首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recent studies have revealed a close relationship between inflammatory and metabolic pathways, and inflammation is now recognized to have a major role in obesity and metabolic diseases such as insulin resistance and atherosclerosis. The human body is home to a large number of distinct microbial communities, with the densest population in the distal gut (the gut microbiota). Bacteria have long been known to activate inflammatory pathways, and recent data demonstrate that the gut microbiota may affect lipid metabolism and function as an environmental factor that influences the development of obesity and related diseases. Here, we review how the gut microbiota may affect metabolic diseases by activating the innate immune system.  相似文献   

2.
The human gut contains trillions of bacteria (microbiome) that play a major role in maintaining a healthy state for the host. Perturbation of this healthy gut microbiome might be an important environmental factor in the pathogenesis of inflammatory autoimmune diseases such as multiple sclerosis (MS). Others and we have recently reported that MS patients have gut microbial dysbiosis (altered microbiota) with the depletion of some and enrichment of other bacteria. However, the significance of gut bacteria that show lower or higher abundance in MS is unclear. The majority of gut bacteria are associated with certain metabolic pathways, which in turn help in the maintenance of immune homeostasis of the host. Here we discuss recent MS microbiome studies and the possible mechanisms through which gut microbiome might contribute to the pathogenesis of MS.  相似文献   

3.
Obesity and type 2 diabetes(T2D) lead to defects in intestinal hormones secretion, abnormalities in the composition of bile acids (BAs), increased systemic and adipose tissue inflammation, defects of branched-chain amino acids (BCAAs) catabolism, and dysbiosis of gut microbiota. Bariatric surgery (BS) has been shown to be highly effective in the treatment of obesity and T2D, which allows us to view BS not simply as weight-loss surgery but as a means of alleviating obesity and its comorbidities, especially T2D. In recent years, accumulating studies have focused on the mechanisms of BS to find out which metabolic parameters are affected by BS through which pathways, such as which hormones and inflammatory processes are altered. The literatures are saturated with the role of intestinal hormones and the gut-brain axis formed by their interaction with neural networks in the remission of obesity and T2D following BS. In addition, BAs, gut microbiota and other factors are also involved in these benefits after BS. The interaction of these factors makes the mechanisms of metabolic improvement induced by BS more complicated. To date, we do not fully understand the exact mechanisms of the metabolic alterations induced by BS and its impact on the disease process of T2D itself. This review summarizes the changes of intestinal hormones, BAs, BCAAs, gut microbiota, signaling proteins, growth differentiation factor 15, exosomes, adipose tissue, brain function, and food preferences after BS, so as to fully understand the actual working mechanisms of BS and provide nonsurgical therapeutic strategies for obesity and T2D.  相似文献   

4.
Over the past decade, the gut microbiome has emerged as a novel and largely unexplored source of variability for metabolic and cardiovascular disease risk, including diabetes. Animal and human studies support several possible pathways through which the gut microbiome may impact health, including the production of health-related metabolites from dietary sources. Diet is considered important to shaping the gut microbiota; in addition, gut microbiota influence the metabolism of many dietary components. In the present paper, we address the distinction between compositional and functional analysis of the gut microbiota. We focus on literature that highlights the value of moving beyond surveys of microbial composition to measuring gut microbial functioning to delineate mechanisms related to the interplay between diet and gut microbiota in cardiometabolic health.  相似文献   

5.
肠道菌群在人体疾病的发生发展中具有重要作用。肠道菌群代谢宿主摄入饮食形成的代谢产物,穿透肠上皮屏障或以其他方式进入体循环,进而激活一系列信号通路影响宿主生理过程。肠道菌群代谢物多种多样,各种代谢物如何进入体循环影响心血管系统及其在心血管疾病中发挥作用的分子机制,目前已有大量研究报道。本文就几种常见肠道菌群代谢物在高血压、动脉粥样硬化及心力衰竭等心血管疾病中的作用和分子机制进行综述,为心血管疾病的治疗提供新的方向。  相似文献   

6.
These days, the gut microbiota is universally recognized as an active organ that can modulate the overall host metabolism by promoting multiple functions, from digestion to the systemic maintenance of overall host physiology. Dysbiosis, the alteration of the complex ecologic system of gut microbes, is associated with and causally responsible for multiple types of pathologies. Among the latters, metabolic diseases such as type 2 diabetes and obesity are each distinguishable by a unique gut microbiota profile. Interestingly, the specific microbiota typically found in the blood of diabetic patients also has been observed at the level of atherosclerotic plaque. Here, we report evidence from the literature, as well as a few controversial reports, regarding the putative role of gut microbiota dysbiosis-induced cardiovascular diseases, such as atherosclerosis, which are common comorbidities of metabolic dysfunction.  相似文献   

