首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Objective

Cell–matrix interactions regulate chondrocyte differentiation and survival. The α1β1 integrin is a major collagen receptor that is expressed on chondrocytes. Mice with targeted inactivation of the integrin α1 gene (α1‐KO mice) provide a model that can be used to address the role of cell–matrix interactions in cartilage homeostasis and osteoarthritis (OA) pathogenesis.

Methods

Knee joints from α1‐KO and wild‐type (WT) BALB/c mice were harvested at ages 4–15 months. Knee joint sections were examined for inflammation, cartilage degradation, and loss of glycosaminoglycans (by Safranin O staining). Immunohistochemistry was performed to detect the distribution of α1 integrin, matrix metalloproteinases (MMPs), and chondrocyte apoptosis.

Results

In WT mice, the α1 integrin subunit was detected in hypertrophic chondrocytes in the growth plate and in a subpopulation of cells in the deep zone of articular cartilage. There was a marked increase in α1‐positive chondrocytes in the superficial and upper mid‐zones in OA‐affected areas in joints from old WT mice. The α1‐KO mice showed more severe cartilage degradation, glycosaminoglycan depletion, and synovial hyperplasia as compared with the WT mice. MMP‐2 and MMP‐3 expression was increased in the OA‐affected areas. In cartilage from α1‐KO mice, the cellularity was reduced and the frequency of apoptotic cells was increased. These results suggest that the α1 integrin subunit is involved in the early remodeling process in OA cartilage.

Conclusion

Deficiency in the α1 integrin subunit is associated with an earlier deregulation of cartilage homeostasis and an accelerated, aging‐dependent development of OA.
  相似文献   

2.
OBJECTIVE: To investigate the role of the collagen receptor discoidin domain receptor 2 (DDR-2) in the pathogenesis of osteoarthritis (OA). METHODS: Histologic and immunohistochemical analyses were performed to characterize femoral head cartilage from 7 patients with OA and 4 patients with fracture, as well as articular cartilage from the knee joints of mice with surgically induced OA. Gene constructs encoding human Raf kinase inhibitor protein (RKIP), DDR-2 lacking the discoidin (DS) domain (DeltaDS-DDR-2) or the protein tyrosine kinase (PTK) core (DeltaPTK-DDR-2), DDR-2 containing a substitution of tyrosine for alanine at position 740 (Y740A), and luciferase driven by the matrix metalloproteinase 13 (MMP-13) promoter were transfected into human chondrocyte cell lines. Activated and neutralized alpha2beta1 integrin polyclonal antibodies, interleukin-1 receptor antagonist, and the chemical inhibitors SB203580, for p38, and SP600125, for JNKs, were used in cell cultures. Real-time polymerase chain reaction was performed to examine MMP-13 and DDR-2 messenger RNA (mRNA). RESULTS: Increased immunostaining for DDR-2, MMP-13, and MMP-derived type II collagen fragments was detected in cartilage from patients with OA and from mice with surgically induced OA. The discoidin domain and PTK core of DDR-2 were essential for signal transmission and the resulting increased expression of MMP-13 in chondrocytes. Y740A mutation of DDR-2 reduced levels of mRNA for MMP-13 and endogenous DDR-2. The overexpression of RKIP or preincubation with the p38 inhibitor reduced MMP-13 mRNA levels. DDR-2 signaling was independent of the alpha2beta1 integrin and the interleukin-1-induced signaling pathways in chondrocytes. CONCLUSION: These findings suggest that increased expression of DDR-2, resulting in the elevated expression of MMP-13, may be one of the common events in OA progression.  相似文献   

