首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
We compared gamma-aminobutyric acid (GABA)-activated currents and their modulation by benzodiazepines in cultured human cells transfected with complementary desoxyribonucleic acid (cDNA) encoding different GABAA receptor subunits. Flunitrazepam, a benzodiazepine agonist which potentiates GABA responses in both neurons and astrocytes was only effective in receptors containing the gamma 2 subunit (alpha 1 beta 1 gamma 2 and alpha 5 beta 1 gamma 2). The beta-carboline methyl-4-ethyl-6,7-dimethoxy-beta-carboline-3-carboxylate (DMCM) decreased GABA-activated currents in receptors composed of alpha 1 beta 1 gamma 1 and alpha 1 beta 1 gamma 2 subunits but increased GABA-activated currents in receptors containing the alpha 5 subunit (alpha 5 beta 1 gamma 1 and alpha 5 beta 1 gamma 2). These results strongly suggest that flunitrazepam and DMCM do not act on isosteric sites and that differences in the responsiveness of GABAA receptors to these compounds are based on different subunit compositions of GABAA receptors.  相似文献   

2.
Alphabetagamma GABA(A) receptor currents are phasic and desensitizing, whereas alphabetadelta GABA(A) receptor currents are tonic and have no fast desensitization. alphabetagamma receptors are subsynaptic and mediate phasic inhibition, whereas alphabetadelta receptors are extra- or perisynaptic and mediate tonic inhibition. Given the different roles of these GABA(A) receptor isoforms and the fact that GABA(A) receptors are allosterically regulated by extracellular pH in a subunit-dependent manner, we compared the effects of changing pH on rat delta or gamma2L subunit-containing GABA(A) receptor currents. Human embryonic kidney cells (HEK293T) were transfected with cDNAs encoding rat alpha1, beta3, gamma2L, or delta GABA(A) receptor subunits in several binary and ternary combinations, and whole cell and single channel patch-clamp recordings were obtained. Lowering pH substantially enhanced alpha1beta3 receptor currents. This effect was significantly more pronounced for ternary alpha1beta3delta receptors, whereas ternary alpha1beta3gamma2L receptors were relatively insensitive to lowered pH. Lowering pH did not affect the extent of desensitization of alpha1beta3 and alpha1beta3gamma2L receptor currents, but significantly increased the extent of desensitization of alpha1beta3delta receptor currents. Lowering pH prolonged deactivation of alpha1beta3 and alpha1beta3delta receptor currents and enhanced the "steady-state" currents of alpha1beta3delta receptors evoked by long-duration (28 s) GABA applications. Lowering pH significantly increased mean open duration of alpha1beta3delta steady-state single channel currents due to introduction of a longer-duration open state, suggesting that low pH enhances alpha1beta3delta receptor steady-state currents by modifying GABA(A) receptor gating properties.  相似文献   

3.
Anabolic androgenic steroids are synthetic derivatives of testosterone designed for therapeutic uses, but now taken as drugs of abuse. Potential health risks associated with anabolic androgenic steroid abuse are believed to be higher in adolescents than in adults, but few studies have tested anabolic androgenic steroid effects in adolescent subjects or determined if effects of these steroids differ between females and males. We have studied GABA(A) receptor expression and function in the medial preoptic nucleus of mice chronically treated during adolescence with the anabolic androgenic steroid, 17alpha-methyltestosterone. Three-week treatment did not elicit significant differences the expression of alpha1, alpha2 or alpha5 subunit mRNAs in animals of either sex, although there was a trend toward decreases in all three subunit mRNAs in female mice, which was augmented and attained significance for the alpha2 subunit mRNA in females treated for six weeks. Immunocytochemical analysis revealed that treatment with 17alpha-methyltestosterone for 6 weeks also elicited a significant decrease in the number of alpha2-immunopositive neurons in female subjects. To test if anabolic androgenic steroid treatment also promoted changes in GABA(A) receptor function, spontaneous inhibitory synaptic currents were analyzed in adolescent animals treated for 3-4 weeks. This treatment regimen promoted a significant decrease in spontaneous inhibitory synaptic current frequency in female, but not male mice. Finally, anabolic androgenic steroid treatment was found to have no effect on the numbers of interneurons within the medial preoptic nucleus, as assessed by immunoreactivity for calcium binding proteins, suggesting that the decrease in the frequency of spontaneous inhibitory synaptic currents in female mice does not arise from an anabolic androgenic steroid-induced loss of interneurons. Taken together, our results indicate that chronic exposure to 17alpha-methyltestosterone elicits significant changes in GABAergic transmission in the medial preoptic nucleus of female, but not male, mice effectively enhancing the sexually dimorphic nature of GABAergic transmission in a forebrain region crucial for the expression of aggression and sexual behaviors.  相似文献   

