首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methylmercury (MeHg) is a potent neurotoxin,which leads to a wide range of intracellular effects. The molecular mechanismsassociated to MeHg‐induced neurotoxicity have not been fully understood.Oxidative stress, as well as synaptic glutamate (Glu) dyshomeostasis have beenidentified as two critical mechanisms during MeHg‐mediated cytotoxicity. Here,we developed a rat model of MeHg poisoning to evaluate its neurotoxic effectsby focusing on cellular oxidative stress and synaptic Glu disruption. Inaddition, we investigated the neuroprotective role of alpha‐lipoic acid (α‐LA), a natural antioxidant, todeeply explore the underlying interaction between them. Fifty‐six rats wererandomly divided into four groups: saline control, MeHg treatment (4 or 12μmol/kg MeHg), and α‐LApre‐treatment (35 μmol/kg α‐LA+12μmol/kg MeHg). Rats exposed to 12 μmol/kg MeHg induced neuronal oxidativestress, with ROS accumulation and cellular antioxidant system impairment. Nrf2 andxCT pathways were activated with MeHg treatment. The enzymatic or non‐enzymaticof cellular GSH synthesis were also disrupted by MeHg. On the other hand, the abnormalactivities of GS and PAG disturbed the “Glu‐Gln cycle”, leading to NMDARsover‐activation, Ca2+ overload, and the calpain activation, which acceleratedNMDARs degradation. Meanwhile, the high expressions of phospho‐p44/42 MAPK,phospho‐p38 MAPK, phospho‐CREB, and the high levels of caspase 3 and Bax/Bcl‐2 finallyindicated the neuronal apoptosis after MeHg exposure. Pre‐treatment with α‐LA significantly preventedMeHg‐induced neurotoxicity. In conclusion, the oxidative stress and synapticGlu dyshomeostasis contributed to MeHg‐induced neuronal apoptosis. Alpha‐LAattenuated these toxic effects through mechanisms of anti‐oxidation andindirect Glu dyshomeostasis prevention  相似文献   

2.
Microcystins (MCs), as the most dominant bloom‐forming strains in eutrophic surface water, can induce hepatotoxicity by oxidative stress. Alpha‐lipoic acid (α‐LA) is a super antioxidant that can induce the synthesis of antioxidants, such as glutathione (GSH), by nuclear factor erythroid 2‐related factor 2 (Nrf2). However, the potential molecular mechanism of α‐LA regeneration of GSH remains unclear. The present study aimed to investigate whether α‐LA could reduce the toxicity of MCs induced in human hepatoma (HepG2), Bel7420 cells, and BALB/c mice by activating Nrf2 to regenerate GSH. Results showed that exposure to 10 μM microcystin‐leucine arginine (MC‐LR) reduced viability of HepG2 and Bel7402 cells and promoted the formation of reactive oxygen species (ROS) compared with untreated cells. Moreover, the protection of α‐LA included reducing the level of ROS, increasing superoxide dismutase activity, and decreasing malondialdehyde. Levels of reduced glutathione (rGSH) and rGSH/oxidized glutathione were significantly increased in cells cotreated with α‐LA and MC‐LR compared to those treated with MC‐LR alone, indicating an ability of α‐LA to attenuate oxidative stress and MC‐LR‐induced cytotoxicity by increasing the amount of rGSH. α‐LA can mediate GSH regeneration through the Nrf2 pathway under the action of glutathione reductase in MC‐LR cell lines. Furthermore, the data also showed that α‐LA‐induced cytoprotection against MC‐LR is associated with Nrf2 mediate pathway in vivo. These findings demonstrated the potential of α‐LA to resist MC‐LR‐induced oxidative damage of liver.  相似文献   

