首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Gastrointestinal disorders are a major cause of morbidity in the elderly population. The gastrointestinal tract is the most complex organ system; its diverse cells perform a range of functions essential to life, not only secretion, digestion, absorption and excretion, but also, very importantly, defence. The gastrointestinal tract acts not only as a barrier to harmful materials and pathogens but also contains the vast number of beneficial bacterial populations that make up the microbiota. Communication between the cells of the gastrointestinal tract and the central nervous and endocrine systems modifies behaviour; the organisms of the microbiota also contribute to this brain–gut–enteric microbiota axis. Age-related physiological changes in the gut are not only common, but also variable, and likely to be influenced by external factors as well as intrinsic aging of the cells involved. The cellular and molecular changes exhibited by the aging gut cells also vary. Aging intestinal smooth muscle cells exhibit a number of changes in the signalling pathways that regulate contraction. There is some evidence for age-associated degeneration of neurons and glia of the enteric nervous system, although enteric neuronal losses are likely not to be nearly as extensive as previously believed. Aging enteric neurons have been shown to exhibit a senescence-associated phenotype. Epithelial stem cells exhibit increased mitochondrial mutation in aging that affects their progeny in the mucosal epithelium. Changes to the microbiota and intestinal immune system during aging are likely to contribute to wider aging of the organism and are increasingly important areas of analysis. How changes of the different cell types of the gut during aging affect the numerous cellular interactions that are essential for normal gut functions will be important areas for future aging research.  相似文献   

3.
Antimicrobial peptides (AMP) are highly diverse and dynamic molecules that are expressed by specific intestinal epithelial cells, Paneth cells, as well as immune cells in the gastrointestinal (GI) tract. They play critical roles in maintaining tolerance to gut microbiota and protecting against enteric infections. Given that disruptions in tolerance to commensal microbiota and loss of barrier function play major roles in the pathogenesis of inflammatory bowel disease (IBD) and converge on the function of AMP, the significance of AMP as potential biomarkers and novel therapeutic targets in IBD have been increasingly recognized in recent years. In this frontier article, we discuss the function and mechanisms of AMP in the GI tract, examine the interaction of AMP with the gut microbiome, explore the role of AMP in the pathogenesis of IBD, and review translational applications of AMP in patients with IBD.  相似文献   

4.
Microbes colonize the gastrointestinal tract are considered as highest complex ecosystem because of having diverse bacterial species and 150 times more genes as compared to the human genome. Imbalance or dysbiosis in gut bacteria can cause dysregulation in gut homeostasis that subsequently activates the immune system, which leads to the development of inflammatory bowel disease(IBD). Neuromediators, including both neurotransmitters and neuropeptides, may contribute to the development of aberrant immune response. They are emerging as a regulator of inflammatory processes and play a key role in various autoimmune and inflammatory diseases. Neuromediators may influence immune cell's function via the receptors present on these cells. The cytokines secreted by the immune cells, in turn, regulate the neuronal functions by binding with their receptors present on sensory neurons. This bidirectional communication of the enteric nervous system and the enteric immune system is involved in regulating the magnitude of inflammatory pathways. Alterations in gut bacteria influence the level of neuromediators in the colon, which may affect the gastrointestinal inflammation in a disease condition. Changed neuromediators concentration via dysbiosis in gut microbiota is one of the novel approaches to understand the pathogenesis of IBD. In this article, we reviewed the existing knowledge on the role of neuromediators governing the pathogenesis of IBD, focusing on the reciprocal relationship among the gut microbiota, neuromediators, and host immunity. Understanding the neuromediators and host-microbiota interactions would give a better insight in to the disease pathophysiology and help in developing the new therapeutic approaches for the disease.  相似文献   