3.
OBJECTIVE: To investigate the effect of osteoclastogenesis inhibitory factor/osteoprotegerin (OPG) on chondrocytes in the development of osteoarthritis (OA) in vivo. METHODS: To determine the role of endogenous OPG in the progression of OA, OA was surgically induced in OPG+/- mice and their wild-type (WT) littermates. To determine the role of exogenous OPG, knee joints of C57BL/6J mice with surgically induced OA were injected intraarticularly with recombinant human OPG (rHuOPG) or vehicle 5 times a week. All mice were euthanized 4 weeks after OA induction; joints were harvested and evaluated immunohistochemically. RESULTS: Although OA changes were induced in both WT and OPG+/- mice, the degenerative changes in the articular cartilage were significantly enhanced in OPG+/- mice. In C57BL/6J mice with surgically induced OA, intraarticular OPG administration protected the articular cartilage from the progression of OA. The Mankin and cartilage destruction scores in OPG-treated animals were approximately 50% of those seen in the control group. Furthermore, OPG administration significantly protected articular cartilage thickness. Findings of the TUNEL assay indicated that rHuOPG prevented chondrocyte apoptosis in joints with surgically induced OA. Results of immunostaining indicated that OPG protein was detected in the synovium and in resident chondrocytes at higher levels in the OPG-treated group than in the control group. CONCLUSION: These data indicate that endogenous OPG had a protective effect against the cartilage destruction that occurs during OA progression. Furthermore, direct administration of rHuOPG to articular chondrocytes prevented cartilage destruction in an experimental murine model of OA via prevention of chondrocyte apoptosis.  相似文献   

4.
5.
6.
Integrin-mediated adhesion of human articular chondrocytes to cartilage   总被引:6,自引:0,他引:6  
OBJECTIVE: To determine 1) the kinetics and strength of adhesion of human articular chondrocytes to a cut cartilage surface, and 2) the role of specific integrins in mediating such adhesion, using an in vitro model. METHODS: Human articular chondrocytes isolated from cadaveric donors (mean +/- SD age 38 +/- 13 years) were cultured in high-density or low-density monolayer. Following release from culture with trypsin and a 2-2.5-hour recovery period, chondrocytes were analyzed either for adhesion to cartilage or for integrin expression by flow cytometry. RESULTS: Following culture in monolayer, adhesion of chondrocytes to cartilage increased with time, from 6-16% at 10 minutes to a maximum of 59-82% at 80-320 minutes. After 80 minutes of adhesion, the resistance of cells to flow-induced shear stress (50% detachment) was approximately 21 Pa. Chondrocyte adhesion to cartilage decreased with pretreatment of cells with monoclonal antibodies that bound to and blocked certain integrins. After an 80-minute incubation time, adhesion of chondrocytes cultured in high-density monolayer decreased from the value of IgG1-treated controls (55%) with blocking of the beta1 integrin subunit (to 23%) or with blocking of alpha 5 beta 1 (to 36%). Following expansion of chondrocytes in low-density monolayer, the mechanisms of adhesion to cartilage were generally similar. After an 80-minute incubation time, adhesion of chondrocytes cultured in low-density monolayer decreased from the value of IgG1-treated controls (62%) with blocking of the beta1 integrin subunit (to 30%) or with blocking of alpha 5 beta 1 (to 44%). Additionally, adhesion of these cells decreased to 46% by blocking of alpha v beta 5, with a similar trend in effect for chondrocytes cultured in high-density monolayer. Blocking of the alpha 1 or alpha 3 integrin subunits or alpha v beta 3 had no detectable effect on adhesion, even though these receptors were detected by flow cytometry. CONCLUSION: Under the culture and seeding conditions studied, beta1, alpha 5 beta 1, and alpha v beta 5 integrins mediate human chondrocyte adhesion to cartilage. These chondrocyte integrins have a potential role in the initial adhesion and retention of chondrocytes at a cartilage defect site following clinical procedures of chondrocyte transplantation.  相似文献   

