首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coronavirus disease 2019 (COVID-19) is caused by infection of the coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with typical respiratory symptoms. SARS-CoV-2 invades not only the respiratory system, but also other organs expressing the cell surface receptor angiotensin converting enzyme 2. In particular, the digestive system is a susceptible target of SARS-CoV-2. Gastrointestinal symptoms of COVID-19 include anorexia, nausea, vomiting, diarrhea, abdominal pain, and liver damage. Patients with digestive damage have a greater chance of progressing to severe or critical illness, a poorer prognosis, and a higher risk of death. This paper aims to summarize the digestive system symptoms of COVID-19 and discuss fecal-oral contagion of SARS-CoV-2. It also describes the characteristics of inflammatory bowel disease patients with SARS-CoV-2 infection and discusses precautions for preventing SARS-CoV-2 infection during gastrointestinal endoscopy procedures. Improved attention to digestive system abnormalities and gastrointestinal symptoms of COVID-19 patients may aid health care providers in the process of clinical diagnosis, treatment, and epidemic prevention and control.  相似文献   

2.
3.
The liver is frequently affected by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection. The most common manifestations are mildly elevated alanine aminotransferase and aspartate aminotransferase, with a prevalence of 16-53% among patients. Cases with severe coronavirus disease 2019 (COVID-19) seem to have higher rates of acute liver dysfunction, and the presence of abnormal liver tests at admission signifies a higher risk of severe disease during hospitalization. Patients with chronic liver diseases also have a higher risk of severe disease and mortality (mainly seen in patients with metabolic-associated fatty liver disease). Several pathways of damage have been proposed in the liver involvement of COVID-19 patients; although, the end-cause is most likely multifactorial. Abnormal liver tests have been attributed to the expression of angiotensin-converting enzyme 2 receptors in SARS-CoV-2 infection. This enzyme is expressed widely in cholangiocytes and less in hepatocytes. Other factors attributed to liver damage include drug-induced liver injury, uncontrolled release of proinflammatory molecules (“cytokine storm”), pneumonia-associated hypoxia, and direct damage by the infection. Hepatic steatosis, vascular thrombosis, fibrosis, and inflammatory features (including Kupffer cell hyperplasia) are the most common liver histopathological findings in deceased COVID-19 patients, suggesting important indirect mechanisms of liver damage. In this translational medicine-based narrative review, we summarize the current data on the possible indirect mechanisms involved in liver damage due to COVID-19, the histopathological findings, and the impact of these mechanisms in patients with chronic liver disease.  相似文献   

4.
Liver hydatidosis is a parasitic endemic disease affecting extensive areas in our planet, a significant stigma within medicine to manage because of its incidence, possible complications, and diagnostic involvements. The diagnosis of liver hydatidosis should be as fast as possible because of the relevant complications that may arise with disease progression, involving multiple organs and neighboring structures causing disruption, migration, contamination. The aim of this essay is to illustrate the role of imaging as ultrasonography (US), multi detector row computed tomography, and magnetic resonance imaging (MRI) in the evaluation of liver hydatidosis: the diagnosis, the assessment of extension, the identification of possible complications and the monitoring the response to therapy. US is the screening method of choice. Computed tomography (CT) is indicated in cases in which US is inadequate and has high sensitivity and specificity for calcified hydatid cysts. Magnetic resonance is the best imaging procedure to demonstrate a cystic component and to show a biliary tree involvement. Diagnostic tests such as CT and MRI are mandatory in liver hydatidosis because they allow thorough knowledge regarding lesion size, location, and relations to intrahepatic vascular and biliary structures, providing useful information for effective treatment and decrease in post-operative morbidity. Hydatid disease is classified into four types on the basis of their radiologic appearance.  相似文献   

