首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
多种疾病与肠道菌群失衡有关。肠道微生物参与宿主新陈代谢和免疫系统的调节,并与环境因子相互作用决定机体的健康和疾病状态。本文就肠道菌群与代谢综合征、炎症性肠病和结直肠癌等疾病关系的研究进展作一综述,进一步揭示了肠道微生物在人类健康中起到的重要作用,并通过介绍益生菌和粪菌移植等方法,为探索治疗诸多疾病提供新的方向。  相似文献   

2.
There is a strong relationship between liver and gut; while the portal venous system receives blood from the gut, and its contents may affect liver functions, liver in turn, affects intestinal functions through bile secretion. There is robust evidence that the pathogenesis of hepatic encephalopathy (HE) is linked to alterations in gut microbiota and their by-products such as ammonia, indoles, oxindoles, endotoxins, etc. In the setting of intestinal barrier and immune dysfunction, these by-products are involved in the pathogenesis of complications of liver cirrhosis including HE and systemic inflammation plays an important role. Prebiotics, probiotics and synbiotics may exhibit efficacy in the treatment of HE by modulating the gut flora. They improve derangement in flora by decreasing the counts of pathogenic bacteria and thus improving the endotoxemia, HE and the liver disease. Current evidence suggest that the trials evaluating the role of probiotics in the treatment of HE are of not high quality and all trials had high risk of bias and high risk of random errors. Therefore, the use of probiotics for patients with HE cannot be currently recommended. Further RCTs are required. This review summarizes the main literature findings about the relationships between gut flora and HE, both in terms of the pathogenesis and the treatment of HE.  相似文献   

3.
Primary sclerosing cholangitis(PSC) is a chronic cholestatic liver disease characterized by biliary inflammation and stricturing. Exploration of the pathogenesis of PSC in light of its association with inflammatory bowel disease(IBD) and the "gut-liver" axis is an emerging area of interest. A growing number of studies have begun to elucidate the role of the gut microbiota, its metabolites and its influence on host immune responses in the development of PSC and PSCIBD. Studies of the fecal microbiota have highlighted enriched levels of certain species, including Veillonella, Streptococcus and Enterococcus, among others. A heightened immune response to enteric dysbiosis and bacterial translocation have also been implicated. For example, Klebsiella pneumoniae strains derived from gnotobiotic mice transplanted with PSC-IBD microbiota were found to induce pore formation in human intestinal epithelial cells and enhanced Th17 responses. Gut microbes have additionally been hypothesized to be implicated in PSC pathogenesis through their role in the synthesis of various metabolites,including bile acids(BAs), which function as signaling molecules with important gut and hepatic effects. An expanded knowledge of the gut microbiome as it relates to PSC offers critical insight into the development of microbe-altering therapeutic interventions, such as antibiotics, nutritional interventions and fecal microbial transplantation. Some of these have already shown some preliminary evidence of benefit. Despite exciting progress in the field, much work remains to be done; areas that are particularly lacking include functional characterization of the microbiome and examination of pediatric populations. In this review, we summarize studies that have investigated the microbiome in PSC and PSC-IBD as well as putative mechanisms, including the potential role of metabolites, such as BAs. We then briefly review the evidence for interventions with microbe-altering properties for treating PSC.  相似文献   

4.
Gut flora and bacterial translocation (BT) play important roles in the pathogenesis of chronic liver disease, including cirrhosis and its complications. Intestinal bacterial overgrowth and increased bacterial translocation of gut flora from the intestinal lumen predispose patients to bacterial infections, major complications and also play a role in the pathogenesis of chronic liver disorders. Levels of bacterial lipopolysaccharide, a component of gram-negative bacteria, are increased in the portal and/or systemic circulation in several types of chronic liver disease. Impaired gut epithelial integrity due to alterations in tight junction proteins may be the pathological mechanism underlying bacterial translocation. Preclinical and clinical studies over the last decade have suggested a role for BT in the pathogenesis of nonalcoholic steatohepatitis (NASH). Bacterial overgrowth, immune dysfunction, alteration of the luminal factors, and altered intestinal permeability are all involved in the pathogenesis of NASH and its complications. A better understanding of the cell-specific recognition and intracellular signaling events involved in sensing gut-derived microbes will help in the development of means to achieve an optimal balance in the gut-liver axis and ameliorate liver diseases. These may suggest new targets for potential therapeutic interventions for the treatment of NASH. Here, we review some of the mechanisms connecting BT and NASH and potential therapeutic developments.  相似文献   