7.
8.
OBJECTIVE: To examine by immunohistochemistry the relative distributions of 6 matrix metalloproteinases (MMPs 1, 2, 3, 8, 9, and 13) and the 2 proinflammatory cytokines interleukin-1beta (IL-1beta) and tumor necrosis factor alpha (TNFalpha) in osteoarthritic (OA) cartilage compared with normal, age-matched articular cartilage. METHODS: Articular cartilage samples were obtained from the tibial plateau of OA knees removed at arthroplasty and from normal, nonarthritic, knees obtained at autopsy. Specimens were promptly fixed in Carnoy's fixative, processed, embedded in paraffin, sectioned, and examined by immunohistochemistry for MMP and cytokine production. In addition, human articular chondrocytes (HAC) were treated in vitro with either IL-1beta, TNFalpha, or phorbol myristate acetate (PMA) to assess their potential to produce each of the MMPs, as determined by Western blotting and gelatin zymography. RESULTS: Immunodetection of the collagenases (MMPs 1, 8, and 13) and stromelysin 1 (MMP-3) was demonstrated in a proportion of chondrocytes in the superficial zone of almost all of the OA specimens that had degenerative matrix changes. The gelatinases (MMPs 2 and 9) were also demonstrated by immunohistochemistry but were not so prominent. IL-1beta- and TNFalpha-positive chondrocytes were also observed in a proportion of cells in the superficial zones of OA specimens. Much less immunostaining for MMPs and cytokines was observed in the deep zone of all OA specimens, where the cartilage matrix and chondrocyte morphology appeared normal. In contrast, full-thickness normal cartilage specimens showed virtually no immunostaining for these MMPs or cytokines. Confirmation that chondrocytes can produce these 6 MMPs was obtained from HAC cultures treated with either IL-1beta, TNFalpha, or PMA; conditioned medium from activated HAC contained all the MMPs demonstrated by immunohistochemistry. Dual immunolocalization studies of OA cartilage specimens demonstrated the coexpression of IL-1 with MMP-8 by individual chondrocytes in situ. CONCLUSION: These results indicate that the superficial zone of OA cartilage specimens, which is characterized by fibrillations, chondrocyte clusters, and degenerative matrix changes, contains a variable proportion of cells that immunostain for IL-1beta, TNFalpha, and 6 different MMPs. These observations support the concept that cytokine-MMP associations reflect a modified chondrocyte phenotype and an intrinsic process of cartilage degradation in OA.  相似文献   

9.
Evidence for a key role of leptin in osteoarthritis   总被引:13,自引:0,他引:13  
  相似文献   

10.
11.
12.
13.
OBJECTIVE: Chondrocyte cell death may play an important role in the development of arthritis. The goal of the present study was to evaluate the role of the extracellular matrix (ECM) in promoting chondrocyte survival via signals through the integrin family of ECM receptors. METHODS: Chondrocytes were isolated by sequential enzymatic digestion from normal ankle cartilage of organ donors and from osteoarthritic (OA) knee tissue obtained from patients undergoing total knee replacement. Cell survival in monolayer and in suspension culture was measured using fluorescent labels after treatment with specific integrin-blocking antibodies and echistatin, a disintegrin peptide. A quantitative enzyme-linked immunosorbent assay for histone-associated DNA fragments and morphologic evaluation by electron microscopy were used to evaluate apoptosis. RESULTS: Freshly isolated chondrocytes died when plated in serum-free media at low density on poly-L-lysine, but showed >95% survival on fibronectin (FN). A monoclonal blocking antibody to the alpha5-integrin subunit (FN receptor) significantly inhibited survival on FN, whereas control antibodies had no effect. Likewise, treatment of freshly isolated chondrocytes in serum-free alginate-suspension culture with the alpha5-blocking antibody resulted in cell death in a dose-dependent manner, with 20 microg/ml of the antibody reducing normal chondrocyte survival to 20% of that in controls, and OA chondrocyte survival to 23% of that in controls. Antibody inhibition of alphav and alpha1 integrins or treatment with echistatin did not cause cell death. Addition of insulin-like growth factor 1 (IGF-1; 100 ng/ ml) was not able to improve survival of alpha5-antibody-treated cells. However, treatment with 10% fetal bovine serum improved normal chondrocyte survival to 98% (a 5.1-fold increase) and OA chondrocyte survival to 64% (a 2.8-fold increase). Cell death due to alpha5 inhibition was associated with apoptosis. CONCLUSION: These results demonstrate that chondrocyte survival signals are transmitted via the alpha5beta1 FN receptor. Inhibition of matrix survival signals mediated by alpha5beta1 also inhibits the ability of IGF-1 to promote survival, suggesting that IGF-1-mediated survival signaling may require a cosignal from alpha5beta1.  相似文献   