5.
Coronavirus disease 2019 (COVID-19) is, at present, one of the most relevant global health problems. In the literature hepatic alterations have been described in COVID-19 patients, and they are mainly represented by worsening of underlying chronic liver disease leading to hepatic decompensation and liver failure with higher mortality. Several potential mechanisms used by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to cause liver damage have been hypothesized. COVID-19 primary liver injury is less common than secondary liver injury. Most of the available data demonstrate how liver damage in SARS-CoV-2 infection is likely due to systemic inflammation, and it is less likely mediated by a cytopathic effect directed on liver cells. Moreover, liver alterations could be caused by hypoxic injury and drugs (antibiotics and non-steroidal anti-inflammatory drugs, remdesivir, tocilizumab, tofacitinib and dexamethasone). SARS-CoV-2 infection can induce multiple vascular district atherothrombosis by affecting simultaneously cerebral, coronary and peripheral vascular beds. Data in the literature highlight how the virus triggers an exaggerated immune response, which added to the cytopathic effect of the virus can induce endothelial damage and a prothrombotic dysregulation of hemostasis. This leads to a higher incidence of symptomatic and confirmed venous thrombosis and of pulmonary embolisms, especially in central, lobar or segmental pulmonary arteries, in COVID-19. There are currently fewer data for arterial thrombosis, while myocardial injury was identified in 7%-17% of patients hospitalized with SARS-CoV-2 infection and 22%-31% in the intensive care unit setting. Available data also revealed a higher occurrence of stroke and more serious forms of peripheral arterial disease in COVID-19 patients. Hemostasis dysregulation is observed during the COVID-19 course. Lower platelet count, mildly increased prothrombin time and increased D-dimer are typical laboratory features of patients with severe SARS-CoV-2 infection, described as “COVID-19 associated coagulopathy.” These alterations are correlated to poor outcomes. Moreover, patients with severe SARS-CoV-2 infection are characterized by high levels of von Willebrand factor with subsequent ADAMTS13 deficiency and impaired fibrinolysis. Platelet hyperreactivity, hypercoagulability and hypofibrinolysis during SARS-CoV-2 infection induce a pathological state named as “immuno-thromboinflammation.” Finally, liver dysfunction and coagulopathy are often observed at the same time in patients with COVID-19. The hypothesis that liver dysfunction could be mediated by microvascular thrombosis has been supported by post-mortem findings and extensive vascular portal and sinusoidal thrombosis observation. Other evidence has shown a correlation between coagulation and liver damage in COVID-19, underlined by the transaminase association with coagulopathy, identified through laboratory markers such as prothrombin time, international normalized ratio, fibrinogen, D-dimer, fibrin/fibrinogen degradation products and platelet count. Other possible mechanisms like immunogenesis of COVID-19 damage or massive pericyte activation with consequent vessel wall fibrosis have been suggested.  相似文献   

6.
With the rapid development of research on coronavirus disease 2019 (COVID-19), more and more attention has been drawn to its damage to extrapulmonary organs. There are increasing lines of evidence showing that liver injury is closely related to the severity of COVID-19, which may have an adverse impact on the progression and prognosis of the patients. What is more, severe acute respiratory syndrome coronavirus-2 infection, cytokine storm, ischemia/hypoxia reperfusion injury, aggravation of the primary liver disease and drug-induced liver injury may all contribute to the hepatic damage in COVID-19 patients; although, the drug-induced liver injury, especially idiosyncratic drug-induced liver injury, requires further causality confirmation by the updated Roussel Uclaf Causality Assessment Method published in 2016. Up to now, there is no specific regimen for COVID-19, and COVID-19-related liver injury is mainly controlled by symptomatic and supportive treatment. Here, we review the clinical features of abnormal liver enzymes in COVID-19 and pathogenesis of COVID-19-related liver injury based on the current evidence, which may provide help for clinicians and researchers in exploring the pathogenesis and developing treatment strategies.  相似文献   

7.
The coronavirus disease 2019(COVID-19) caused by severe acute respiratory syndrome coronavirus-2 is an ongoing health concern. In addition to affecting the respiratory system, COVID-19 can potentially damage other systems in the body, leading to extra-pulmonary manifestations. Hepatic manifestations are among the common consequences of COVID-19. Although the precise mechanism of liver injury is still questionable, several mechanisms have been hypothesized, including direct viral effect, cytokine...  相似文献   