3.
4.
This study demonstrates the protective potential of hydroxytyrosol (HT), an olive oil phenol, against methylmercury (MeHg)‐induced neurotoxicity using IMR‐32 human neuroblastoma cell line. HT inhibited MeHg‐induced cytotoxicity and genotoxicity as confirmed by MTT, micronucleus, and comet assays. Cells preconditioned with HT showed reduction of MeHg‐induced cellular oxidative stress along with the maintenance of glutathione, superoxide dismutase, glutathione‐S‐tranferase, and catalase. Fluorescence microscopy and DNA ladder assays indicated the inhibitory effect of HT against MeHg‐induced apoptosis, which was further established by Western blotting. An effective concentration of 5 µM HT caused downregulation of p53, bax, cytochrome c, and caspase 3 and upregulation of prosurvival proteins including nuclear factor erythroid 2‐related factor 2 (Nrf2) and metallothionein. This work indicates the cytoprotective potential of HT against MeHg‐induced toxicity primarily by the lowering of oxidative stress, which may be endorsed to its antigenotoxic and antiapoptotic potential, in addition to its free radical scavenging ability. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1264–1275, 2016.  相似文献   

5.
The present study was aimed to investigate the mechanistic aspect of Aroclor 1260‐induced hepatotoxicity and its protection by lipoic acid. The adult male Albino rats were divided into six groups. Group I served as control. Group II received lipoic acid (35 mg/kg/day). Aroclor 1260 was given to rats by oral gavage at doses 20, 40, or 60 mg/kg/day (Groups III, IV, and V, respectively). Group VI was pretreated with lipoic acid (35 mg/kg/day) 24 h before Aroclor 1260 (40 mg/kg/day). Treatment in all groups was continued for further 15 consecutive days. Serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase activities and total bilirubin, total cholesterol, and triglycerides were significantly increased while total protein, total albumin, and high‐density lipoprotein were significantly decreased. Hydrogen peroxide production and lipid peroxidation were significantly increased while superoxide dismutase and catalase activities and reduced glutathione (GSH) content was significantly decreased in liver. Caspase‐3 & ‐9 activities were significantly increased in liver. Lipoic acid pretreatment significantly reverted all these abnormalities toward their normal levels. In conclusion, Aroclor 1260 induced liver dysfunction, at least in part, by induction of oxidative stress. Apoptotic effect of hepatic cells is involved in Aroclor 1260‐induced liver injury. Lipoic acid could protect rats against Aroclor 1260‐induced hepatotoxicity. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 913–922, 2016.  相似文献   

6.
7.
Polycyclic aromatic hydrocarbons (PAHs) are the most common contaminants in the environment. The primary focus on the toxicity of PAHs is their ability to activate the aryl hydrocarbon receptor (AhR)‐mediated pathway and lead to carcinogenesis in different organisms. However, the influence of PAHs on the antioxidant system in mammalian systems has received only limited attention. In the present study, we observed that the intraperitoneal injection of 100 mg/kg 3‐methylcholanthrene (3MC) into mice significantly increased reactive oxygen species (ROS) levels and malondialdehyde (MDA) contents and decreased glutathione (GSH) contents and the activity of total antioxidant capacity (T‐AOC), indicating that serious oxidative stress had been induced in the liver of mice. Then, the oxidative stress signal activated the nuclear factor erythroid 2‐related factor 2/antioxidant response element (Nrf2/ARE) pathway by enhancing the mRNA levels of Nrf2, p38, and Erk2. Moreover, the mRNA levels of Nrf2/ARE target genes, including glutathione peroxidase (Gpx), glutathione reductase (GR), glutathione synthetase (GS), NAD(P)H: quinone oxidoreductase 1 (Nqo1), superoxide dismutase 1 (Sod1), and Sod2, increased significantly after treatment with 3MC for 24 hours. The hepatic levels of NQO1 and the activities of GR and GS were also significantly enhanced at 24 hours after 3MC treatment. Because the expression of NQO1 is co‐regulated by Nrf2/ARE and AhR/XRE in mammalian tissues, NQO1 may play an important role in protecting against the oxidative stress induced by 3MC. Taken together, our findings suggested that acute exposure to 3MC altered the cellular redox balance in hepatocytes to trigger Nrf2‐regulated antioxidant responses, which may represent an adaptive cell defense mechanism against the oxidative stress induced by PAHs. © 2013 Wiley Periodicals, Inc. Environ Toxicol 29: 1399–1408, 2014.  相似文献   