5.
Parkinson's disease(PD) is characterized by alphasynucleinopathy that affects all levels of the braingut axis including the central, autonomic, and enteric nervous systems. Recently, it has been recognized that the brain-gut axis interactions are significantly modulated by the gut microbiota via immunological,neuroendocrine, and direct neural mechanisms. Dysregulation of the brain-gut-microbiota axis in PD may be associated with gastrointestinal manifestations frequently preceding motor symptoms, as well as with the pathogenesis of PD itself, supporting the hypothesis that the pathological process is spread from the gut to the brain. Excessive stimulation of the innate immune system resulting from gut dysbiosis and/or small intestinal bacterial overgrowth and increased intestinal permeability may induce systemic inflammation, while activation of enteric neurons and enteric glial cells may contribute to the initiation of alpha-synuclein misfolding.Additionally, the adaptive immune system may be disturbed by bacterial proteins cross-reacting with human antigens. A better understanding of the brain-gutmicrobiota axis interactions should bring a new insight in the pathophysiology of PD and permit an earlier diagnosis with a focus on peripheral biomarkers within the enteric nervous system. Novel therapeutic options aimed at modifying the gut microbiota composition and enhancing the intestinal epithelial barrier integrity in PD patients could influence the initial step of the following cascade of neurodegeneration in PD.  相似文献   

6.
Gastrointestinal (GI) motility function and its regulation is a complex process involving collaboration and communication of multiple cell types such as enteric neurons, interstitial cells of Cajal (ICC), and smooth muscle cells. Recent advances in GI research made a better understanding of ICC function and their role in the GI tract, and studies based on different types of techniques have shown that ICC, as an integral part of the GI neuromuscular apparatus, transduce inputs from enteric motor neurons, generate intrinsic electrical rhythmicity in phasic smooth muscles, and have a mechanical sensation ability. Absence or improper function of these cells has been linked to some GI tract disorders. This paper provides a general overview of ICC; their discovery, subtypes, function, locations in the GI tract, and some disorders associated with their loss or disease, and highlights some controversial issues with regard to the importance of ICC in the GI tract.  相似文献   

7.
In recent years, there have been significant advances in our understanding of the mucosal immune system. In addition to unravelling some of the complexities of this system, including the discovery of completely new cells types, further insights into the three‐way interactions between mucosal immune cells, the intestinal epithelium and the microbial communities colonizing the GI tract promise to redefine our understanding of how intestinal homeostasis is maintained, but also how dysregulation of these highly integrated interactions conspires to cause disease. In this review, we will discuss major recent advances in the role of key immune players in the gut, including innate lymphoid cells (ILCs), mucosa‐associated invariant T cells (MAIT cells) and cells of the mononuclear phagocyte system (MPS), including how these cells interact with the intestinal epithelial and their crosstalk with components of the intestinal microbiota, and how these interactions shape host health.  相似文献   

8.
Proton pump inhibitors (PPIs) are common medications within the practice of gastroenterology. These drugs, which act through the irreversible inhibition of the hydrogen/potassium pump (H+/K+-ATPase pump) in the gastric parietal cells, are used in the treatment of several acid-related disorders. PPIs are generally well tolerated but, through the long-term reduction of gastric acid secretion, can increase the risk of an imbalance in gut microbiota composition (i.e., dysbiosis). The gut microbiota is a complex ecosystem in which microbes coexist and interact with the human host. Indeed, the resident gut bacteria are needed for multiple vital functions, such as nutrient and drug metabolism, the production of energy, defense against pathogens, the modulation of the immune system and support of the integrity of the gut mucosal barrier. The bacteria are collected in communities that vary in density and composition within each segment of the gastrointestinal (GI) tract. Therefore, every change in the gut ecosystem has been connected to an increased susceptibility or exacerbation of various GI disorders. The aim of this review is to summarize the recently available data on PPI-related microbiota alterations in each segment of the GI tract and to analyze the possible involvement of PPIs in the pathogenesis of several specific GI diseases.  相似文献   

9.
The enteric nervous system (ENS) coordinates the major functions of the gastrointestinal tract. Its development takes place within a constantly changing environment which, after birth, culminates in the establishment of a complex gut microbiota. How such changes affect ENS development and its subsequent function throughout life is an emerging field of study that holds great interest but which is inadequately explored thus far. In this addendum, we discuss our recent findings showing that a component of the ENS, the enteric glial cell network that resides in the gut lamina propria, develops after birth and parallels the evolution of the gut microbiota. Importantly, this network was found to be malleable throughout life by incorporating new cells that arrive from the area of the gut wall in a process of directional movement which was controlled by the lumen gut microbiota. Finally, we postulate on the roles of the intestinal epithelium and the immune system as potential intermediaries between gut microbiota and ENS responses.  相似文献   