8.
Starting from December 2019 the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has extended in the entire world giving origin to a pandemic. Although the respiratory system is the main apparatus involved by the infection, several other organs may suffer coronavirus disease 2019 (COVID-19)-related injuries. The human tissues expressing angiotensin-converting enzyme 2 (ACE2) are all possible targets of viral damage. In fact myocarditis, meningo-encephalitis, acute kidney injury and other complications have been described with regard to SARS-CoV-2 infection. The liver has a central role in the body homeostasis contributing to detoxification, catabolism and also synthesis of important factor such as plasma proteins. ACE2 is significantly expressed just by cholangiocytes within the liver, however transaminases are increased in more than one third of COVID-19 patients, at hospital admission. The reasons for liver impairment in the course of this infection are not completely clear at present and multiple factors such as: Direct viral effect, release of cytokines, ischemic damage, use of hepatotoxic drugs, sepsis, and others, may contribute to damage. While COVID-19 seems to elicit just a transient alteration of liver function tests in subjects with normal hepatic function, of concern, more severe sequelae are frequently observed in patients with a reduced hepatic reserve. In this review we report data regarding SARS-CoV-2 infection in subjects with normal or diseased liver. In addition the risks of COVID-19 in immunosuppressed patients (either transplanted or suffering for autoimmune liver diseases) are also described.  相似文献   

9.
Varying degrees of liver injuries have been reported in patients infected with the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). In general, oxidative stress is actively involved in initiation and progression of liver damage. The liver metabolizes various compounds that produce free radicals. Maintaining the oxidative/antioxidative balance is important in coronavirus disease 2019 (COVID-19) patients. Antioxidant vitamins, essential trace elements and food compounds, such as polyphenols, appear to be promising agents, with effects in oxidative burst. Deficiency of these nutrients suppresses immune function and increases susceptibility to COVID-19. Daily micronutrient intake is necessary to support anti-inflammatory and antioxidative effects but for immune function may be higher than current recommended dietary intake. Antioxidant supplements (β-carotene, vitamin A, vitamin C, vitamin E, and selenium) could have a potential role in patients with liver damage. Available evidence suggests that supplementing the diet with a combination of micronutrients may help to optimize immune function and reduce the risk of infection. Clinical trials based on the associations of diet and SARS-CoV-2 infection are lacking. Unfortunately, it is not possible to definitively determine the dose, route of administration and best timing to intervene with antioxidants in COVID-19 patients because clinical trials are still ongoing. Until then, hopefully, this review will enable clinicians to understand the impact of micronutrient dietary intake and liver status assessment in COVID-19 patients.  相似文献   

10.
The worldwide outbreak of coronavirus disease 2019 (COVID-19) has challenged the priorities of healthcare system in terms of different clinical management and infection transmission, particularly those related to hepatic-disease comorbidities. Epidemiological data evidenced that COVID-19 patients with altered liver function because of hepatitis infection and cholestasis have an adverse prognosis and experience worse health outcomes. COVID-19-associated liver injury is correlated with various liver diseases following a severe acute respiratory syndrome-coronavirus type 2 (SARS-CoV-2) infection that can progress during the treatment of COVID-19 patients with or without pre-existing liver disease. SARS-CoV-2 can induce liver injury in a number of ways including direct cytopathic effect of the virus on cholangiocytes/hepatocytes, immune-mediated damage, hypoxia, and sepsis. Indeed, immediate cytopathogenic effects of SARS-CoV-2 via its potential target, the angiotensin-converting enzyme-2 receptor, which is highly expressed in hepatocytes and cholangiocytes, renders the liver as an extra-respiratory organ with increased susceptibility to pathological outcomes. But, underlying COVID-19-linked liver disease pathogenesis with abnormal liver function tests (LFTs) is incompletely understood. Hence, we collated COVID-19-associated liver injuries with increased LFTs at the nexus of pre-existing liver diseases and COVID-19, and defining a plausible pathophysiological triad of COVID-19, hepatocellular damage, and liver disease. This review summarizes recent findings of the exacerbating role of COVID-19 in pre-existing liver disease and vice versa as well as international guidelines of clinical care, management, and treatment recommendations for COVID-19 patients with liver disease.  相似文献   