5.
The intensive crosstalk between the liver and the intestine performs many essential functions. This crosstalk is important for natural immune surveillance, adaptive immune response regulation and nutrient metabolism and elimination of toxic bacterial metabolites. The interaction between the gut microbiome and bile acids is bidirectional. The gut microbiome regulates the synthesis of bile acids and their biological signaling activity and circulation via enzymes. Similarly, bile acids also shape the composition of the gut microbiome by modulating the host’s natural antibacterial defense and the intestinal immune system. The interaction between bile acids and the gut microbiome has been implicated in the pathophysiology of many intestinal and extra intestinal diseases, especially liver diseases. As essential mediators of the gut-liver crosstalk, bile acids regulate specific host metabolic pathways and modulate the inflammatory responses through farnesoid X-activated receptor and G protein-coupled bile acid receptor 1. Several clinical trials have demonstrated the signaling effects of bile acids in the context of liver diseases. We hypothesize the existence of a gut microbiome-bile acids-liver triangle and explore the potential therapeutic strategies for liver diseases targeting the triangle.  相似文献   

6.
Alterations in the bacteria that reside in our gastrointestinal tract play a role in the pathogenesis and progression of many disorders including liver and gastrointestinal diseases. Both qualitative (composition) and quantitative (amount) changes in gut microbes are associated with increased susceptibility to liver disease. Importantly, the intestinal microbiota is involved in the regulation of many host signalling pathways via the generation of different metabolites. Hence, dysbiosis influences disease development and progression by directly affecting the host–bacteria metabolic interaction. Microbe‐derived harmful metabolites can translocate to distant organs due to increased intestinal permeability as observed during dysbiosis. Contrary, certain bacterial metabolites such as tryptophan metabolites contribute to intestinal and systemic homeostasis. Here, we provide an overview of current evidence describing to what extent microbial metabolites modulate the development of chronic liver diseases such as alcoholic steatohepatitis and nonalcoholic fatty liver disease with a special emphasis on indoles.  相似文献   

7.
Gut flora in health and disease   总被引:3,自引:0,他引:3  
Guarner F  Malagelada JR 《Lancet》2003,361(9356):512-519
The human gut is the natural habitat for a large and dynamic bacterial community, but a substantial part of these bacterial populations are still to be described. However, the relevance and effect of resident bacteria on a host's physiology and pathology has been well documented. Major functions of the gut microflora include metabolic activities that result in salvage of energy and absorbable nutrients, important trophic effects on intestinal epithelia and on immune structure and function, and protection of the colonised host against invasion by alien microbes. Gut flora might also be an essential factor in certain pathological disorders, including multisystem organ failure, colon cancer, and inflammatory bowel diseases. Nevertheless, bacteria are also useful in promotion of human health. Probiotics and prebiotics are known to have a role in prevention or treatment of some diseases.  相似文献   

8.
Evidence-based therapy of primary biliary cirrhosis.   总被引:3,自引:0,他引:3  
Primary biliary cirrhosis (PBC) is a disease which predominantly affects middle-aged women and is characterized by destruction of the interlobular bile ducts by chronic, often granulomatous, inflammation. This causes ductopenia and consequent cholestasis. Progressive fibrosis leads to cirrhosis and eventual liver failure. The frequent association of other autoimmune diseases and direct laboratory evidence of disturbed immune function suggest that PBC is an immune-mediated liver disease. Hence many clinical trials of therapy have employed immunosuppressive drugs. Another approach to therapy has been to reduce the degree of liver damage secondary to the cholestasis by altering the intra-hepatic bile acid milieu. These very different approaches to treatment of PBC are reviewed.  相似文献   

9.
Patients with cholestatic liver diseases like primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC) have a different gut microbiome composition than healthy controls. In contrast with PBC, PSC has a strong association with inflammatory bowel disease and is the prototypical disease of the gut‐liver axis. Still, there are some distinct overlapping microbial features in the microbiome of patients with PSC and PBC suggesting similarities in cholestatic diseases, although the possible pathogenetic involvement of these shared microbial changes is unknown. Herein, we present an overview of the available data and discuss the relevance for potential disease relevant host‐microbiota interactions. In general, the microbiome interacts with the host via the immunobiome (interactions between the host immune system and the gut microbiome), the endobiome (where the gut microbiome contributes to host physiology by producing or metabolizing endogenous molecules) and the xenobiome (gut microbial transformation of exogenous compounds, including nutrients and drugs). Experimental and human observational evidence suggest that the presence and functions of gut microbes are relevant for the severity and progression of cholestatic liver disease. Interestingly, the majority of new drugs that are currently being tested in PBC and PSC in clinical trials act on bile acid homeostasis, where the endobiome is important. In the future, it will be paramount to perform longitudinal studies, through which we can identify new intervention targets, biomarkers or treatment‐stratifiers. In this way, gut microbiome‐based clinical care and therapy may become relevant in cholestatic liver disease within the foreseeable future.  相似文献   