4.
The volatile anesthetic isoflurane both prolongs and reduces the amplitude of GABA-mediated inhibitory postsynaptic currents (IPSCs) recorded in neurons. To explore the latter effect, we investigated isoflurane-induced inhibition of steady-state desensitized GABA currents in Xenopus oocytes expressing wild-type alpha(1)beta(2), alpha(1)beta(2)gamma(2s), mutant alpha(1)(S270H)beta(2) (serine to histidine at residue 270) or alpha(1)(S270H)beta(2)gamma(2s) receptors. The alpha(1) serine 270 site in TM2 (second transmembrane domain of the subunit) is postulated as a binding site for some volatile agents and is critical for positive modulation of sub-maximal GABA responses by isoflurane. For all receptor combinations, at < or =0.6 mM isoflurane (< or =2 minimum alveolar concentration (MAC)) current inhibitions were not pronounced ( approximately 10%) with block reaching half-maximal levels at supraclinical concentrations ( approximately 2 mM isoflurane, 6 MAC). Comparisons with other GABA(A) receptor blockers indicated that isoflurane blocks in a similar manner to picrotoxin, possibly via the pore of the receptor. The extent of isoflurane-induced inhibition was significantly attenuated by inclusion of the gamma(2s)-subunit but was unaffected by introduction of the S270H mutation in the alpha(1)-subunit. In conclusion, isoflurane binds with low affinity and with subunit-specificity to an inhibitory site on the GABA(A) receptor that is distinct from the site that facilitates positive modulation at the extracellular end of the pore.  相似文献   

5.
Pan ZH  Zhang X  Lipton SA 《Neuroscience》2000,98(2):333-338
We previously reported that GABA-evoked currents of rat retinal ganglion cells were modulated by redox agents. In this study, we further characterized the effects of redox modulation on GABA receptors using recombinant human subunits in the Xenopus oocyte expression system with two-electrode voltage-clamp recording. GABA receptors composed of subunits alpha(1-3), beta(1-3), gamma(1), gamma(2S,) and rho(1) were expressed. The sulfhydryl reducing agent dithiothreitol reversibly potentiated the responses of various combinations of functional recombinant GABA(A) subunits, whether expressed as triplets (alpha(1)beta(1-3)gamma(1,2S)), pairs (alpha(1-3)beta(1-3); beta(1-3)gamma(1,2S)), or singly (beta(2)). These effects of dithiothreitol were rapidly reversible, and the oxidizing agent 5-5'-dithiobis-2-nitrobenzoic acid exerted the opposite effect. In contrast to these effects on GABA(A) receptors, dithiothreitol had no effect on the responses of homomeric GABA rho(1) (GABA(C)) receptors. The degree of dithiothreitol potentiation of GABA(A) receptor responses depended on subunit composition. Co-expression of gamma(2S) with alpha(1)beta(1-3) subunits resulted in markedly less dithiothreitol potentiation of GABA-evoked currents than that observed for alpha(1-3)beta(1-3) subunits in the absence of gamma(2S). None the less, the magnitude of dithiothreitol potentiation could be restored by using a combination of lower GABA concentrations (5-10 microM) and higher dithiothreitol concentrations (5-20mM). N,N,N', N'-tetrakis(2-pyridyl-methyl)ethylenediamine, a high-affinity Zn(2+) chelator, also potentiated GABA(A) receptor currents. However, the potentiation produced by 10mM dithiothreitol was larger than that produced by saturating concentrations of N,N,N', N'-tetrakis(2-pyridyl-methyl)ethylenediamine (100 microM), implying that at least part of the effect of dithiothreitol was due to redox modulation rather than Zn(2+) chelation. Dithiothreitol also potentiated the spontaneous current of homomeric GABA(A) receptors composed of beta subunits. Mutation of a single cysteine residue in the M3 domain, yielding homomeric beta(3)(C313A) receptors, abrogated dithiothreitol potentiation of the spontaneous current.In summary, this study further characterizes the modulatory effects of redox agents on recombinant GABA(A) receptors. The degree of redox modulation of GABA(A) receptors depended on subunit composition. In contrast to their effect on GABA(A) receptors, redox agents were not found to modulate GABA(C) receptors composed of homomeric rho(1) subunits. Using site-directed mutagenesis, a cysteine residue was located in the beta(3) subunit which may comprise one of the redox-active sites that underlies the modulation of heteromeric GABA(A) receptors by reducing and oxidizing agents.  相似文献   

