首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.

Purpose

Clinically relevant pharmacokinetic interactions exist between gastric acid-reducing agents and certain weakly basic drugs that rely on acidic environments for optimal oral absorption. In this study, we examine whether the administration of betaine hydrochloride under fed conditions can enhance the absorption of atazanavir, an HIV-1 protease inhibitor, during pharmacologically-induced hypochlorhydria.

Methods

In this randomized, single-dose, 3 period, crossover study healthy volunteers received ritonavir-boosted atazanavir (atazanavir/ritonavir 300/100 mg) alone, following pretreatment with the proton pump inhibitor rabeprazole (20 mg twice daily), and with 1500 mg of betaine HCl after rabeprazole pretreatment. Atazanavir was administered with a light meal and gastric pH was monitored using the Heidelberg Capsule.

Results

Pretreatment with rabeprazole resulted in significant reductions in atazanavir Cmax (p?<?0.01) and AUC0-last (p?<?0.001) (71 and 70%, respectively), and modest decreases in ritonavir Cmax and AUClast (p?<?0.01) (40% and 41%, respectively). The addition of betaine HCl restored 13% of ATV Cmax and 12% of AUClast lost due to rabeprazole.

Conclusions

The co-administration of rabeprazole with atazanavir resulted in significant decreases in atazanavir exposure. The addition of betaine HCl did not sufficiently mitigate the loss of ATV exposure observed during RAB-induced hypochlorhydria. Meal effects lead to a marked difference in the outcome of betaine HCl on atazanavir exposure than we previously reported for dasatanib under fasting conditions.
  相似文献   

2.

Aim

To study the pharmacokinetic characteristics of voriconazole in healthy Chinese male volunteers in relation to cytochrome P450 (CYP) 2C19 genotype status, including ultra-rapid metabolizers (URMs), homozygous extensive metabolizers (EMs), and poor metabolizers (PMs).

Method

Twenty healthy Chinese male volunteers were recruited for the study. Of these, four were CYP2C19 heterozygous URMs (*1/*17), eight were CYP2C19 homozygous EMs (*1/*1), and eight were CYP2C19 PMs (*2/*2). After a single oral dose of 200 mg voriconazole, plasma concentrations of voriconazole were determined for a 24-h period by liquid chromatography–mass spectrometry/mass spectrometry.

Result

In Chinese male subjects, the allele frequencies of the CYP2C19*17 and CYP2C19*2 alleles were 0.64 and 35.6%, respectively, and both alleles were in Hardy–Weinberg equilibrium. The area under the concentration–time curve (AUC) from predose to 24 h (AUC0–24) and from predose to infinity (AUC0-∞), and apparent oral clearance (CL/F) of voriconazole were statistically different among all three genotypic groups (P?max) value of URMs also showed statistically significant differences from those of EMs and PMs (P?=?0.036 and P =?0.035, respectively). The elimination half-life (t½) in URMs was 87% (P?=?0.58) of that in EMs and 51% (P=?0.002) of that in PMs.

Conclusion

Our data indicate that the presence of the CYP2C19*17 allele results in ultra-rapid metabolism of voriconazole after a single oral dose.
  相似文献   

3.

Purpose

To evaluate association of the dose-dependent effect of rifampicin, an OATP1B inhibitor, on the plasma concentration–time profiles among OATP1B substrates drugs and endogenous substrates.

Methods

Eight healthy volunteers received atorvastatin (1 mg), pitavastatin (0.2 mg), rosuvastatin (0.5 mg), and fluvastatin (2 mg) alone or with rifampicin (300 or 600 mg) in a crossover fashion. The plasma concentrations of these OATP1B probe drugs, total and direct bilirubin, glycochenodeoxycholate-3-sulfate (GCDCA-S), and coproporphyrin I, were determined.