10.
Primary biliary cirrhosis, primary sclerosing cholangitis and autoimmune cholangiopathy are cholestatic liver diseases of unknown cause. Destruction of small to medium bile ducts (in primary biliary cirrhosis and autoimmune cholangiopathy) and large bile ducts (in primary sclerosing cholangitis) leads to progressive cholestasis, liver failure and end-stage liver disease. A variety of abnormalities in lipid metabolism have been described in primary biliary cirrhosis, and range from alterations in serum lipid levels and lipoprotein subsets to deranged metabolism of cholesterol. Progressive cholestasis and, consequently, decreased small intestinal bile acid concentrations in these cholestatic liver disease can also lead to impaired absorption of fats and fat-soluble vitamins, resulting in steatorrhea and deficiencies in vitamins A, D, E, and K. This article focuses on abnormalities in lipid metabolism in primary biliary cirrhosis and primary sclerosing cholangitis, and on lipid-activated vitamin deficiencies in these disorders.  相似文献   

11.
肠道微生态在非酒精性脂肪性肝病发病机制中具有重要意义。系统阐释非酒精性脂肪性肝病与肠道菌群、肠道菌代谢物和肠屏障功能关系,结合中医药调节肠道微生态与治疗非酒精性脂肪性肝病关系的研究概况,提出调节肠道微生态、维持肠道稳态是中医药治疗非酒精性脂肪性肝病的重要策略。  相似文献   

12.
Bile salts have a crucial role in hepatobiliary and intestinal homeostasis and digestion. Primary bile salts are synthesized by the liver from cholesterol, and may be modified by the intestinal flora to form secondary and tertiary bile salts. Bile salts are efficiently reabsorbed from the intestinal lumen to undergo enterohepatic circulation. In addition to their function as a surfactant involved in the absorption of dietary lipids and fat-soluble vitamins bile salts are potent signaling molecules in both the liver and intestine.Under physiological conditions the bile salt pool is tightly regulated, but the adaptive capacity may fall short under cholestatic conditions. Elevated serum and tissue levels of potentially toxic hydrophobic bile salts during cholestasis may cause mitochondrial damage, apoptosis or necrosis in susceptible cell types.Therapeutic nontoxic bile salts may restore impaired hepatobiliary secretion in cholestatic disorders. The hydrophilic bile salt ursodeoxycholate is today regarded as the effective standard treatment of primary biliary cirrhosis and intrahepatic cholestasis of pregnancy, and is implicated for use in various other cholestatic conditions. Novel therapeutic bile salts that are currently under evaluation may also prove valuable in the treatment of these diseases.  相似文献   

13.
Hu  Haiming  Lin  Aizhen  Kong  Mingwang  Yao  Xiaowei  Yin  Mingzhu  Xia  Hui  Ma  Jun  Liu  Hongtao 《Journal of gastroenterology》2020,55(2):142-158

Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of dysregulated lipid and glucose metabolism, which is often associated with obesity, dyslipidemia and insulin resistance. In view of the high morbidity and health risks of NAFLD, the lack of effective cure has drawn great attention. In recent years, a line of evidence has suggested a close linkage between the intestine and liver diseases such as NAFLD. We summarized the composition and characteristics of intestinal microbes and reviewed molecular insights into the intestinal microbiome in development and progression of NAFLD. Intestinal microbes mainly include bacteria, archaea, viruses and fungi, and the crosstalk between non-bacterial intestinal microbes and human liver diseases should be paid more attention. Intestinal microbiota imbalance may not only increase the intestinal permeability to gut microbes but also lead to liver exposure to harmful substances that promote hepatic lipogenesis and fibrosis. Furthermore, we focused on reviewing the latest “gut–liver axis”-targeting treatment, including the application of antibiotics, probiotics, prebiotics, synbiotics, farnesoid X receptor agonists, bile acid sequestrants, gut-derived hormones, adsorbents and fecal microbiota transplantation for NAFLD. In this review, we also discussed the potential mechanisms of “gut–liver axis” manipulation and efficacy of these therapeutic strategies for NAFLD treatment.