14.
OBJECTIVE: To investigate whether heterozygosity for a loss-of-function mutation in the gene encoding the alpha1 chain of type XI collagen (Col11a1) in mice (chondrodysplasia, cho) causes osteoarthritis (OA), and to understand the biochemical and biomechanical effects of this mutation on articular cartilage in knee and temporomandibular (TM) joints. METHODS: Articular cartilage from the knee and TM joints of mice heterozygous for cho (cho/+) and their wild-type littermates (+/+) was examined. The morphologic properties of cartilage were evaluated, and collagen fibrils were examined by transmission electron microscopy. Immunohistochemical staining was performed to examine the protein expression levels of matrix metalloproteinase 3 (MMP-3) and MMP-13 in knee joints. In 6-month-old animals, fixed-charge density was determined using a semiquantitative histochemical method, and tensile stiffness was determined using an osmotic loading technique. RESULTS: The diameter of collagen fibrils in articular cartilage of knee joints from heterozygous cho/+ mice was increased relative to that in control cartilage, and histologic analysis showed OA-like degenerative changes in knee and TM joints, starting at age 3 months. The changes became more severe with aging. At 3 months, protein expression for MMP-3 was increased in knee joints from cho/+ mice. At 6 months, protein expression for MMP-13 was higher in knee joints from cho/+ mice than in joints from their wild-type littermates, and negative fixed-charge density was significantly decreased. Moreover, tensile stiffness in articular cartilage of knee joints from cho/+ mice was moderately reduced and was inversely correlated with the increase in articular cartilage degeneration. CONCLUSION: Heterozygosity for a loss-of-function mutation in Col11a1 results in the development of OA in the knee and TM joints of cho/+ mice. Morphologic and biochemical evidence of OA appears to precede significant mechanical changes, suggesting that the cho mutation leads to OA through a mechanism that does not initially involve mechanical factors.  相似文献   

15.
OBJECTIVE: To determine if integrin-mediated signaling results in activation of chondrocyte mitogen-activated protein (MAP) kinases that lead to increased expression of matrix metalloproteinase 13 (MMP-13; collagenase 3), a potent mediator of cartilage matrix degradation. METHODS: Human articular chondrocytes isolated from normal ankle and knee cartilage obtained from tissue donors were cultured in monolayers. The cells were treated with a 120-kd fibronectin fragment (FN-f) that binds the alpha5beta1 integrin or with antibodies to specific integrin receptors. Activation of MAP kinases was determined by immunoblotting with phosphospecific antibodies. MMP production was measured by gelatin zymography, and MMP-13 production and activation were determined by immunoblotting and by a fluorogenic peptide assay. RESULTS: Human articular chondrocytes were found to respond to the 120-kd FN-f and to adhesion-blocking antibodies to the alpha2beta1 and alpha5beta1 integrins with increased phosphorylation of the extracellular signal-regulated kinase 1 (ERK1)/ERK2, c-Jun N-terminal kinase (JNK), and p38 MAP kinases. Intact FN and integrin-blocking antibodies to alpha1, alpha3, and alphaVbeta3 and a nonblocking alpha5 antibody had no effect. After MAP kinase activation, increased phosphorylation of c-Jun and the nuclear factor kappaB inhibitor was noted, followed by increased pro- and activated MMP-13 in the conditioned media. Inhibitors of mitogen-activated protein kinase kinase, p38, and JNK were each able to inhibit increased MMP-13 production, while the interleukin-1 receptor antagonist (IL-1Ra) protein did not. However, the IL-1Ra partially inhibited FN-f-induced activation of MMP-13. CONCLUSION: Integrin-mediated MAP kinase signaling stimulated by FN-f is associated with increased production and release of pro- and active MMP-13. Autocrine production of IL-1 appears to result in additional MMP-13 activation. These processes may play a key role in feedback loops responsible for progressive cartilage degradation in arthritis.  相似文献   

16.
OBJECTIVE: To determine whether intracellular calcineurin (Cn), a calcium-activated phosphatase, regulates the anabolic and catabolic activities of chondrocytes, and is a potential target in the treatment of osteoarthritis (OA). METHODS: CnA expression was examined in cartilage tissue samples and cultured chondrocytes from OA patients, using immunohistochemistry and Western blot analysis, respectively. Concentrations of matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases 1 (TIMP-1) in the culture supernatants were determined using enzyme-linked immunosorbent assay. Levels of nitric oxide (NO) and type II collagen (CII) were measured using the Griess reaction and Western blot analysis, respectively. In addition, the pathologic role of Cn was examined in an in vivo model in which experimental OA was induced in mice by injecting type VII collagenase into the knee joints. RESULTS: CnA was highly expressed in the chondrocytes of lesional OA cartilage. Cyclosporin A (CSA), a Cn inhibitor, inhibited spontaneous and interleukin-1beta-stimulated production of NO, MMP-1, and MMP-3 in chondrocytes. However, CSA increased the levels of production of CII, TIMP-1, and transforming growth factor beta. Similar changes in MMP-1, NO, and CII expression levels in chondrocytes were observed after the targeted inhibition of Cn by overexpression of calcineurin binding protein 1, a natural Cn antagonist. Moreover, in the mouse model, animals treated with CSA showed a significant decrease in both the extent and the severity of cartilage damage, which were assessed macroscopically and microscopically, compared with vehicle-treated animals. CONCLUSION: These results suggest that CnA is critically involved in the catabolic and anabolic activities of chondrocytes as well as in the progression of experimental OA. Targeted inhibition of CnA may be an effective treatment strategy for OA.  相似文献   