Results

The most striking effect of 600 mg rifampicin was on atorvastatin (6.0-times increase) and GCDCA-S (10-times increase). The AUC0–24h of atorvastatin was reasonably correlated with that of pitavastatin (r2?=?0.73) and with the AUC0–4h of fluvastatin (r2?=?0.62) and sufficiently with the AUC0–24h of rosuvastatin (r2?=?0.32). The AUC0–24h of GCDCA-S was reasonably correlated with those of direct bilirubin (r2?=?0.74) and coproporphyrin I (r2?=?0.80), and sufficiently with that of total bilirubin (r2?=?0.30). The AUC0–24h of GCDCA-S, direct bilirubin, and coproporphyrin I were reasonably correlated with that of atorvastatin (r2?=?0.54–0.70).

Conclusion

These results suggest that direct bilirubin, GCDCA-S, and coproporphyrin I are promising surrogate probes for the quantitative assessment of potential OATP1B-mediated DDI.
  相似文献   

4.

Purpose

Normalised prediction distribution errors (npde) are used to graphically and statistically evaluate mixed-effect models for continuous responses. In this study, our aim was to extend npde to time-to-event (TTE) models and evaluate their performance.

Methods

Let V denote a dataset with censored TTE observations. The null hypothesis (H0) is that observations in V can be described by model M. We extended npde to TTE models using imputations to take into account censoring. We then evaluated their performance in terms of type I error and power to detect model misspecifications for TTE data by means of a simulation study with different sample sizes.

Results

Type I error was found to be close to the expected 5% significance level for all sample sizes tested. The npde were able to detect misspecifications in the baseline hazard as well as in the link between the longitudinal variable and the survival function. The ability to detect model misspecifications increased as the difference in the shape of the survival function became more apparent. As expected, the power also increased as the sample size increased. Imputing the censored events tended to decrease the percentage of rejections.

Conclusions

We have shown that npde can be readily extended to TTE data and that they perform well with an adequate type I error.
  相似文献   

5.

Purpose

Antibiotic dose predictions based on PK/PD indices rely on that the index type and magnitude is insensitive to the pharmacokinetics (PK), the dosing regimen, and bacterial susceptibility. In this work we perform simulations to challenge these assumptions for meropenem and Pseudomonas aeruginosa.

Methods

A published murine dose fractionation study was replicated in silico. The sensitivity of the PK/PD index towards experimental design, drug susceptibility, uncertainty in MIC and different PK profiles was evaluated.

Results

The previous murine study data were well replicated with fT?>?MIC selected as the best predictor. However, for increased dosing frequencies fAUC/MIC was found to be more predictive and the magnitude of the index was sensitive to drug susceptibility. With human PK fT?>?MIC and fAUC/MIC had similar predictive capacities with preference for fT?>?MIC when short t1/2 and fAUC/MIC when long t1/2.

Conclusions

A longitudinal PKPD model based on in vitro data successfully predicted a previous in vivo study of meropenem. The type and magnitude of the PK/PD index were sensitive to the experimental design, the MIC and the PK. Therefore, it may be preferable to perform simulations for dose selection based on an integrated PK-PKPD model rather than using a fixed PK/PD index target.
  相似文献   

6.

Purpose

The purpose of this work is to investigate the effect of microenvironmental pH modulation on the in vitro dissolution rate and oral absorption of GDC-0810, an oral anti-cancer drug, in human.

Methods

The pH-solubility profile of GDC-0810 free acid and pHmax of its N-Methyl-D-glucamine (NMG) salt were determined. Precipitation studies were conducted for GDC-0810 NMG salt at different pH values. GDC-0810 200-mg dose NMG salt tablet formulations containing different levels of sodium bicarbonate as the pH modifier were tested for dissolution under the dual pH-dilution scheme. Three tablet formulations were evaluated in human as a part of a relative bioavailability study. A 200-mg dose of GDC-0810 was administered QD with low fat food.

Results

Intrinsic solubility of GDC-0810 free acid was found to be extremely low. The pHmax of the NMG salt suggested a strong tendency for form conversion to the free acid under GI conditions. In vitro dissolution profiles showed that the dissolution rate and extent of GDC-0810 increased with increasing the level of sodium bicarbonate in the formulation. The human PK data showed a similar trend for the geometric mean of Cmax and AUC0-t for formulations containing 5%, 10%, and 15% sodium bicarbonate, but the difference is not statistically significant.