7.
Cani PD  Osto M  Geurts L  Everard A 《Gut microbes》2012,3(4):279-288
Obesity is associated with metabolic alterations related to glucose homeostasis and cardiovascular risk factors. These metabolic alterations are associated with low-grade inflammation that contributes to the onset of these diseases. We and others have provided evidence that gut microbiota participates in whole-body metabolism by affecting energy balance, glucose metabolism, and low-grade inflammation associated with obesity and related metabolic disorders. Recently, we defined gut microbiota-derived lipopolysaccharide (LPS) (and metabolic endotoxemia) as a factor involved in the onset and progression of inflammation and metabolic diseases. In this review, we discuss mechanisms involved in the development of metabolic endotoxemia such as the gut permeability. We also discuss our latest discoveries demonstrating a link between the gut microbiota, endocannabinoid system tone, leptin resistance, gut peptides (glucagon-like peptide-1 and -2), and metabolic features. Finally, we will introduce the role of the gut microbiota in specific dietary treatments (prebiotics and probiotics) and surgical interventions (gastric bypass).  相似文献   

8.
Clinical studies have indicated that circulating bile acid(BA) concentrations increase following bariatric surgery, especially following malabsorptive procedures such as Roux-en-Y gastric bypasses(RYGB). Moreover, total circulating BA concentrations in patients following RYGB are positively correlated with serum glucagonlike peptide-1 concentrations and inversely correlated with postprandial glucose concentrations. Overall, these data suggest that the increased circulating BA concentrations following bariatric surgery- independently of calorie restriction and body-weight loss- could contribute, at least in part, to improvements in insulin sensitivity, incretin hormone secretion, and postprandial glycemia, leading to the remission of type-2 diabetes(T2DM). In humans, the primary and secondary BA pool size is dependent on the rate of biosynthesis and the enterohepatic circulation of BAs, as well as on the gut microbiota, which play a crucial role in BA biotransformation. Moreover, BAs and gut microbiota are closely integrated and affect each other. Thus, the alterations in bile flow that result from anatomical changes caused by bariatric surgery and changes in gutmicrobiome may influence circulating BA concentrations and could subsequently contribute to T2 DM remission following RYGB. Research data coming largely from animal and cell culture models suggest that BAs can contribute, via nuclear farnezoid X receptor(FXR) and membrane G-protein-receptor(TGR-5), to beneficial effects on glucose metabolism. It is therefore likely that FXR, TGR-5, and BAs play a similar role in glucose metabolism following bariatric surgery in humans. The objective of this review is to discuss in detail the results of published studies that show how bariatric surgery affects glucose metabolism and subsequently T2 DM remission.  相似文献   

9.
动脉粥样硬化(As)是心血管疾病(CVD)的主要病理基础且其发病机制具有多样性。肠道菌群失调可通过代谢和免疫系统导致代谢失调和炎症反应,导致斑块形成和破裂,细菌感染在As形成和斑块的发展也具有一定的影响。同时肠道菌群失调可改变胆固醇代谢和菌群代谢物如氧化三甲胺(TMAO)、胆汁酸(BAs)和短链脂肪酸(SCFAs)水平影响As发病进程。目前以肠道菌群为靶点治疗As的研究逐渐深入,益生菌、益生元、粪菌移植、中药可能是未来As治疗的潜在方法并使CVD患者获益。  相似文献   

10.
Human gut microbiome is defined as the gene complement of the gut microbial community, measured via laboratory metagenomic techniques. It includes bacteriome, virome and mycobiome, which represent, respectively, the assemblages of bacteria, viruses and fungi, living in the human gut. Gut microbiota function as a living “organ” that interacts with the gastro-intestinal environment, provides nutrients and vitamins to the organism and transduces hormonal messages, essentially influencing the main metabolic pathways, including drug metabolism. A clear association between gut, and glucose metabolism disorders has recently emerged. Medications acting on glucose absorption in the gut, or enhancing gut hormone activity are already extensively employed in the therapy of diabetes. Moreover, the gut is characterized by immune, and autonomous neuronal features, which play a critical role in maintaining glucose metabolism homeostasis. Gut microbes respond to neuroendocrine, and immune biochemical messages, affecting the health, and behavior of the host. There is vast heterogeneity in the studies included in this review, hence a meta-analysis, or a systematic review were not applicable. In this article, we attempt to reveal the interplay between human gut microbiota physiology, and hyperglycemic states, synthesizing, and interpreting findings from human studies.  相似文献   