17.
Regulation of cartilage collagenase by doxycycline   总被引:6,自引:0,他引:6  
  相似文献   

18.
The balance between anabolic and catabolic signaling pathways is critical in maintaining cartilage homeostasis and its disturbance contributes to joint diseases such as osteoarthritis (OA). A unique mechanism that modulates the activity of cell signaling pathways is controlled by extracellular heparan endosulfatases Sulf-1 and Sulf-2 (Sulfs) that are overexpressed in OA cartilage. This study addressed the role of Sulfs in cartilage homeostasis and in regulating bone morphogenetic protein (BMP)/Smad and fibroblast growth factor (FGF)/Erk signaling in articular cartilage. Spontaneous cartilage degeneration and surgically induced OA were significantly more severe in Sulf-1−/− and Sulf-2−/− mice compared with wild-type mice. MMP-13, ADAMTS-5, and the BMP antagonist noggin were elevated whereas col2a1 and aggrecan were reduced in cartilage and chondrocytes from Sulf−/− mice. Articular cartilage and cultured chondrocytes from Sulf−/− mice showed reduced Smad1 protein expression and Smad1/5 phosphorylation, whereas Erk1/2 phosphorylation was increased. In human chondrocytes, Sulfs siRNA reduced Smad phosphorylation but enhanced FGF-2-induced Erk1/2 signaling. These findings suggest that Sulfs simultaneously enhance BMP but inhibit FGF signaling in chondrocytes and maintain cartilage homeostasis. Approaches to correct abnormal Sulf expression have the potential to protect against cartilage degradation and promote cartilage repair in OA.  相似文献   

19.
20.
OBJECTIVE: S100 proteins have been implicated in various inflammatory conditions, including arthritis. The aims of this study were to determine whether chondrocytes produce S100A4 and whether S100A4 can stimulate the production of matrix metalloproteinase 13 (MMP-13) by articular chondrocytes via receptor for advanced glycation end products (RAGE)-mediated signaling. METHODS: The expression of chondrocyte S100A4 was analyzed by immunohistochemistry using normal and osteoarthritic (OA) cartilage and by immunoblotting of chondrocyte cell lysates. RAGE signaling was examined by stimulating chondrocytes with S100A4 and monitoring for the activation of MAP kinases and NF-kappaB. Production of MMP-13 was determined in the conditioned medium. A pulldown assay using biotin-labeled S100A4 was used to demonstrate binding to RAGE. RESULTS: S100A4 expression was detected in human articular chondrocytes by immunoblotting and appeared to increase in the cell lysates from OA tissue. Marked positive immunostaining for S100A4 was also noted in sections of human cartilage with changes due to OA. Stimulation of chondrocytes with S100A4 increased the phosphorylation of Pyk-2, MAP kinases, and activated NF-kappaB, followed by increased production of MMP-13 in the conditioned medium. This signaling was inhibited in cells pretreated with soluble RAGE, advanced glycation end product-bovine serum albumin, or the antioxidant Mn(III)tetrakis (4-benzoic acid) porphyrin, or by overexpression of a dominant-negative RAGE construct. A pulldown assay showed that S100A4 binds to RAGE in chondrocytes. CONCLUSION: This is the first study to demonstrate that S100A4 binds to RAGE and stimulates a RAGE-mediated signaling cascade, leading to increased production of MMP-13. Since both S100A4 and RAGE are up-regulated in OA cartilage, this signaling pathway could contribute to cartilage degradation in OA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号