Conclusion

Incorporation of a basic pH modifier, sodium bicarbonate, in GDC-0810 NMG salt tablet formulations enhanced in vitro dissolution rate of GDC-0810 via microenvironmental pH modulation. The human PK data showed no statistically significant difference in drug exposure from tablets containing 5%, 10%, and 15% sodium bicarbonate.
  相似文献   

7.

Purpose

The present investigation aimed at brain targeting of sumatriptan succinate (SS) for its optimal therapeutic effect in migraine through nanoparticulate drug delivery system using poly (butyl cyanoacrylate) (PBCA) and bovine serum albumin linked with apolipoprotein E3 (BSA-ApoE).

Method

The study involved formulation optimization of PBCA nanoparticles (NPs) using central composite design for achieving minimum particle size, maximum entrapment efficiency along with sustained drug release. SS incorporated in BSA-ApoE NPs (S-AA-NP) were prepared by desolvation technique and compared with SS loaded polysorbate 80 coated optimized PBCA NPs (FPopt) in terms of their brain uptake potential, upon oral administration in male Wistar rats. The NPs were characterized by FTIR, thermal, powder XRD and TEM analysis.

Results

The in vivo studies of FPopt and S-AA-NP on male Wistar rats demonstrated a fairly high brain/plasma drug ratio of 9.45 and 12.67 respectively 2 h post oral drug administration. The behavioural studies on male Swiss albino mice affirmed the enhanced anti-migraine potential of S-AA-NP than FPopt (P?<?0.001).

Conclusion

The results of this work, therefore, indicate that BSA-ApoE NPs are significantly better than polysorbate 80 coated PBCA NPs for brain targeting of SS (P?<?0.05) and also offer an improved therapeutic strategy for migraine management.
  相似文献   

8.

Purpose

The aim of this study was to evaluate the oral exposure predictions obtained early in drug discovery with a generic GastroPlus Advanced Compartmental And Transit (ACAT) model based on the in vivo intravenous blood concentration-time profile, in silico properties (lipophilicity, pKa) and in vitro high-throughput absorption-distribution-metabolism-excretion (ADME) data (as determined by PAMPA, solubility, liver microsomal stability assays).

Methods

The model was applied to a total of 623 discovery molecules and their oral exposure was predicted in rats and/or dogs. The predictions of Cmax, AUClast and Tmax were compared against the observations.

Results

The generic model proved to make predictions of oral Cmax, AUClast and Tmax within 3-fold of the observations for rats in respectively 65%, 68% and 57% of the 537 cases. For dogs, it was respectively 77%, 79% and 85% of the 124 cases. Statistically, the model was most successful at predicting oral exposure of Biopharmaceutical Classification System (BCS) class 1 compounds compared to classes 2 and 3, and was worst at predicting class 4 compounds oral exposure.

Conclusion

The generic GastroPlus ACAT model provided reasonable predictions especially for BCS class 1 compounds. For compounds of other classes, the model may be refined by obtaining more information on solubility and permeability in secondary assays. This increases confidence that such a model can be used in discovery projects to understand the parameters limiting absorption and extrapolate predictions across species. Also, when predictions disagree with the observations, the model can be updated to test hypotheses and understand oral absorption.
  相似文献   

9.

Purpose

Presence of tight junctions in blood brain barrier (BBB) pose a major hurdle for delivery of drug and severely affects adequate therapeutic concentration to reach the brain. In present work, we have selected Rivastigmine hydrogen tartrate (RHT), a reversible cholinesterase inhibitor, which exhibits extensive first-pass metabolism, resulting in limited absolute bioavailability (36%). RHT shows extremely low aqueous solubility and poor penetration, resulting in inadequate concentration reaching the brain, thus necessitating frequent oral dosing. To overcome these problems of RHT, microemulsion (ME) and mucoadhesive microemulsion (MME) of RHT were formulated for brain targeting via intranasal delivery route and compared on the basis of in vivo pharmacokinetics.