6.
We compared the modulation of GABA (gamma-aminobutyric acid)-activated currents by benzodiazepines in recombinant GABAA receptors containing either one of two alpha subunits, alpha 1 or alpha 6. Lüddens et al. (Nature, 346 (1990) 648-651) have previously demonstrated that the alpha 6 subunit is part of a cerebellar receptor subtype which selectively binds Ro15-4513, an antagonist of alcohol-induced motor ataxia. Here we report that the imidazobenzodiazepine Ro15-4513 (ethyl 8-azido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo-(1,5-a) (1,4)benzodiazepine-3-carboxylate) reduced GABA-activated currents in recombinant alpha 6 beta 2 gamma 2 and alpha 1 beta 2 gamma 2 receptors, thus acting consistently as an inverse agonist. Moreover, another well characterized negative modulator, DMCM (methyl-4-ethyl-6,7-dimethoxy-beta-carboline-3-carboxylate), also reduces GABA activated-currents in both receptors. In contrast, flunitrazepam (FNZM), a benzodiazepine agonist, increases GABA-activated currents in alpha 1 beta 2 gamma 2 receptors, but not in alpha 6 beta 2 gamma 2 receptors. This study lends further support to the hypothesis that the binding sites of full and partial inverse agonists are different.  相似文献   

7.
The hypothalamus influences a number of autonomic functions. The activity of hypothalamic neurons is modulated in part by release of the inhibitory neurotransmitter GABA onto these neurons. GABA(A) receptors are formed from a number of distinct subunits, designated alpha, beta, gamma, delta, epsilon, and theta, many of which have multiple isoforms. Little data exist, however, on the functional characteristics of the GABA(A) receptors present on hypothalamic neurons. To gain insight into which GABA(A) receptor subunits are functionally expressed in the hypothalamus, we used an array of pharmacologic assessments. Whole cell recordings were made from thin hypothalamic slices obtained from 1- to 14-day-old rats. GABA(A) receptor-mediated currents were detected in all neurons tested and had an average EC(50) of 20 +/- 1.6 microM. Hypothalamic GABA(A) receptors were modulated by diazepam (EC(50) = 0.060 microM), zolpidem (EC(50) = 0.19 microM), loreclezole (EC(50) = 4.4 microM), methyl-6,7-dimethoxy-4-ethyl-beta-carboline (EC(50) = 7.7 microM), and 5alpha-pregnan-3alpha-hydroxy-20-one (3alpha-OH-DHP). Conversely, these receptors were inhibited by Zn(2+) (IC(50) = 70.5 microM), dehydroepiandrosterone sulfate (IC(50) = 16.7 microM), and picrotoxin (IC(50) = 2.6 microM). The alpha4/6-selective antagonist furosemide (10-1,000 microM) was ineffective in all hypothalamic neurons tested. The results of our pharmacological analysis suggest that hypothalamic neurons express functional GABA(A) receptor subtypes that incorporate alpha1 and/or alpha2 subunits, beta2 and/or beta3 subunits, and the gamma2 subunit. Our results suggest receptors expressing alpha3-alpha6, beta1, gamma1, and delta, if present, represent a minor component of functional hypothalamic GABA(A) receptors.  相似文献   

8.
The effect of lanthanum ion (La3+) on gamma-aminobutyric acid (GABA)-mediated Cl- currents was examined in the alpha 1 beta 2 or alpha 1 beta 2 gamma 2 subtype of GABAA receptors expressed in a human kidney cell line (A293), using a whole-cell configuration of patch-clamp techniques. La3+ dose-dependently stimulated the Cl- currents in the alpha 1 beta 2 gamma 2 subtype with an EC50 of 21.3 +/- 3.5 microM with a maximal potentiation of 240 +/- 16% as normalized to the GABA response at 5 microM. In the alpha 1 beta 2 subtype, however, the ion marginally potentiated GABA response, a maximal stimulation being less than 70% with an EC50 for La3+ near 200 microM. The stimulation of GABA response by La3+ in the alpha 1 beta 2 gamma 2 subtype was due to a decrease in the half maximal concentration for GABA and was more pronounced at the negative membrane potentials. This selectivity of La3+ toward the subtypes of GABAA receptors contrasts to that of Zn2+ which inhibits the currents in the alpha 1 beta 2, but not in the alpha 1 beta 2 gamma 2 subtype (Neuron, 5: (1990) 781-788). It appears that these polyvalent cations are useful in understanding the molecular basis for the functional diversity and in characterizing the molecular organization of native GABAA receptors.  相似文献   