11.
The rapid decrease in infectious diseases globally has coincided with an increase in the prevalence of obesity and other components of metabolic syndrome. Insulin resistance is a common feature of metabolic syndrome and can be influenced by genetic and non‐genetic/environmental factors. The emergence of metabolic syndrome epidemics over only a few decades suggests a more prominent role of the latter. Changes in our environment and lifestyle have indeed paralleled the rise in metabolic syndrome. Gastrointestinal tract microbiota, the composition of which plays a significant role in host physiology, including metabolism and energy homeostasis, are distinctly different within the context of metabolic syndrome. Among humans, recent lifestyle‐related changes could be linked to changes in diversity and composition of ‘ancient’ microbiota. Given the co‐adaptation and co‐evolution of microbiota with the immune system over a long period of time, it is plausible that such lifestyle‐related microbiota changes could trigger aberrant immune responses, thereby predisposing an individual to a variety of diseases. Here, we review current evidence supporting a role for gut microbiota in the ongoing rise of metabolic syndrome. We conclude that population‐level shifts in microbiota can play a mediatory role between lifestyle factors and pathogenesis of insulin resistance and metabolic syndrome.  相似文献   

12.
肠道菌群的稳定在维持机体健康中发挥重要作用,当便秘引起肠道菌群失衡时,它通过干扰胆汁酸(bile acids,BAs)的合成影响脂质消化、吸收过程;肠道菌群代谢物短链脂肪酸(short chain fatty acids,SCFAs)减少可破坏肠道黏膜屏障的完整性,且SCFAs的受体不能被激活,此外,氧化三甲胺(trimethylamine oxide,TMAO)产生量增多影响脂质代谢过程中关键酶的表达,进一步影响脂质转运、清除过程.本文就便秘状态下肠道菌群通过BAs、SCFAs、TMAO的变化介导脂代谢紊乱的机制作一综述.  相似文献   

13.
Alterations in the bacteria that reside in our gastrointestinal tract play a role in the pathogenesis and progression of many disorders including liver and gastrointestinal diseases. Both qualitative (composition) and quantitative (amount) changes in gut microbes are associated with increased susceptibility to liver disease. Importantly, the intestinal microbiota is involved in the regulation of many host signalling pathways via the generation of different metabolites. Hence, dysbiosis influences disease development and progression by directly affecting the host–bacteria metabolic interaction. Microbe‐derived harmful metabolites can translocate to distant organs due to increased intestinal permeability as observed during dysbiosis. Contrary, certain bacterial metabolites such as tryptophan metabolites contribute to intestinal and systemic homeostasis. Here, we provide an overview of current evidence describing to what extent microbial metabolites modulate the development of chronic liver diseases such as alcoholic steatohepatitis and nonalcoholic fatty liver disease with a special emphasis on indoles.  相似文献   

14.
The gut microbiota (GM) play a central role in their host's metabolism of bile acids (BAs) by regulating deconjugation, dehydroxylation, dehydrogenation, and epimerization reactions to generate unconjugated free BAs and secondary BAs. These BAs generated by the GM are potent signaling molecules that interact with BA receptors, such as the farnesoid X receptor and Takeda G‐protein‐coupled receptor 5. Each BA has a differential affinity to these receptors; therefore, alterations in BA composition by GM could modify the intensity of receptor signaling. Bile acids also act as antimicrobial agents by damaging bacterial membranes and as detergents by altering intracellular macromolecular structures. Therefore, BAs and the GM reciprocally control each other's compositions. In this review, we discuss the latest findings on the mutual effects of BAs and GM on each other; we also describe their roles in the pathophysiology of liver disease progression and potential therapeutic applications of targeting this cross‐talk.  相似文献   

15.
ABSTRACT

The canine gut microbiota is a complex microbial population that is potentially related to metabolism, immunologic activity and gastrointestinal (GI) diseases. Early studies revealed that the canine gut microbiota was dynamic, and bacterial populations in the adjacent gut segments were similar, with anaerobes predominating. Metagenomics analysis revealed that nutrient contents in the diet modulated bacterial populations and metabolites in the canine gut. Further research revealed significant correlations between dietary factors and canine gut core microbiomes. Canine GI diseases are closely correlated with gut microbiota dysbiosis and metabolic disorders. Probiotic-related therapies can effectively treat canine GI diseases. Recent studies have revealed that the canine gut microbiota is similar to the human gut microbiota, and dietary factors affect both. Studying canine intestinal microorganisms enables clarifying changes in the canine intestinal bacteria under different conditions, simulating human diseases in dog models, and conducting in-depth studies of the interactions between intestinal bacteria and disease.  相似文献   

