis,management and treatment of this disease in order to aid clinicians in managing these patients.  相似文献   

17.
Minimal hepatic encephalopathy (MHE) is a frequent neurological and psychiatric complication of liver cirrhosis. The precise pathogenesis of MHE is complicated and has yet to be fully elucidated. Studies in cirrhotic patients and experimental animals with MHE have indicated that gut microbiota dysbiosis induces systemic inflammation, hyperammonemia, and endotoxemia, subsequently leading to neuroinflammation in the brain via the gut-liver-brain axis. Related mechanisms initiated by gut microbiota dysbiosis have significant roles in MHE pathogenesis. The currently available therapeutic strategies for MHE in clinical practice, including lactulose, rifaximin, probiotics, synbiotics, and fecal microbiota transplantation, exert their effects mainly by modulating gut microbiota dysbiosis. Microbiome therapies for MHE have shown promised efficacy and safety; however, several controversies and challenges regarding their clinical use deserve to be intensively discussed. We have summarized the latest research findings concerning the roles of gut microbiota dysbiosis in the pathogenesis of MHE via the gut-liver-brain axis as well as the potential mechanisms by which microbiome therapies regulate gut microbiota dysbiosis in MHE patients.  相似文献   

18.
《Annals of hepatology》2019,18(6):796-803
Non-alcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD) are significant health burdens worldwide with a substantial rise in prevalence. Both can progress to liver cirrhosis. Recent studies have shown that the gut microbiome was associated with NAFLD/AFLD development and progression. The present review focuses on the characteristics of bacteria in NAFLD, AFLD and liver cirrhosis. The similarities and differences of intestinal bacteria are discussed.This study reviews the existing literatures on the microbiota, fatty liver disease, and liver cirrhosis based on Pubmed database.The study showed NAFLD was characterized by increased amounts of Lachnospiraceae from the phylum Firmicutes and Roseburia from the Lachnospiraceae family, and the proportion of Enterobacteria and Proteobacteria was increased after alcohol intake. Reduced Bacteroidetes was observed in cirrhosis. Microbiota can improve or aggravate the above liver diseases through several mechanisms, like increasing liver lipid metabolism, increasing alcohol production, increasing intestinal permeability, bacterial translocation, intestinal bacterial overgrowth, enteric dysbiosis, and impairing bile secretion.Different hepatic diseases owned different intestinal bacterial characters. Microbiota can improve or aggravate three kinds of liver diseases through several mechanisms. However, the depletion of these bacteria is needed to verify their role in liver disease.  相似文献   

19.
The incidence of obesity and its related conditions, including non-alcoholic fatty liver disease (NAFLD), has dramatically increased in all age groups worldwide. Given the health consequences of these conditions, and the subsequent economic burden on healthcare systems, their prevention and treatment have become major priorities. Because standard dietary and lifestyle changes and pathogenically-oriented therapies (e.g., antioxidants, oral hypoglycemic agents, and lipid-lowering agents) often fail due to poor compliance and/or lack of efficacy, novel approaches directed toward other pathomechanisms are needed. Here we present several lines of evidence indicating that, by increasing energy extraction in some dysbiosis conditions or small intestinal bacterial overgrowth, specific gut microbiota and/or a “low bacterial richness” may play a role in obesity, metabolic syndrome, and fatty liver. Under conditions involving a damaged intestinal barrier (“leaky gut”), the gut-liver axis may enhance the natural interactions between intestinal bacteria/bacterial products and hepatic receptors (e.g., toll-like receptors), thus promoting the following cascade of events: oxidative stress, insulin-resistance, hepatic inflammation, and fibrosis. We also discuss the possible modulation of gut microbiota by probiotics, as attempted in NAFLD animal model studies and in several pilot pediatric and adult human studies. Globally, this approach appears to be a promising and innovative add-on therapeutic tool for NAFLD in the context of multi-target therapy.  相似文献   

20.
非酒精性脂肪性肝病(NAFLD)(现已更名为代谢相关脂肪性肝病)是一种以肝实质内脂质过度沉积为特征,常与中心性肥胖、2型糖尿病、胰岛素抵抗、代谢综合征等疾病合并存在,被认为是代谢综合征的肝脏表现.非酒精性脂肪性肝炎(NASH)是一种可能导致肝硬化、肝细胞癌的进行性肝病.目前尚无批准用于治疗NAFLD/NASH的药物.近...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号