Methods

ME and MME formulations containing RHT were developed by water titration method. Characterization of ME and MME was done for various physicochemical parameters, nasal spray pattern, and in vivo pharmacokinetics quantitatively and qualitatively (gamma scintigraphy studies).

Results

The developed ME and MME were transparent having globule size approximately in the range of 53–55 nm. Pharmacokinetic studies showed higher values for Cmax and DTP for intranasal RHT: CH-ME over RHT-ME, thus indicating the effect of chitosan in modulating tight junctions, thereby enhanced paracellular transport of RHT.

Conclusion

Gamma scintigraphy and in vivo pharmacokinetic study suggested enhanced RHT concentration, upon intranasal administration of RHT:CH-ME, compare with other groups administered formulations intranasally. These findings suggested the potential of non-invasive intranasal route for brain delivery, especially for therapeutics, facing challenges in oral administration.
  相似文献   

10.

Purpose

To verify previously reported findings for the European Medicines Agency’s method for Average Bioequivalence with Expanding Limits (ABEL) for assessing highly variable drugs and to extend the assessment for other replicate designs in a wide range of sample sizes and CVs. To explore the properties of a new modified method which maintains the consumer risk ≤0.05 in all cases.

Methods

Monte-Carlo simulations of three different replicate designs covering a wide range of sample sizes and intra-subject variabilities were performed.

Results

At the switching variability of CV wR 30% the consumer risk is substantially inflated to up to 9.2%, which translates into a relative increase of up to 84%. The critical region of inflated type I errors ranges approximately from CV wR 25 up to 45%. The proposed method of iteratively adjusting α maintains the consumer risk at the desired level of ≤5% independent from design, variability, and sample size.

Conclusions

Applying the European Medicines Agency’s ABEL method at the nominal level of 0.05 inflates the type I error to an unacceptable degree, especially close to a CV wR of 30%. To control the type I error nominal levels ≤0.05 should be employed. Iteratively adjusting α is suggested to find optimal levels of the test.
  相似文献   

11.

Purpose

Gabapentin displays non-linear drug disposition, which complicates dosing for optimal therapeutic effect. Thus, the current study was performed to elucidate the pharmacokinetic/pharmacodynamic (PKPD) relationship of gabapentin’s effect on mechanical hypersensitivity in a rat model of CFA-induced inflammatory hyperalgesia.

Methods

A semi-mechanistic population-based PKPD model was developed using nonlinear mixed-effects modelling, based on gabapentin plasma and brain extracellular fluid (ECF) time-concentration data and measurements of CFA-evoked mechanical hyperalgesia following administration of a range of gabapentin doses (oral and intravenous).

Results

The plasma/brain ECF concentration-time profiles of gabapentin were adequately described with a two-compartment plasma model with saturable intestinal absorption rate (K m ?=?44.1 mg/kg, V max ?=?41.9 mg/h?kg) and dose-dependent oral bioavailability linked to brain ECF concentration through a transit compartment. Brain ECF concentration was directly linked to a sigmoid E max function describing reversal of hyperalgesia (EC 50, plasma ?=?16.7 μg/mL, EC 50, brain ?=?3.3 μg/mL).

Conclusions

The proposed semi-mechanistic population-based PKPD model provides further knowledge into the understanding of gabapentin’s non-linear pharmacokinetics and the link between plasma/brain disposition and anti-hyperalgesic effects. The model suggests that intestinal absorption is the primary source of non-linearity and that the investigated rat model provides reasonable predictions of clinically effective plasma concentrations for gabapentin.
  相似文献   

12.

Purpose

Amphotericin B (AMB), an effective antifungal and antileishmanial agent associated with low oral bioavailability (0.3%) and severe nephrotoxicity, was entrapped into poly(lactide-co-glycolide) (PLGA) nanoparticles to improve the oral bioavailability and to minimize the adverse effects associated with it.