16.
《Diabetes & metabolism》2014,40(4):246-257
The gut microbiota is now considered as a key factor in the regulation of numerous metabolic pathways. Growing evidence suggests that cross-talk between gut bacteria and host is achieved through specific metabolites (such as short-chain fatty acids) and molecular patterns of microbial membranes (lipopolysaccharides) that activate host cell receptors (such as toll-like receptors and G-protein-coupled receptors). The endocannabinoid (eCB) system is an important target in the context of obesity, type 2 diabetes (T2D) and inflammation. It has been demonstrated that eCB system activity is involved in the control of glucose and energy metabolism, and can be tuned up or down by specific gut microbes (for example, Akkermansia muciniphila). Numerous studies have also shown that the composition of the gut microbiota differs between obese and/or T2D individuals and those who are lean and non-diabetic. Although some shared taxa are often cited, there is still no clear consensus on the precise microbial composition that triggers metabolic disorders, and causality between specific microbes and the development of such diseases is yet to be proven in humans. Nevertheless, gastric bypass is most likely the most efficient procedure for reducing body weight and treating T2D. Interestingly, several reports have shown that the gut microbiota is profoundly affected by the procedure. It has been suggested that the consistent postoperative increase in certain bacterial groups such as Proteobacteria, Bacteroidetes and Verrucomicrobia (A. muciniphila) may explain its beneficial impact in gnotobiotic mice. Taken together, these data suggest that specific gut microbes modulate important host biological systems that contribute to the control of energy homoeostasis, glucose metabolism and inflammation in obesity and T2D.  相似文献   

17.
Obesity-related disorders result from the combination of genetic susceptibility and environmental factors, including gut microbiota. Evidence from animal models provides insight into several mechanisms underlying the interaction between microbiome and host metabolic and inflammatory responses, such as increased energy harvest from the diet, regulation of intestinal transit rate and mucosal barrier function, modulation of fatty acid metabolism, and lipopolysaccharide-induced activation of Toll-like receptor-4 inflammatory pathway. In humans, gut microbiota alterations could link high energy intake and obesity-related cardiometabolic disorders; the composition of intestinal microflora of obese patients differs from that of lean subjects and microbiota manipulation through prebiotic/probiotics or microbial transplantation can affect post-prandial endotoxinemia levels and glucose metabolism. We discuss mechanisms connecting gut microbiota to obesity-related diseases and potential therapeutic applications.  相似文献   

18.
Irritable bowel syndrome (IBS) is a functional disorder of the gastrointestinal tract, the physiology of which is not very well understood. There are multiple factors and pathways involved in pathogenesis of this entity. Among all, dysmotility, dysregulation of the brain-gut axis, altered intestinal microbiota and visceral hypersensitivity play a major role. Over the last years, research has shown that the type of gut microbiome present in an individual plays a significant role in the pathophysiology of IBS. Multiple studies have consistently shown that subjects diagnosed with IBS have disruption in gut microbiota balance. It has been established that host immune system and its interaction with metabolic products of gut microbiota play an important role in the gastrointestinal tract. Therefore, probiotics, prebiotics and antibiotics have shown some promising results in managing IBS symptoms via modulating the interaction between the above. This paper discusses the various factors involved in pathophysiology of IBS, especially gut microbiota.  相似文献   

19.
Several studies revealed that gut microbiota are associated with various human diseases,e.g.,metabolic diseases,allergies,gastroenterological diseases,and liver diseases.The liver can be greatly affected by changes in gut microbiota due to the entry of gut bacteria or their metabolites into the liver through the portal vein,and the liver-gut axis is important to understand the pathophysiology of several liver diseases,especially non-alcoholic fatty liver disease and hepatic encephalopathy.Moreover,gut microbiota play a significant role in the development of alcoholic liver disease and hepatocarcinogenesis.Based on theseprevious findings,trials using probiotics have been performed for the prevention or treatment of liver diseases.In this review,we summarize the current understanding of the changes in gut microbiota associated with various liver diseases,and we describe the therapeutic trials of probiotics for those diseases.  相似文献   

20.
Interactions between host and gut microbiota in domestic pigs: a review   总被引:1,自引:0,他引:1  
ABSTRACT

It is well established that pig gut microbiota plays a critical role in maintaining metabolic homeostasis as well as in a myriad of physiological, neurological and immunological functions; including protection from pathogens and digestion of food materials – some of which would be otherwise indigestible by the pig. A rich and diverse gut microbial ecosystem (balanced microbiota) is the hallmark of good health; while qualitative and quantitative perturbations in the microbial composition can lead to development of various diseases. Alternatively, diseases caused by stressors or other factors have been shown to negatively impact the microbiota. This review focuses primarily on how commensal microorganisms in the gastrointestinal tract of pigs influence biochemical, physiological, immunological, and metabolic processes within the host animal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号