11.
AIM: To evaluate in a multicenter study whether the sonographic characterization of focal liver lesions can be improved using SonoVue(R)-enhancement; and to compare this method with computed tomography (CT) and magnetic resonance imaging (MRI). METHODS: One hundred and thirty four patients with one focal liver lesion detected in baseline ultrasound (US) were examined with conventional US, contrastenhanced US ( n = 134), contrast-enhanced CT ( n = 115) and/or dynamic contrast-enhanced MRI ( n = 70). The lesions were classified as malignant, benign or indeterminate and the type of lesion was determined.The final diagnosis based on the combined information of all imaging examinations, clinical information and histology ( n = 32) was used. Comparisons were made to see whether the addition of contrast-enhanced US led to the improvement of the characterization of doubtful focal liver lesions. RESULTS: In comparison with unenhanced US, SonoVue(r) markedly improves sensitivity and specificity for the characterization (malignant/benign) of focal liver lesions. In comparison with CT and/or dynamic MRI, SonoVue(r) -enhanced sonography applied for characterization of focal liver lesions was 30.2% more sensitive in the recognition of malignancy and 16.1% more specific in the exclusion of malignancy and overall 22.9% more accurate. In the subgroup with confirmative histology available ( n = 30), sensitivity was 95.5% (CEUS), 72.2% (CT) and 81.8% (MRI), and specificity was 75.0% (CEUS), 37.5% (CT) and 42.9% (MRI). The sensitivity and specificity of CEUS for the identification of focal nodular hyperplasia (FNH) and hemangiomas was 100% and 87%, resulting in an accuracy of 94.5%. CONCLUSION: SonoVue(r)-enhanced sonography emerges as the most sensitive, most specific and thus most accurate imaging modality for the characterization of focal liver lesions.  相似文献   

12.
13.
Coronavirus disease 2019 (COVID-19) can be considered a systemic disease with a specific tropism for the vascular system, in which the alterations of the microcirculation have an important pathogenetic role. The lungs are the main organ involved in COVID-19, and severe progressive respiratory failure is the leading cause of death in the affected patients; however, many other organs can be involved with variable clinical manifestations. Concerning abdominal manifestations, the gastrointestinal tract and the hepatobiliary system are mainly affected, although the pancreas, urinary tract and spleen may also be involved. The most common gastrointestinal symptoms are loss of appetite, followed by nausea and vomiting, diarrhea and abdominal pain. Gastrointestinal imaging findings include bowel wall thickening, sometimes associated with hyperemia and mesenteric thickening, fluid-filled segments of the large bowel and rarely intestinal pneumatosis and ischemia. Hepatic involvement manifests as an increase in the enzymatic levels of alanine aminotransferase, aspartate aminotransferase, serum bilirubin and γ-glutamyl transferase with clinical manifestations in most cases mild and transient. The most frequent radiological features are hepatic steatosis, biliary sludge and gallstones. Edematous acute pancreatitis, kidney infarct and acute kidney injury from acute tubular necrosis have been described more rarely in COVID-19. Lastly, splenic involvement is characterized by splenomegaly and by the development of solitary or multifocal splenic infarcts with classic wedge-shaped or even rounded morphology, with irregular or smooth profiles. In summary, the abdominal radiological findings of COVID-19 are nonspecific and with poor pathological correlation reported in the literature. Ultrasound and particularly computed tomography with multiphasic acquisition are the diagnostic methods mainly utilized in COVID-19 patients with abdominal clinical symptoms and signs. Although radiological signs are not specific of abdominal and gastrointestinal involvement, the diagnostic imaging modalities and in particular computed tomography are helpful for the clinician in the management, evaluation of the severity and evolution of the COVID-19 patients.  相似文献   