Materials and Methods

The AMB-nanoparticles (AMB-NP) were prepared by nanoprecipitation method employing Vitamin E-TPGS as a stabilizer. In vitro release was carried out using membrane dialysis method. The in vitro hemolytic activity of AMB-NP was evaluated by incubation with red blood cells (RBCs). The acute nephrotoxicity profile and oral bioavailability of AMB-NP were evaluated in rats.

Results

The prepared AMB-NP formulation contained monodispersed particles in the size range of 165.6?±?2.9 nm with 34.5?±?2.1% entrapment at 10% w/w initial drug loading. AMB-NP formulation showed biphasic drug release, an initial rapid release followed by a sustained release. The AMB-NP formulation exerted lower hemolysis and nephrotoxicity as compared to Fungizone®. The relative oral bioavailability of the AMB-NP was found to be ~800% as compared to Fungizone®.

Conclusion

Together, these results offer a possibility of treating systemic fungal infection and leishmaniasis with oral AMB-NP, which could revolutionize the infectious disease treatment modalities.
  相似文献   

13.

Objective

To investigate the effect of efavirenz on the ketoconazole pharmacokinetics in HIV-infected patients.

Methods

Twelve HIV-infected patients were assigned into a one-sequence, two-period pharmacokinetic interaction study. In phase one, the patients received 400 mg of ketoconazole as a single oral dose on day 1; in phase two, they received 600 mg of efavirenz once daily in combination with 150 mg of lamivudine and 30 or 40 mg of stavudine twice daily on days 2 to 16. On day 16, 400 mg of ketoconazole was added to the regimen as a single oral dose. Ketoconazole pharmacokinetics were studied on days 1 and 16.

Results

Pretreatment with efavirenz significantly increased the clearance of ketoconazole by 201%. Cmax and AUC0?24 were significantly decreased by 44 and 72%, respectively. The T ½ was significantly shorter by 58%.

Conclusion

Efavirenz has a strong inducing effect on the metabolism of ketoconazole.
  相似文献   

14.

Purpose

To select appropriate antiemetics relieving teriparatide-induced nausea and vomiting during osteoporosis treatment using PET molecular imaging and pharmacokinetic analysis.

Methods

Rats were pretreated with subcutaneous teriparatide, followed by oral administration of antiemetics with different pharmacological effects. The pharmacokinetics of antiemetics were assessed by oral administration of 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) under free moving conditions in vivo. The effect of teriparatide on the permeability of Caco-2 cell membranes to [18F]FDG was assessed in vitro. The effects of antiemetics on teriparatide-induced suppression of gastrointestinal motility in vivo was assayed by positron emission tomography (PET) using orally administered [18F]FDG.

Results

Teriparatide delayed the time-radioactivity profile of [18F]FDG in blood and significantly reduced its absorption rate constant (k a ), determined from non-compartmental analysis, to 60% of control. In contrast, co-administration of granisetron or mosapride restored the time-radioactivity profile and k a of [18F]FDG to control levels. Teriparatide had no effect on Caco-2 membrane permeability to [18F]FDG. Pharmacokinetic PET imaging data analysis quantitatively showed the pharmacological effects of teriparatide-induced suppression of upper gastrointestinal motility and its restoration by granisetron and mosapride.

Conclusions

Teriparatide-induced abdominal discomfort might be attributed to GI motility, and PET imaging analysis is a useful tool to for the selection of appropriate antiemetics.
  相似文献   

15.

Purpose

To achieve controlled release of integral nanoparticles by the osmotic pump strategy using nanostructured lipid carriers (NLCs) as model nanoparticles.

Methods

NLCs was prepared by a hot-homogenization method, transformed into powder by lyophilization, and formulated into osmotic pump tablets (OPTs). Release of integral NLCs was visualized by live imaging after labeling with a water-quenching fluorescent probe. Effects of formulation variables on in vitro release characteristics were evaluated by measuring the model drug fenofibrate. Pharmacokinetics were studied in beagle dogs using the core tablet and a micronized fenofibrate formulation as references.