10.
《Gut microbes》2013,4(6):398-403
The enteric nervous system (ENS) coordinates the major functions of the gastrointestinal tract. Its development takes place within a constantly changing environment which, after birth, culminates in the establishment of a complex gut microbiota. How such changes affect ENS development and its subsequent function throughout life is an emerging field of study that holds great interest but which is inadequately explored thus far. In this addendum, we discuss our recent findings showing that a component of the ENS, the enteric glial cell network that resides in the gut lamina propria, develops after birth and parallels the evolution of the gut microbiota. Importantly, this network was found to be malleable throughout life by incorporating new cells that arrive from the area of the gut wall in a process of directional movement which was controlled by the lumen gut microbiota. Finally, we postulate on the roles of the intestinal epithelium and the immune system as potential intermediaries between gut microbiota and ENS responses.  相似文献   

11.
Chronic abdominal pain accompanying intestinal inflammation emerges from the hyperresponsiveness of neuronal,immune and endocrine signaling pathways within the intestines,the peripheral and the central nervous system.In this article we review how the sensory nerve information from the healthy and the hypersensitive bowel is encoded and conveyed to the brain.The gut milieu is continuously monitored by intrinsic enteric afferents,and an extrinsic nervous network comprising vagal,pelvic and splanchnic afferents.The extrinsic afferents convey gut stimuli to second order neurons within the superficial spinal cord layers.These neurons cross the white commissure and ascend in the anterolateral quadrant and in the ipsilateral dorsal column of the dorsal horn to higher brain centers,mostly subserving regulatory functions.Within the supraspinal regions and the brainstem,pathways descend to modulate the sensory input.Because of this multiple level control,only a small proportion of gut signals actually reaches the level of consciousness to induce sensation or pain.In inflammatory bowel disease(IBD)and irritable bowel syndrome(IBS)patients,however,long-term neuroplastic changes have occurred in the brain-gut axis which results in chronic abdominal pain.This sensitization may be driven on the one hand by peripheral mechanisms within the intestinal wall which encompasses an interplay between immunocytes,enterochromaffin cells,resident macrophages,neurons and smooth muscles.On the other hand,neuronal synaptic changes along with increased neurotransmitter release in the spinal cord and brain leads to a state of central wind-up.Also life factors such as but not limited to inflammation and stress contribute to hypersensitivity.All together,the degree to which each of these mechanisms contribute to hypersensitivity in IBD and IBS might be diseaseand even patient-dependent.Mapping of sensitization throughout animal and human studies may significantly improve our understanding of sensitization in IBD and IBS.On the long run,this knowledge can be put forward in potential therapeutic targets for abdominal pain in these conditions.  相似文献   

12.
Orexins in the brain-gut axis   总被引:4,自引:0,他引:4  
Orexins (hypocretins) are a novel pair of neuropeptides implicated in the regulation of energy balances and arousal. Previous reports have indicated that orexins are produced only in the lateral hypothalamic area, although orexin-containing nerve fibers were observed throughout the neuroaxis. Recent evidence shows that orexins and functional orexin receptors are found in the periphery. Vagal and spinal primary afferent neurons, enteric neurons, and endocrine cells in both the gut and pancreas display orexin- and orexin receptor-like immunoreactivity. Orexins excite secretomotor neurons in the guinea pig gut and modulate gastric and intestinal motility and secretion. In addition, orexins modulate hormone release from pancreatic endocrine cells. Moreover, fasting up-regulates the phosphorylated form of cAMP response element binding protein in orexin-immunoreactive enteric neurons, indicating a functional response to food status in these cells. The purpose of this article is to summarize evidence for the existence of a brain-gut network of orexin-containing cells that appears to play a role in the acute regulation of energy homeostasis.  相似文献   