14.
The outbreak of coronavirus disease 2019 (COVID-19) starting last December in China placed emphasis on liver involvement during infection. This review discusses the underlying mechanisms linking COVID-19 to liver dysfunction, according to recent available information, while waiting further studies. The manifestations of liver damage are usually mild (moderately elevated serum aspartate aminotransferase activities), and generally asymptomatic. Few patients can still develop severe liver problems, and therapeutic options can be limited. Liver dysfunction may affect about one-third of the patients, with prevalence greater in men than women, and in elderly. Mechanisms of damage are complex and include direct cholangiocyte damage and other coexisting conditions such as the use of antiviral drugs, systemic inflammatory response, respiratory distress syndrome-induced hypoxia, sepsis, and multiple organ dysfunction. During new COVID-19 infections, liver injury may be observed. If liver involvement appears during COVID-19 infection, however, attention is required. This is particularly true if patients are older or have a pre-existing history of liver diseases. During COVID-19 infection, the onset of liver damage impairs the prognosis, and hospital stay is longer.  相似文献   

15.
The new coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified in December 2019, in Wuhan, China. The virus was rapidly spread worldwide, causing coronavirus disease 2019 (COVID-19) pandemic. Although COVID-19 is presented, usually, with typical respiratory symptoms (i.e., dyspnea, cough) and fever, extrapulmonary manifestations are also encountered. Liver injury is a common feature in patients with COVID-19 and ranges from mild and temporary elevation of liver enzymes to severe liver injury and, even, acute liver failure. The pathogenesis of liver damage is not clearly defined; multiple mechanisms contribute to liver disorder, including direct cytopathic viral effect, cytokine storm and immune-mediated hepatitis, hypoxic injury, and drug-induced liver toxicity. Patients with underlying chronic liver disease (i.e., cirrhosis, non-alcoholic fatty liver disease, alcohol-related liver disease, hepatocellular carcinoma, etc.) may have greater risk to develop both severe COVID-19 and further liver deterioration, and, as a consequence, certain issues should be considered during disease management. The aim of this review is to present the prevalence, clinical manifestation and pathophysiological mechanisms of liver injury in patients with SARS-CoV-2 infection. Moreover, we overview the association between chronic liver disease and SARS-CoV-2 infection and we briefly discuss the management of liver injury during COVID-19.  相似文献   

16.
AIM: To evaluate in a multicenter study whether the sonographic characterization of focal liver lesions can be improved using SonoVue-enhancement; and to compare this method with computed tomography (CT) and magnetic resonance imaging (MRI).
METHODS: One hundred and thirty four patients withone focal liver lesion detected in baseline ultrasound (US) were examined with conventional US, contrastenhanced US (n = 134), contrast-enhanced CT (n = 115) and/or dynamic contrast-enhanced MRI (n = 70). The lesions were classified as malignant, benign or indeterminate and the type of lesion was determined. The final diagnosis based on the combined information of all imaging examinations, clinical information and histology (n = 32) was used. Comparisons were made to see whether the addition of contrast-enhanced US led to the improvement of the characterization of doubtful focal liver lesions.
RESULTS: In comparison with unenhanced US, SonoVue markedly improves sensitivity and specificity for the characterization (malignant/benign) of focal liver lesions. In comparison with CT and/or dynamic MRI, SonoVue -enhanced sonography applied for characterization of focal liver lesions was 30.2% more sensitive in the recognition of malignancy and 16.1% more specific in the exclusion of malignancy and overall 22.9% more accurate. In the subgroup with confirmative histology available (n = 30), sensitivity was 95.5% (CEUS), 72.2% (CT) and 81.8% (MRI), and specificity was 75.0% (CEUS), 37.5% (CT) and 42.9% (MRI). The sensitivity and specificity of CEUS for the identification of focal nodular hyperplasia (FNH) and hemangiomas was 100% and 87%, resulting in an accuracy of 94.5%.
CONCLUSION: SonoVue-enhanced sonography emerges as the most sensitive, ost specific and thus most accurate imaging modality for the characterization of focal liver lesions.  相似文献   