8.
9.
The di (2‐ethylhexyl) phthalate (DEHP) is a plasticizer used in the polyvinyl chloride industry. Human exposure to this plasticizer is inevitable and contributes to several side effects. In this study, we examined whether DEHP induces apoptosis and oxidative stress in embryonic kidney cells (HEK‐293) and whether the nuclear factor E2‐related factor 2 (Nrf‐2)/heme oxygenase‐1 (HO‐1) antioxidant pathway is involved in the pathogenesis of this process. We demonstrated that DEHP is cytotoxic to HEK‐293 cells. It causes oxidative damage through the generation of free radicals, induces lipid peroxidation, and alters superoxide dismutase and catalase activities. Simultaneously, DEHP treatment decreases the expression and the protein level of Nrf‐2 and HO‐1. Inhibition of the Nrf‐2/HO‐1 pathway is related to the mitochondrial pathway of apoptosis. This apoptotic process is characterized by a loss of mitochondrial transmembrane potential (ΔΨm) and upregulation of the expression of caspase‐3 mRNA as well as its protein level.  相似文献   

10.
Preclinical Research
The aim of the present study was to evaluate the effects of berberine hydrochloride (BBH), an isoquinoline alkaloid that can be isolated from a variety of herbs, on hydrogen peroxide (H2O2)‐induced oxidative stress in C2C12 myoblasts and to investigate the molecular mechanisms involved in this process, especially the expression of the Nrf2/HO‐1 pathway. BBH preconditioning attenuated H2O2‐induced growth inhibition and DNA damage as well as apoptosis in C2C12 cells via suppression of the accumulation of intracellular reactive oxygen species (ROS). Treatment with BBHride alone effectively upregulated the expression of nuclear factor‐erythroid 2‐related factor 2 (Nrf2) and heme oxygenase‐1 (HO‐1) and elevated HO‐1 activity. However, the protective effects of BBH against H2O2‐induced ROS generation and cell growth reduction were abolished by an HO‐1 inhibitor. Moreover, BBH‐mediated induction and activation of HO‐1 were reduced by genetic silencing of Nrf2 using small interfering RNA (siRNA). In addition, the effects of BBH against H2O2‐induced ROS accumulation and growth inhibition were abrogated in C2C12 cells transfected with Nrf2 siRNA. Therefore, the present study demonstrated that BBH could protect C2C12 cells against oxidative stress‐induced injury and this effect involved activation of the Nrf2/HO‐1 pathway. Drug Dev Res, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

11.
目的 探讨刺五加注射液对大鼠肾缺血再灌注损伤(RIRI)的保护作用及其机制.方法 将48只健康SD大鼠随机分为假手术组、模型组、刺五加注射液(30 mg/kg)组和刺五加注射液(30 mg/kg)+Nrf2抑制剂(鸦胆子苦醇,2 mg/kg)组,每组12只.除假手术组外,其他组采用夹闭双侧肾动脉45 min的方法复制R...  相似文献   