9.
A GABA(A) receptor delta subunit-deficient mouse line was created by homologous recombination in embryonic stem cells to investigate the role of the subunit in the brain GABA(A) receptors. High-affinity [(3)H]muscimol binding to GABA sites as studied by ligand autoradiography was reduced in various brain regions of delta(-/-) animals. [(3)H]Ro 15-4513 binding to benzodiazepine sites was increased in delta(-/-) animals, partly due to an increment of diazepam-insensitive receptors, indicating an augmented forebrain assembly of gamma 2 subunits with alpha 4 subunits. In the western blots of forebrain membranes of delta(-/-) animals, the level of gamma 2 subunit was increased and that of alpha 4 decreased, while the level of alpha1 subunits remained unchanged. In the delta(-/-) forebrains, the remaining alpha 4 subunits were associated more often with gamma 2 subunits, since there was an increase in the alpha 4 subunit level immunoprecipitated by the gamma 2 subunit antibody. The pharmacological properties of t-butylbicyclophosphoro[(35)S]thionate binding to the integral ion-channel sites were slightly altered in the forebrain and cerebellum, consistent with elevated levels of alpha 4 gamma 2 and alpha 6 gamma 2 subunit-containing receptors, respectively.The altered pharmacology of forebrain GABA(A) receptors and the decrease of the alpha 4 subunit level in delta subunit-deficient mice suggest that the delta subunit preferentially assembles with the alpha 4 subunit. The delta subunit seems to interfere with the co-assembly of alpha 4 and gamma 2 subunits and, therefore, in its absence, the gamma 2 subunit is recruited into a larger population of alpha 4 subunit-containing functional receptors. These results support the idea of subunit competition during the assembly of native GABA(A) receptors.  相似文献   

10.
We have previously shown that extracellular protons inhibit recombinant and native GABA(A) receptors. In this report, we studied the site(s) and mechanism by which protons modulate the GABA(A) receptor. Whole cell GABA-activated currents were recorded from human embryonic kidney (HEK) 293 cells expressing recombinant alpha1beta2gamma2 GABA(A) receptors. Protons competitively inhibited the response to GABA and bicuculline. In contrast, change in pH did not influence direct gating of the channel by pentobarbital, and it did not influence spontaneous channel openings in alpha1(L264T)beta2gamma2 receptors, suggesting pH does not modulate channel activity by affecting the channel gating process directly. To test the hypothesis that protons modulate GABA(A) receptors at the ligand binding site, we systemically mutated N-terminal residues known to be involved in GABA binding and assessed effects of pH on these mutant receptors. Site-specific mutation of beta2 Y205 to F or alpha1 F64 to A, both of which are known to influence GABA binding, significantly reduced pH sensitivity of the GABA response. These mutations did not affect Zn(2+) sensitivity, suggesting that H(+) and Zn(2+) do not share a common site of action. Additional experiments further tested this possibility. Treatment with the histidine-modifying reagent diethylpyrocarbonate (DEPC) reduced Zn(2+)-mediated inhibition of GABA(A) receptors but had no effect on proton-induced inhibition of GABA currents. In addition, mutation of residues known to be involved in Zn(2+) modulation had no effect on pH modulation of GABA(A) receptors. Our results support the hypothesis that protons inhibit GABA(A) receptor function by direct or allosteric interaction with the GABA binding site. In addition, the sites of action of H(+) and Zn(2+) in GABA(A) receptors are distinct.  相似文献   