Results

NLCs are released through the release orifices of the OPTs as integral nanoparticles. Near zero-order kinetics can be achieved by optimizing the influencing variables. After oral administration, decreased C max and steady drug levels for as long as over 24 h are observed. NLC-OPTs show an oral bioavailability of the model drug fenofibrate similar to that of the core tablets, which is about 1.75 folds that of a fast-release formulation.

Conclusion

Controlled release of integral NLCs is achieved by the osmotic pump strategy.
  相似文献   

16.

Purpose

Oral therapy with raloxifene (RXF), an amphiphobic drug for remedy of the postmenopausal osteoporosis and estrogen-dependent breast cancer, is less effective due to its poor bioavailability (2% or so). This work aimed to devise mesoporous carbon nanospheres (MCNs) for oral delivery of RXF and evaluate their performance in bioavailability enhancement and lymphatic transport.

Methods

Glucose-based MCNs were fabricated by hydrothermal reaction followed by high-temperature activation. RXF-loaded MCNs (RXF-MCNs) were prepared by solvent-diffusion/high-pressure homogenization and stabilized by phospholipid. RXF-MCNs were fully characterized by particle size, morphology, in vitro drug release and metabolism, in vivo pharmacokinetics and lymphatic transport, and ex vivo fluorescent imaging.

Results

The prepared RXF-MCNs were 230 nm around in particle size, showing high entrapment efficiency (95.35%) and satisfactory physical stability. The oral bioavailability of RXF was enhanced by 2.07 folds through MCNs compared with RXF suspensions in rats. It was shown that reduced intestinal metabolism due to entrapment into MCNs, active transcellular uptake and increased lymphatic transport were responsible for enhanced bioavailability as a result of transport improvement.

Conclusions

The results suggest that MCNs are suitable nanocarriers for oral delivery of poorly bioavailable RXF.
  相似文献   

17.

Purpose

The aim of this work is to design new chitosan conjugates able to self-organize in aqueous solution in the form of micrometer-size platelets. When mixed with amphotericin B deoxycholate (AmB-DOC), micro-platelets act as a drug booster allowing further improvement in AmB-DOC anti-Candida albicans activity.

Methods

Micro-platelets were obtained by mixing oleoyl chitosan and α-cyclodextrin in water. The formulation is specifically-engineered for mucosal application by dispersing chitosan micro-platelets into thermosensitive pluronic® F127 20 wt% hydrogel.

Results

The formulation completely cured C. albicans vaginal infection in mice and had a superior activity in comparison with AmB-DOC without addition of chitosan micro-platelets. In vitro studies showed that the platelets significantly enhance AmB-DOC antifungal activity since the IC50 and the MIC90 decrease 4.5 and 4.8-times. Calculation of fractional inhibitory concentration index (FICI?=?0.198) showed that chitosan micro-platelets act in a synergistic way with AmB-DOC against C. albicans. No synergy is found between spherical nanoparticles composed poly(isobutylcyanoacrylate)/chitosan and AmB-DOC.

Conclusion

These results demonstrate for the first time the ability of flattened chitosan micro-platelets to have synergistic activity with AmB-DOC against C. albicans candidiasis and highlight the importance of rheological and mucoadhesive behaviors of hydrogels in the efficacy of the treatment.
  相似文献   

18.

Purpose

Intravenous opioid use is a common route of hepatitis C virus (HCV) infection; consequently, the prevalence of HCV is high among patients on methadone or buprenorphine/naloxone. The authors evaluated the pharmacokinetic interaction of boceprevir with methadone or buprenorphine/naloxone in patients on stable maintenance therapy.

Methods

This was a two-center, open-label, fixed-sequence study in 21 adult volunteers on stable maintenance therapy. Oral methadone (20–150 mg once daily) or sublingual buprenorphine/naloxone (8/2–24/6 mg once daily) was administered alone or in combination with boceprevir (800 mg every 8 h) on days 2–7. Pharmacokinetic sampling occurred before and up to 24 h after the dose on days 1 and 7.