  相似文献   

14.
The gut microbiota has the capacity to produce a diverse range of compounds that play a major role in regulatingthe activity of distal organs and the liver is strategically positioned downstream of the gut. Gut microbiota linked compounds such as short chain fatty acids, bile acids, choline metabolites, indole derivatives, vitamins, polyamines, lipids, neurotransmitters and neuroactive compounds, and hypothalamic-pituitary-adrenal axis hormones have many biological functions. This review focuses on the gut microbiota and host metabolism in liver cirrhosis. Dysbiosis in liver cirrhosis causes serious complications, such as bacteremia and hepatic encephalopathy, accompanied by small intestinal bacterial overgrowth and increased intestinal permeability. Gut dysbiosis in cirrhosis and intervention with probiotics and synbiotics in a clinical setting is reviewed and evaluated. Recent studies have revealed the relationship between gut microbiota and host metabolism in chronic metabolic liver disease, especially, non-alcoholic fatty liver disease, alcoholic liver disease, and with the gut microbiota metabolic interactions in dysbiosis related metabolic diseases such as diabetes and obesity. Recently, our understanding of the relationship between the gut and liver and how this regulates systemic metabolic changes in liver cirrhosis has increased. The serum lipid levels of phospholipids, free fatty acids, polyunsaturated fatty acids, especially, eicosapentaenoic acid, arachidonic acid, and docosahexaenoic acid have significant correlations with specific fecal flora in liver cirrhosis. Many clinical and experimental reports support the relationship between fatty acid metabolism and gut-microbiota. Various blood metabolome such as cytokines, amino acids, and vitamins are correlated with gut microbiota in probioticstreated liver cirrhosis patients. The future evaluation of the gut-microbiota-liver metabolic network and the intervention of these relationships using probiotics, synbiotics, and prebiotics, with sufficient nutrition could aid the development of treatments and prevention for liver cirrhosis patients.  相似文献   

15.
Advances in the pathogenesis of inflammatory bowel disease   总被引:3,自引:0,他引:3  
Most people do not develop inflammatory bowel disease (IBD) in spite of the density of the commensal flora. In the past few years, several areas of gut mucosal immunology have emerged that will permit advances in the management of IBD at the bedside. The commensal flora is only beginning to be fully appreciated as another metabolic organ in the body. Innate immunity as it relates to the gut has complemented our understanding of the adaptive immune response. The most important susceptibility gene described for Crohn’s disease, the NOD2 gene, participates in the innate immune response to pathogens. Patients carrying NOD2 mutations have an increased adaptive immune response to commensal organisms as measured by higher titers of antimicrobial antibodies, such as anti-CBir and anti-Saccharomyces cerevisiae antibodies. Toll-like receptors expressed by antigen-presenting cells (APCs) in the gut and intestinal epithelial cells also play a role in recognition of intestinal flora. Within the APC category, dendritic cells link the innate and adaptive immune systems and shape the nature of the adaptive immune response to commensal bacteria. With respect to adaptive immunity, a new signaling pathway involving a distinct helper CD4 T-cell subset producing interleukin-17 may become a target for the treatment of chronic inflammatory diseases. This review focuses on developments likely to culminate in advances in patient care.  相似文献   

16.
The gut immune system has a key role in the development of autoimmune diabetes, and factors that control the gut immune system are also regulators of beta-cell autoimmunity. Gut microbiota modulate the function of the gut immune system by their effect on the innate immune system, such as the intestinal epithelial cells and dendritic cells, and on the adaptive immune system, in particular intestinal T cells. Due to the immunological link between gut and pancreas, e.g. the shared lymphocyte homing receptors, the immunological changes in the gut are reflected in the pancreas. According to animal studies, changes in gut microbiota alter the development of autoimmune diabetes. This has been demonstrated by antibiotics that induce changes in the gut microbiota. Furthermore, gut-colonizing microbes may modify the incidence of autoimmune diabetes in animal models. Deficient toll-like receptor (TLR) signaling, mediating microbial stimulus in immune cells, prevents autoimmune diabetes, which appears to be dependent on alterations in the intestinal microbiota. Although few studies have been conducted in humans, recent studies suggest that the abundance of Bacteroides and lack of butyrate-producing bacteria in fecal microbiota are associated with beta-cell autoimmunity and type 1 diabetes. It is possible that altered gut microbiota are associated with immunological aberrancies in type 1 diabetes. The changes in gut microbiota could lead to alterations in the gut immune system, such as increased gut permeability, small intestinal inflammation, and impaired tolerance to food antigens, all of which are observed in type 1 diabetes. Poor fitness of gut microbiota could explain why children who develop type 1 diabetes are prone to enterovirus infections, and do not develop tolerance to cow milk antigens. These candidate risk factors of type 1 diabetes may imply an increased risk of type 1 diabetes due to the presence of gut microbiota that do not support health. Despite the complex interaction of microbiota, host, environment, and disease mechanisms, gut microbiota are promising novel targets in the prevention of type 1 diabetes.  相似文献   