11.
The superficial superior colliculus (sSC) is a key station in the sensory processing related to visual salience. The sSC receives cholinergic projections from the parabigeminal nucleus, and previous studies have revealed the presence of several different nicotinic acetylcholine receptor (nAChR) subunits in the sSC. In this study, to clarify the role of the cholinergic inputs to the sSC, we examined current responses induced by ACh in GABAergic and non-GABAergic sSC neurons using in vitro slice preparations obtained from glutamate decarboxylase 67-green fluorescent protein (GFP) knock-in mice in which GFP is specifically expressed in GABAergic neurons. Brief air pressure application of acetylcholine (ACh) elicited nicotinic inward current responses in both GABAergic and non-GABAergic neurons. The inward current responses in the GABAergic neurons were highly sensitive to a selective antagonist for alpha3beta2- and alpha6beta2-containing receptors, alpha-conotoxin MII (alphaCtxMII). A subset of these neurons exhibited a faster alpha-bungarotoxin-sensitive inward current component, indicating the expression of alpha7-containing nAChRs. We also found that the activation of presynaptic nAChRs induced release of GABA, which elicited a burst of miniature inhibitory postsynaptic currents mediated by GABA(A) receptors in non-GABAergic neurons. This ACh-induced GABA release was mediated mainly by alphaCtxMII-sensitive nAChRs and resulted from the activation of voltage-dependent calcium channels. Morphological analysis revealed that recorded GFP-positive neurons are interneurons and GFP-negative neurons include projection neurons. These findings suggest that nAChRs are involved in the regulation of GABAergic inhibition and modulate visual processing in the sSC.  相似文献   

12.
Inhibition by GABA is important for auditory processing, but any adaptations of the ionotropic type A receptors are unknown. Here we describe, using in situ hybridization, the subunit expression patterns of GABA(A) receptors in the rat cochlear nucleus, superior olivary complex, and dorsal and ventral nuclei of the lateral lemniscus. All neurons express the beta3 and gamma2L subunit messenger RNAs, but use different alpha subunits. In the dorsal cochlear nucleus, fusiform (pyramidal) and giant cells express alpha1, alpha3, beta3 and gamma2L. Dorsal cochlear nucleus interneurons, particularly vertical or tuberculoventral cells and cartwheel cells, express alpha3, beta3 and gamma2L. In the ventral cochlear nucleus, octopus cells express alpha1, beta3, gamma2L and delta. Spherical cells express alpha1, alpha3, alpha5, beta3 and gamma2L. In the superior olivary complex, the expression profile is alpha3, alpha5, beta3 and gamma2L. Both dorsal and ventral cochlear nucleus granule cells express alpha1, alpha6, beta3 and gamma2L; unlike their cerebellar granule cell counterparts, they do not express beta2, gamma2S or the delta subunit genes. The delta subunit's absence from cochlear nucleus granule cells may mean that tonic inhibition mediated by extrasynaptic GABA(A) receptors is less important for this cell type. In both the dorsal and ventral nuclei of the lateral lemniscus, alpha1, beta3 and gamma2L are the main subunit messenger RNAs; the ventral nucleus also expresses the delta subunit. We have mapped, using in situ hybridization, the subunit expression patterns of the GABA(A) receptor in the auditory brainstem nuclei. In contrast to many brain regions, the beta2 subunit gene and gamma2S splice forms are not highly expressed in auditory brainstem nuclei. GABA(A) receptors containing beta3 and gamma2L may be particularly well suited to auditory processing, possibly because of the unique phosphorylation profile of this subunit combination.  相似文献   

13.
We studied the effects of extracellular pH (pHo) on gamma-aminobutyric acid (GABA)-mediated Cl- current in rat hypothalamic neurons and recombinant type-A GABA (GABA(A)) receptors stably expressed in human embryonic kidney cells (HEK 293), using whole cell and outside-out patch-clamp recordings. In alpha3beta2gamma2s receptors, acidic pH decreased, whereas alkaline pH increased the response to GABA in a reversible and concentration-dependent manner. Acidification shifted the GABA concentration-response curve to the right, significantly increasing the EC50 for GABA without appreciably changing the slope or maximal current induced by GABA. We obtained similar effects of pH in alpha1beta2gamma2 receptors and in GABA-activated currents recorded from thin hypothalamic brain slices. In outside-out patches recorded from alpha3beta2gamma2 recombinant receptors, membrane patches were exposed to 5 microM GABA at control (7.3), acidic (6.4), or alkaline (8.4) pH. GABA activated main and subconductance states of 24 and 16 pS, respectively, in alpha3beta2gamma2 receptors. Alkaline pH(o) increased channel opening frequency and decreased the duration of the long closed state, resulting in an increase in open probability (from 0.0801 +/- 0.015 in pH 7.3 to 0.138 +/- 0.02 in pH 8.4). Exposure of the channels to acidic pH(o) had the opposite effects on open probability (decreased to 0.006 +/- 0.0001). Taken together, our results indicate that the function of GABA(A) receptors is modulated by extracellular pH. The proton effect is similar in recombinant and native receptors and is dependent on GABA concentration. In addition, the effect appears to be independent of the alpha-subunit isoform, and is due to the ability of H+ to alter the frequency of channel opening. Our findings indicate that GABAergic signaling in the CNS may be significantly altered during conditions that increase or decrease pH.  相似文献   