13.
The gastrointestinal (GI) tract is a complex and dynamic network with interplay between various gut mucosal cells and their defence molecules, the immune system, food particles, and the resident microbiota. This ecosystem acts as a functional unit organized as a semipermeable multi-layer system that allows the absorption of nutrients and macromolecules required for human metabolic processes and, on the other hand, protects the individual from potentially invasive microorganisms. Commensal microbiota and the host are a unique entity in a continuum along the GI tract, every change in one of these players is able to modify the whole homeostasis. In the stomach, Helicobacter pylori is a gram-negative pathogen that is widespread all over the world, infecting more than 50% of the world's population. In this scenario, H. pylori infection is associated with changes in the gastric microenvironment, which in turn affects the gastric microbiota composition, but also might trigger large intestinal microbiota changes. It is able to influence all the vital pathways of human system and also to influence microbiota composition along the GI tract. This can cause a change in the normal functions exerted by intestinal commensal microorganisms leading to a new gastrointestinal physiological balance. This review focuses and speculates on the possible interactions between gastric microorganisms and intestinal microbiota and on the consequences of this interplay in modulating gut health.  相似文献   

14.
Early childhood growth and development is conditioned by the consecutive events belonging to perinatal programming. This critical window of life will be very sensitive to any event altering programming of the main body functions.Programming of gut function, which is starting right after conception, relates to a very well-established series of cellular and molecular events associating all types of cells present in this organ, including neurons, endocrine and immune cells. At birth, this machinery continues to settle with the establishment of extra connection between enteric and other systemic systems and is partially under the control of gut microbiota activity, itself being under the densification and the diversification of microorganisms' population. As thus, any environmental factor interfering on this pre-established program may have a strong incidence on body functions. For all these reasons, pregnant women, fetuses and infants will be particularly susceptible to environmental factors and especially food contaminants. In this review, we will summarize the actual understanding of the consequences of repeated low-level exposure to major food contaminants on gut homeostasis settlement and on brain/gut axis communication considering the pivotal role played by the gut microbiota during the fetal and postnatal stages and the presumed consequences of these food toxicants on the individuals especially in relation with the risks of developing later in life non-communicable chronic diseases.  相似文献   

15.
Intestinal mast cell activation (degranulation), which results from previous enteric infection and/or intestinal allergy, may play a central role in the gut hypersensitivity in both motor response and visceral perception in the Irritable Bowel syndrome. This occurs through various mediators acting on enteric neurons and smooth muscle cells. Psychological stress may trigger this sensitive alarm system via the brain-gut axis.  相似文献   

16.
Over the last few years, the importance of the resident intestinal microbiota in the pathogenesis of several gastrointestinal diseases has been largely investigated. Growing evidence suggest that microbiota can influence gastrointestinal motility. The current working hypothesis is that dysbiosis-driven mucosal alterations induce the production of several inflammatory/immune mediators which affect gut neuro-muscular functions. Besides these indirect mucosal-mediated effects, the present review highlights that recent evidence suggests that microbiota can directly affect enteric nerves and smooth muscle cells functions through its metabolic products or bacterial molecular components translocated from the intestinal lumen. Tolllike receptors, the bacterial recognition receptors, are expressed both on enteric nerves and smooth muscle and are emerging as potential mediators between microbiota and the enteric neuromuscular apparatus. Furthermore, the ongoing studies on probiotics support the hypothesis that the neuromuscular apparatus may represent a target of intervention, thus opening new physiopathological and therapeutic scenarios.  相似文献   

