首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Respiratory sensitization is a concern for occupational and environmental health in consumer product development. Despite international regulatory requirements there is no established protocol for the identification of chemical respiratory sensitizers. New tests should be based on mechanistic understanding and should be preferentially restricted to in vitro assays. The major goal of this study was to investigate the alterations in gene expression of human bronchial epithelial (BEAS-2B) cells after exposure to respiratory sensitizers and respiratory non-sensitizing chemicals, and to identify genes that are able to discriminate between both groups of chemicals. BEAS-2B cells were exposed during 6, 10, and 24 h to the respiratory sensitizers ammonium hexachloroplatinate IV, hexamethylene diisocyanate, and trimellitic anhydride, the irritants acrolein and methyl salicylate, and the skin sensitizer 1-chloro-2,4-dinitrobenzene. Overall changes in gene expression were evaluated using Agilent Whole Human Genome 4× 44K oligonucleotide arrays. Fisher Linear Discriminant Analysis was used to obtain a ranking of genes that reflects their potential to discriminate between respiratory sensitizing and respiratory non-sensitizing chemicals. The 10 most discriminative genes were BC042064, A_24_P229834, DOCK11, THC2544911, DLGAP4, NINJ1, PFKM, FLJ10986, IL28RA, and CASP9. Based on the differentially expressed genes, pathway analysis was used to identify possible underlying mechanisms of respiratory sensitization. We demonstrated that in bronchial epithelial cells the canonical PTEN signaling pathway is probably the most specific pathway in the context of respiratory sensitization. Results are indicative that the BEAS-2B cell line can be used as an alternative cell model to screen chemical compounds for their respiratory sensitizing potential.  相似文献   

2.
It is recognized that respiratory sensitization is a hazard of high concern. Despite international regulatory requirements there is no established protocol for the identification of chemical respiratory sensitizers. New tests should be based on mechanistic understanding and should be preferentially restricted to in vitro assays. The major goal of this study was to investigate the genetic response of human THP-1 macrophages after contact with respiratory (non-)sensitizers, and to identify genes that are able to discriminate between both groups. THP-1 macrophages were exposed during different time points to 3 respiratory sensitizers, 2 irritants, and 1 skin sensitizer. Gene expression changes were evaluated using Agilent Whole Human Genome arrays. Fisher Linear Discriminant Analysis was used to obtain a ranking of genes that reflects their potential to discriminate between respiratory (non-)sensitizing chemicals. Among the 20 most discriminating genes which were categorized into molecular and biological Gene Ontology (GO) terms, EIF4E, PDGFRB, SEMA7A, and ZFP36L2 could be associated with respiratory sensitization. When categorizing the top-1000 genes into biological GO terms, 24 genes were associated with immune function. Using a pathway analysis tool, platelet-derived growth factor signaling was observed to be activated in THP-1 macrophages in the context of respiratory sensitization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号