14.
Whole cell patch-clamp recordings were obtained from thalamic ventrobasal (VB) and reticular (RTN) neurons in mouse brain slices. A bicuculline-sensitive tonic current was observed in VB, but not in RTN, neurons; this current was increased by the GABA(A) receptor agonist 4,5,6,7-tetrahydroisothiazolo-[5,4-c]pyridine-3-ol (THIP; 0.1 microM) and decreased by Zn(2+) (50 microM) but was unaffected by zolpidem (0.3 microM) or midazolam (0.2 microM). The pharmacological profile of the tonic current is consistent with its generation by activation of GABA(A) receptors that do not contain the alpha(1) or gamma(2) subunits. GABA(A) receptors expressed in HEK 293 cells that contained alpha(4)beta(2)delta subunits showed higher sensitivity to THIP (gaboxadol) and GABA than did receptors made up from alpha(1)beta(2)delta, alpha(4)beta(2)gamma(2s,) or alpha(1)beta(2)gamma(2s) subunits. Western blot analysis revealed that there is little, if any, alpha(3) or alpha(5) subunit protein in VB. In addition, co-immunoprecipitation studies showed that antibodies to the delta subunit could precipitate alpha(4), but not alpha(1) subunit protein. Confocal microscopy of thalamic neurons grown in culture confirmed that alpha(4) and delta subunits are extensively co-localized with one another and are found predominantly, but not exclusively, at extrasynaptic sites. We conclude that thalamic VB neurons express extrasynaptic GABA(A) receptors that are highly sensitive to GABA and THIP and that these receptors are most likely made up of alpha(4)beta(2)delta subunits. In view of the critical role of thalamic neurons in the generation of oscillatory activity associated with sleep, these receptors may represent a principal site of action for the novel hypnotic agent gaboxadol.  相似文献   

15.
GABAergic inhibitory feedback from the cerebellum onto the inferior olivary (IO) nucleus plays an important role in olivo-cerebellar function. In this study we characterized the physiology, subunit composition, and spatial distribution of gamma-aminobutyric acid-A (GABA(A)) receptors in the IO nucleus. Using brain stem slices, we identified two types of IO neuron response to local pressure application of GABA, depending on the site of application: a slow desensitizing response at the soma and a fast desensitizing response at the dendrites. The dendritic response had a more negative reversal potential than did the somatic response, which confirmed their spatial origin. Both responses showed voltage dependence characterized by an abrupt decrease in conductance at negative potentials. Interestingly, this change in conductance occurred in the range of potentials wherein subthreshold membrane potential oscillations usually occur in IO neurons. Immunostaining IO sections with antibodies for GABA(A) receptor subunits alpha 1, alpha 2, alpha 3, alpha 5, beta 2/3, and gamma 2 and against the postsynaptic anchoring protein gephyrin complemented the electrophysiological observation by showing a differential distribution of GABA(A) receptor subtypes in IO neurons. A receptor complex containing alpha 2 beta 2/3 gamma 2 subunits is clustered with gephyrin at presumptive synaptic sites, predominantly on distal dendrites. In addition, diffuse alpha 3, beta 2/3, and gamma 2 subunit staining on somata and in the neuropil presumably represents extrasynaptic receptors. Combining electrophysiology with immunocytochemistry, we concluded that alpha 2 beta 2/3 gamma 2 synaptic receptors generated the fast desensitizing (dendritic) response at synaptic sites whereas the slow desensitizing (somatic) response was generated by extrasynaptic alpha 3 beta 2/3 gamma 2 receptors.  相似文献   