17.
Liver disease has become a leading cause of death, particularly in the West, where it is attributed to more than two million deaths annually. The correlation between gut microbiota and liver disease is still not fully understood. However, it is well known that gut dysbiosis accompanied by a leaky gut causes an increase in lipopolysaccharides in circulation, which in turn evoke massive hepatic inflammation promoting liver cirrhosis. Microbial dysbiosis also leads to poor bile acid metabolism and ...  相似文献   

18.
Primary sclerosing cholangitis is often regarded as an autoimmune disorder and occurs frequently in relation to inflammatory bowel disease. The ongoing fibro-obliterative process of the biliary tree ensues in liver failure or cholangiocarcinoma in 12-18 years. PSC patients with concurrent IBD are at increased risk of developing colorectal carcinoma. Ursodeoxycholic acid, which is widely prescribed in PSC, is despite intensive clinical research still not proven to halt disease progression. Nor-ursodeoxycholic acid seems promising in animal models of cholestasis. Novel compounds that are involved in the immunological axis between the gut and the liver await clinical testing in PSC.  相似文献   

19.
AimTo examine the impact of gut microbiota on non alcoholic fatty liver disease (NAFLD) pathogenesis.Data synthesisEmerging evidence suggests a strong interaction between gut microbiota and liver. Receiving approximately 70% of its blood supply from the intestine, the liver represents the first line of defence against gut-derived antigens. Intestinal bacteria play a key role in the maintenance of gut–liver axis health. Disturbances in the homeostasis between bacteria- and host-derived signals at the epithelial level lead to a break in intestinal barrier function and may foster “bacterial translocation”, defined as the migration of bacteria or bacterial products from the intestinal lumen to mesenteric lymph nodes or other extraintestinal organs and sites. While the full repertoire of gut-derived microbial products that reach the liver in health and disease has yet to be explored, the levels of bacterial lipopolysaccharide, a component of the outer membrane of Gram-negative bacteria, are increased in the portal and/or systemic circulation in several types of chronic liver diseases. Derangement of the gut flora, particularly small intestinal bacterial overgrowth, occurs in a large percentage (20–75%) of patients with chronic liver disease. In addition, evidence implicating the gut–liver axis in the pathogenesis of metabolic liver disorders has accumulated over the past ten years.ConclusionsComplex metabolic diseases are the product of multiple perturbations under the influence of triggering factors such as gut microbiota and diet, thus, modulation of the gut microbiota may represent a new way to treat or prevent NAFLD.  相似文献   

20.
Several hepatobiliary abnormalities have been described in association with inflammatory bowel disease (IBD), including primary sclerosing cholangitis (PSC), small duct PSC, chronic hepatitis, cryptogenic cirrhosis, cholangiocarcinoma, and cholelithiasis. PSC is the most common biliary condition in patients with IBD, with an incidence ranging from 2.5% to 7.5%. PSC usually progresses insidiously and eventually leads to cirrhosis independent of inflammatory bowel disease activity. There is a very high incidence of cholangiocarcinoma and an elevated risk for developing colon cancer in patients with PSC. Medical therapy has not proven successful in slowing disease progression or prolonging survival. Treatment of symptoms due to cholestasis, such as pruritis and steatorrhea, is an important aspect of the medical care of patients with PSC. Our preferred treatment of pruritis due to cholestasis is with bile acid binding exchange resins, such as cholestyramine or colestipol. Endoscopic manipulation is recommended for treating complications of recurrent cholangitis or worsening jaundice in the setting of a dominant stricture, but endoscopic approaches have not been conclusively demonstrated to improve survival or decrease the need for liver transplantation. Liver transplantation remains the only effective treatment of advanced PSC, and should be considered in patients with complications of cirrhosis or intractable pruritis or fatigue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号