17.
Functional gastrointestinal disorders (FGIDs), characterized by chronic abdominal complaints without a structural or biochemical cause, are common diseases that are frequently encountered by specialists in internal medicine. Collectively, irritable bowel syndrome (IBS) and functional dyspepsia are estimated to affect up to 22% of the population, and are often associated with additional somatic and pain complaints, all without an obvious structural source [1,2]. An appreciation of the current understanding of the mechanistic basis for these disorders is key to developing treatment goals and optimization of patient management strategies. In recent years, the brain-gut axis increasingly has been recognized as a central factor in the experience of functional abdominal pain disorders, including the most recent Rome IV guidelines which identify FGIDs as disorders of gut-brain interaction [3]. The brain-gut axis (BGA), simply defined, is a complex network of bidirectional communication between the central and enteric nervous systems. This axis broadly includes all the systems involved with communication between the GI tract and central nervous system (CNS), with principle inputs into this network occurring between the CNS, enteric nervous system (ENS), and autonomic nervous systems (ANS), but also includes interfaces with numerous other factors, including endocrine hormones and immune effector cells as well as interactions with the gut microbiota. Perturbances to this system have been found to play a critical role in the development of visceral hypersensitivity, bowel dysregulation, and mood. This review will summarize the principle processes involved in the neurologic and biologic function of the brain-gut axis, our current understanding of its role in functional GI disorders, and potential targets for therapeutic intervention.  相似文献   

18.
19.
Autism spectrum disorders(ASD)comprise a group of neurodevelopmental abnormalities that begin in early childhood and are characterized by impairment of social communication and behavioral problems including restricted interests and repetitive behaviors.Several genes have been implicated in the pathogenesis of ASD,most of them are involved in neuronal synaptogenesis.A number of environmental factors and associated conditions such as gastrointestinal(GI)abnormalities and immune imbalance have been linked to the pathophysiology of ASD.According to the March 2012 report released by United States Centers for Disease Control and Prevention,the prevalence of ASD has sharply increased during the recent years and one out of 88 children suffers now from ASD symptoms.Although there is a strong genetic base for the disease,several associated factors could have a direct link to the pathogenesis of ASD or act as modifiers of the genes thus aggravating the initial problem.Many children suffering from ASD have GI problems such as abdominal pain,chronic diarrhea,constipation,vomiting,gastroesophageal reflux,and intestinal infections.A number of studies focusing on the intestinal mucosa,its permeability,abnormal gut development,leaky gut,and other GI problem raised many questions but studies were somehow inconclusive and an expert panel of American Academy of Pediatrics has strongly recommended further investigation in these areas.GI tract has a direct connection with the immune system and an imbalanced immune response is usually seen in ASD children.Maternal infection or autoimmune diseases have been suspected.Activation of the immune system during early development may have deleterious effect on various organs including the nervous system.In this review we revisited briefly the GI and immune system abnormalities and neuropeptide imbalance and their role in the pathophysiology of ASD and discussed some future research directions.  相似文献   

20.
The disease coronavirus disease 2019 (COVID-19) is a severe respiratory illness that has emerged as a devastating health problem worldwide. The disease outcome is heterogeneous, and severity is likely dependent on the immunity of infected individuals and comorbidities. Although symptoms of the disease are primarily associated with respiratory problems, additional infection or failure of other vital organs are being reported. Emerging reports suggest a quite common co-existence of gastrointestinal (GI) tract symptoms in addition to respiratory symptoms in many COVID-19 patients, and some patients show just the GI symptoms. The possible cause of the GI symptoms could be due to direct infection of the epithelial cells of the gut, which is supported by the fact that (1) The intestinal epithelium expresses a high level of angiotensin-converting enzyme-2 and transmembrane protease serine 2 protein that are required for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry into the cells; (2) About half of the severe COVID-19 patients show viral RNA in their feces and various parts of the GI tract; and (3) SARS-CoV-2 can directly infect gut epithelial cells in vitro (gut epithelial cells and organoids) and in vivo (rhesus monkey). The GI tract seems to be a site of active innate and adaptive immune responses to SARS-CoV-2 as clinically, stool samples of COVID-19 patients possess proinflammatory cytokines (interleukin 8), calprotectin (neutrophils activity), and immunoglobulin A antibodies. In addition to direct immune activation by the virus, impairment of GI epithelium integrity can evoke immune response under the influence of systemic cytokines, hypoxia, and changes in gut microbiota (dysbiosis) due to infection of the respiratory system, which is confirmed by the observation that not all of the GI symptomatic patients are viral RNA positive. This review comprehensively summarizes the possible GI immunomodulation by SARS-CoV-2 that could lead to GI symptoms, their association with disease severity, and potential therapeutic interventions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号