16.
McClellan KM  Calver AR  Tobet SA 《Neuroscience》2008,151(4):1119-1131
The ventromedial (VMN) and arcuate (ARC) nuclei of the hypothalamus are bilateral nuclear groups at the base of the hypothalamus that are organized through the aggregation of neurons born along the third ventricle that migrate laterally. During development, GABAergic neurons and fibers surround the forming (or primordial) VMN while neurons containing GABA receptors are found within the boundaries of the emerging nucleus. To investigate the role that GABAB receptors play in establishing the VMN, Thy-1 yellow fluorescent protein (YFP) mice were utilized for live video microscopy studies. The Thy-1 promoter drives YFP expression in regions of the hypothalamus during development. Administration of the GABAB receptor antagonist saclofen and the GABAA receptor antagonist bicuculline selectively increased the rate of VMN cell movement in slices placed in vitro at embryonic day 14, when cells that form both the ARC and VMN are migrating away from the proliferative zone surrounding the third ventricle. To further test the role of GABAB receptors in VMN development, GABAB receptor knockout mice were used to examine changes in the positions of phenotypically identified cells within the VMN. Cells containing immunoreactive estrogen receptors (ER) alpha were located in the ventrolateral quadrant of the wild type VMN. In GABABR1 knockout mice, these ERalpha positive neurons were located in more dorsal positions at postnatal day (P) 0 and P4. We conclude that GABA alters cell migration and its effect on final cell positioning may lead to changes in the circuitry and connections within specific nuclei of the developing hypothalamus.  相似文献   

17.
Kaja S  Hann V  Payne HL  Thompson CL 《Neuroscience》2007,148(1):115-125
The Tottering (cacna1a(tg)) mouse arose as a consequence of a spontaneous mutation in cacna1a, the gene encoding the pore-forming subunit of the pre-synaptic P/Q-type voltage-gated calcium channel (VGCC, Ca(V)2.1). The mouse phenotype includes ataxia and intermittent myoclonic seizures which have been attributed to impaired excitatory neurotransmission at cerebellar granule cell (CGC) parallel fiber-Purkinje cell (PF-PC) synapses [Zhou YD, Turner TJ, Dunlap K (2003) Enhanced G-protein-dependent modulation of excitatory synaptic transmission in the cerebellum of the Ca(2+)-channel mutant mouse, tottering. J Physiol 547:497-507]. We hypothesized that the expression of cerebellar GABA(A) receptors may be affected by the mutation. Indeed, abnormal GABA(A) receptor function and expression in the cacna1a(tg) forebrain has been reported previously [Tehrani MH, Barnes EM Jr (1995) Reduced function of gamma-aminobutyric acid A receptors in tottering mouse brain: role of cAMP-dependent protein kinase. Epilepsy Res 22:13-21; Tehrani MH, Baumgartner BJ, Liu SC, Barnes EM Jr (1997) Aberrant expression of GABA(A) receptor subunits in the tottering mouse: an animal model for absence seizures. Epilepsy Res 28:213-223]. Here we show a deficit of 40.2+/-3.6% in the total number of cerebellar GABA(A) receptors expressed (gamma2+delta subtypes) in adult cacna1a(tg) relative to controls. [(3)H]Muscimol autoradiography identified that this was partly due to a significant loss of CGC-specific alpha6 subunit-containing GABA(A) receptor subtypes. A large proportion of this loss of alpha6 receptors was attributable to a significantly reduced expression of the CGC-specific benzodiazepine-insensitive Ro15-4513 (BZ-IS) binding subtype, alpha6betagamma2 subunit-containing receptors. BZ-IS binding was reduced by 36.6+/-2.6% relative to controls in cerebellar membrane homogenates and by 37.2+/-3.7% in cerebellar sections. Quantitative immunoblotting revealed that the steady-state expression level of alpha6 and gamma2 subunits was selectively reduced relative to controls by 30.2+/-8.2% and 38.8+/-13.1%, respectively, alpha1, beta3 and delta were unaffected. Immunohistochemically probed control and cacna1a(tg) cerebellar sections verified that alpha6 and gamma2 subunit expression was reduced and that this deficit was restricted to the CGC layer. Thus, we have shown that abnormal cerebellar P/Q-type VGCC activity results in a deficit of CGC-specific subtype(s) of GABA(A) receptors which may contribute to, or may be a consequence of the impaired cerebellar network signaling that occurs in cacna1a(tg) mice.  相似文献   