17.
AIM: To assess the ability of ^18F-fluorodeoxyglucose positron emission tomography/computer tomography (^18F-FDG PET/CT) to differentiate between benign and malignant portal vein thrombosis in hepatocellular carcinoma (HCC) patients.
METHODS: Five consecutive patients who had HBV cirrhosis, biopsy-proven HCC, and thrombosis of the main portal vein and/or left/right portal vein on ultrasound (US), computer tomography (CT) or magnetic resonance imaging (MRI) were studied with ^18F-FDG PET/CT. The presence or absence of a highly metabolic thrombus on ^18F-FDG PET/CT was considered diagnostic for malignant or benign portal vein thrombosis, respectively. All patients were followed-up monthly with US, CT or MRI. Shrinkage of the thrombus or recanalization of the vessels on US, CT or MRI during follow-up was considered to be definitive evidence of the benign nature of the thrombosis, whereas enlargement of the thrombus, disruption of the vessel wall, and parenchymal infiltration over follow-up were considered to be consistent with malignancy. ^18SF-FDG PET/CT, and US, CT or MRI results were compared.
RESULTS: Follow-up (1 to 10 mo) showed signs of malignant thrombosis in 4 of the 5 patients. US, CT or MRI produced a true-positive result for malignancy in 4 of the patients, and a false-positive result in 1. ^18F-FDG PET/CT showed a highly metabolic thrombus in 4 of the 5 patients. ^18F-FDG PET/CT achieved a true-positive result in all 4 of these patients, and a true-negative result in the other patient. No false-positive result was observed using ^18F-FDG PET/CT.
CONCLUSION: ^18F-FDG PET/CT may be helpful in discriminating between benign and malignant portal vein thrombi. Patients may benefit from ^18F-FDG PET/CT when portal vein thrombi can not be diagnosed exactly by US, CT or MRI.  相似文献   

18.
Since the coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread worldwide, there is still limited knowledge about this condition and its natural history. Children have been relatively spared during COVID-19 pandemic but a novel syndrome known as multisystem inflammatory syndrome (MIS-C) has emerged, following a SARS-CoV-2 infection in children and adolescents. This syndrome can lead to shock and multiple organ failure requiring intensive care. Although COVID-19 clinical research focuses on respiratory symptoms, extrapulmonary involvement such as gastrointestinal (GI) and hepatic manifestations should also be considered. In fact, GI and hepatic involvement play an important role among the most common presenting symptoms of both pediatric and adult COVID-19 and MIS-C. This involvement can not only be one of the most common presenting clinical features but also one of the sequelae of these syndromes. Abdominal ultrasonography monitoring could be very useful to identify a potential involvement of the GI tract and liver. Moreover, long-term follow-up is needed and would be essential to define the long-term outcomes of these patients.  相似文献   

19.
The risk of liver injury in patients with coronavirus disease 2019(COVID-19) infection is quite evident. Furthermore, liver function test abnormalities are still detected in COVID-19 patients despite the development of antivirals and the availability of several types of vaccines. This editorial describes liver involvement during COVID-19 infection in patients with or without preexisting liver injury, such as chronic liver disease, to elucidate COVID-19-induced liver function abnormalities and th...  相似文献   

20.
Coronavirus disease 2019 (COVID-19), caused by infection with the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has escalated into a global tragedy afflicting human health, life, and social governance. Through the increasing depth of research and a better understanding of this disease, it has been ascertained that, in addition to the lungs, SARS-CoV-2 can also induce injuries to other organs including the liver. Liver injury is a common clinical manifestation of COVID-19, particularly in severe cases, and is often associated with a poorer prognosis and higher severity of COVID-19. This review focuses on the general existing information on liver injury caused by COVID-19, including risk factors and subpopulations of liver injury in COVID-19, the association between preexisting liver diseases and the severity of COVID-19, and the potential mechanisms by which SARS-CoV-2 affects the liver. This review may provide some useful information for the development of therapeutic and preventive strategies for COVID-19-associated liver injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号