Results

Coadministration of boceprevir reduced the area under the concentration-time curve during a dosing interval τ (AUC τ ) and maximum observed plasma (or serum) concentration (C max) of R-methadone (geometric mean ratios (GMRs) [90 % confidence intervals (CIs)], 0.85 [0.74, 0.96] and 0.90 [0.71, 1.13]) and S-methadone (GMRs [90 % CIs], 0.78 [0.66, 0.93] and 0.83 [0.64, 1.09]). Boceprevir increased the AUC τ and C max of buprenorphine (GMRs [90 % CIs], 1.19 [0.91, 1.58] and 1.18 [0.93, 1.50]) and naloxone (GMRs [90 % CIs], 1.33 [0.90, 1.93] and 1.09 [0.79, 1.51]). Boceprevir exposure upon methadone or buprenorphine/naloxone coadministration was not clinically different from historical controls and there was no evidence of opioid withdrawal or excess.

Conclusions

There was no clinically meaningful impact of boceprevir on methadone or buprenorphine pharmacokinetics, suggesting that methadone/buprenorphine dose adjustments are not required upon coadministration with boceprevir. Individual patients may differ in their clinical experience and clinicians should maintain vigilance when coadministering these medications.
  相似文献   

19.

Purpose

To assess the gelation power of N-palmitoyl L-alanine derivatives in injectable oils and to use the best chosen organogel as parenteral implant of granisetron for the treatment of emesis.

Methods

Twelve N-palmitoyl L-alanine derived organogels were developed and evaluated in terms of morphology, thermal properties and in vivo performance. The ability of the selected formula to form in situ gel upon subcutaneous injection in rats and its biocompatibility were monitored over 2 weeks by histopathological examination of the injection site.

Results

The acid derivative (N-palmitoyl L-alanine; PA) was superior to ester derivatives. The chosen formula (PA/safflower oil 10% w/v) was successful in forming an in situ gel of granisetron when subcutaneously injected in rats, lasting for 2 weeks and proved to be biocompatible by histopathological examination. Moreover, it exerted an extended antiemetic activity by decreasing the cisplatin-induced pica for a duration of 96 h and reduced preprotachykinin A mRNA expression and Substance P level for up to 4 days (gastric tissue) or 5 days (medulla oblongata) in rats.

Conclusion

Granisetron organogel could be considered as a safe, sustained-release and supportive anticancer treatment in both acute and chronic emesis as well as an accompanying treatment with chemotherapeutics in cancer cases.
  相似文献   

20.

Objective

The present study was proposed to assess the in vitro free radical-scavenging activity of B. diffusa methanolic extract (BDME) and its modulatory effect against streptozotocin (STZ) induced diabetes in male Wistar rats.

Methods

Experimental diabetes was induced in Wistar albino rats by administering single dose of STZ 40 mg/kg. One week later rats with blood glucose level >200 mg/dL were segregated as diabetes in three groups each containing 6 rats in number.

Results

Total phenolic content in B. diffusa methanol extract (BDME) was found to be 87 mg of gallic acid equivalents/g extract and total flavonoid content found to be 54.1 mg of quercetin equivalents/g extract. Its extract also exhibited DPPH (IC50, 163.1±6.7 μg/mL), nitric oxide (295 μg/mL) and H2O2 (159±5.25 μg/mL) radical scavenging activity. Pre-treatment with BDME (100 and 200 mg/kg b.w.) in streptozotocin-induced diabetic rats resulted in significant improvement in blood glucose, blood plasma enzymes SGOT, SGPT and ALP, weight loss, total protein, serum insulin and liver glycogen levels. Furthermore, it restores the activity of antioxidant enzymes viz. SOD, CAT and GPx.

Conclusion

Thus, the result suggests that BDME employed significant anti-diabetic effect in Wistar rats which is associated with its free radical scavenging and antioxidant activity.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号