18.
19.
Dopamine is a critical determinant of neostriatal function, but its impact on intrastriatal GABAergic signaling is poorly understood. The role of D(1) dopamine receptors in the regulation of postsynaptic GABA(A) receptors was characterized using whole cell voltage-clamp recordings in acutely isolated, rat neostriatal medium spiny neurons. Exogenous application of GABA evoked a rapidly desensitizing current that was blocked by bicuculline. Application of the D(1) dopamine receptor agonist SKF 81297 reduced GABA-evoked currents in most medium spiny neurons. The D(1) dopamine receptor antagonist SCH 23390 blocked the effect of SKF 81297. Membrane-permeant cAMP analogues mimicked the effect of D(1) dopamine receptor stimulation, whereas an inhibitor of protein kinase A (PKA; Rp-8-chloroadenosine 3',5' cyclic monophosphothioate) attenuated the response to D(1) dopamine receptor stimulation or cAMP analogues. Inhibitors of protein phosphatase 1/2A potentiated the modulation by cAMP analogues. Single-cell RT-PCR profiling revealed consistent expression of mRNA for the beta1 subunit of the GABA(A) receptor-a known substrate of PKA-in medium spiny neurons. Immunoprecipitation assays of radiolabeled proteins revealed that D(1) dopamine receptor stimulation increased phosphorylation of GABA(A) receptor beta1/beta3 subunits. The D(1) dopamine receptor-induced phosphorylation of beta1/beta3 subunits was attenuated significantly in neostriata from DARPP-32 mutants. Voltage-clamp recordings corroborated these results, revealing that the efficacy of the D(1) dopamine receptor modulation of GABA(A) currents was reduced in DARPP-32-deficient medium spiny neurons. These results argue that D(1) dopamine receptor stimulation in neostriatal medium spiny neurons reduces postsynaptic GABA(A) receptor currents by activating a PKA/DARPP-32/protein phosphatase 1 signaling cascade targeting GABA(A) receptor beta1 subunits.  相似文献   

20.
To investigate developmental changes in neurosteroid modulation of GABA(A) receptors, whole-cell currents were elicited by applying GABA with allopregnanolone or pregnenolone sulfate (PS) to dentate granule cells (DGCs), acutely isolated from 7-14-day-old and adult rats. GABA evoked larger currents from dentate granule cells acutely isolated from adult rats (adult DGCs) than from neonatal DGCs, due to increased efficacy (1662+/-267 pA in adult DGCs versus 1094+/-198 pA in neonatal DGCs, P=0.004), and current density (0.072+/-0.01 pA/microm(2) in neonatal rat DGCs to 0.178+/-0.02 pA/microm(2) in adult DGCs), but unchanged potency (EC(50) was 18.5+/-2 microm in adult DGCs, and 26.6+/-7.9 microm in neonatal DGCs, P=0.21). Allopregnanolone sensitivity of GABA(A) receptor currents increased during development due to an increased potency (21.1+/-4.7 nM in adult DGCs versus 94.6+/-9 nM in neonatal DGCs, P=0.0002). The potency and efficacy of PS inhibition of GABA(A) receptor currents were remained unchanged during development (13+/-6 microm and 13.2+/-5.9 microm, P=0.71 and 85.5%+/-3.5% and 83.6%+/-0.8%, P=0.29, respectively). To investigate possible mechanism of developmental changes in GABA(A) receptor properties, in situ hybridization for alpha1, alpha4 and gamma2 subunit mRNAs was performed in dentate gyrus of the two age groups. Qualitatively, alpha1 subunit mRNA was expressed at low levels in neonatal rats while it was well expressed in adult rats. The alpha4 and gamma2 subunits were well expressed in the dentate gyrus of adult and neonatal rats. Immunohistochemical staining for alpha1 subunit in hippocampal slices from neonatal and adult rats was examined under confocal laser scanning microscope. This demonstrated that cell bodies and dendrites of granule cells are moderately positive for the alpha1 staining in adult rats but weakly so in neonatal rats. Higher-magnification images demonstrate large number of clusters of alpha1-subunit in the cell bodies of dentate granule cells of adult rat but rare clusters in granule cells of neonatal rats. Maturation of GABA(A) receptors in DGCs is characterized by increased number of GABA(A) receptors that are more sensitive to endogenous neurosteroid allopregnanolone, which might be related to increased expression of alpha1 subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号