12.
13.
Deltamethrin (DLM) is a well‐known pyrethroid insecticide used extensively in pest control. Exposure to DLM has been demonstrated to cause apoptosis in various cells. However, the immunotoxic effects of DLM on mammalian system and its mechanism is still an open question to be explored. To explore these effects, this study has been designed to first observe the interactions of DLM to immune cell receptors and its effects on the immune system. The docking score revealed that DLM has strong binding affinity toward the CD45 and CD28 receptors. In vitro study revealed that DLM induces apoptosis in murine splenocytes in a concentration‐dependent manner. The earliest markers of apoptosis such as enhanced reactive oxygen species and caspase 3 activation are evident as early as 1 h by 25 and 50 µM DLM. Western blot analysis demonstrated that p38 MAP kinase and Bax expression is increased in a concentration‐dependent manner, whereas Bcl 2 expression is significantly reduced after 3 h of DLM treatment. Glutathione depletion has been also observed at 3 and 6 h by 25 and 50 µM concentration of DLM. Flow cytometry results imply that the fraction of hypodiploid cells has gradually increased with all the concentrations of DLM at 18 h. N‐acetyl cysteine effectively reduces the percentage of apoptotic cells, which is increased by DLM. In contrast, buthionine sulfoxamine causes an elevation in the percentage of apoptotic cells. Phenotyping data imply the effect of DLM toxicity in murine splenocytes. In brief, the study demonstrates that DLM causes apoptosis through its interaction with CD45 and CD28 receptors, leading to oxidative stress and activation of the mitochondrial caspase‐dependent pathways which ultimately affects the immune functions. This study provides mechanistic information by which DLM causes toxicity in murine splenocytes. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 808–819, 2016.  相似文献   

14.
β‐LAPachone (B‐LAP) is a naphthoquinone that possesses antioxidant properties. In the present investigation, the protective effect of B‐LAP against doxorubicin (DOX)‐induced cardiotoxicity was examined in mice. Thirty‐five mice were divided into 5 groups: control group, B‐LAP (5 mg/kg) group, DOX (15 mg/kg) group, DOX+B‐LAP (2.5 mg/kg) group and DOX+B‐LAP (5 mg/kg) group. B‐LAP was administered orally for 14 days of experimental period. A single dose of DOX (15 mg/kg) was injected intraperitoneally on day 3. Cardiac function, histoarchitecture, indices of oxidative stress and circulating markers of cardiac injury were examined. B‐LAP (5 mg/kg) decreased serum levels of lactate dehydrogenase (LDH), creatine kinase MB (CK‐MB) and cardiac troponin I (cTnI), and ameliorated cardiac histopathological alterations. In addition to increasing cellular NAD+/NADH ratio, B‐LAP up‐regulated the cardiac levels of SIRT1, beclin‐1, p‐LKB1 and p‐AMPK, and reduced the cardiac levels of p‐mTOR, interleukin (IL)‐1β, TNF (tumour necrosis factor)‐α and caspase‐3. B‐LAP also elevated the nuclear accumulation of Nrf2 and simultaneously up‐regulated the protein levels of haem oxygenase (HO‐1) and glutathione S‐transferase (GST) in the hearts of DOX mice. While B‐LAP reduced malondialdehyde concentrations in heart of DOX‐treated mice, it further promoted the activities of cardiac superoxide dismutase (SOD), glutathione peroxidase (GPX) and catalase (CAT).In accordance with increased cell survival, B‐LAP significantly improved the cardiac function of DOX mice. Collectively, these findings underline the protective potential of B‐LAP against DOX‐induced cardiotoxicity by regulating autophagy and AMPK/Nrf2 signalling pathway in mice.  相似文献   

15.
16.
The present study aims to investigate the impacts and mechanisms of silymarin on paraquat (PQ)‐induced lung injury in vivo and in vitro. In in vivo experiments, a total of 32 male Sprague‐Dawley (SD) rats were randomly divided into four groups. The rats were killed on day 3. Histopathological changes in lung tissue were examined using HE and Masson's trichrome staining. Biomarkers of neutrophil activation, pulmonary oedema, pulmonary fibrosis, lung permeability and oxidative stress were detected. Several proinflammatory mediators and antioxidant related proteins were measured. In in vitro experiments, A549 cells were transfected with Nrf2 special siRNA to investigate the roles of Nrf2. The results show that silymarin administration abated PQ‐induced lung histopathologic changes, decreased inflammatory cell infiltration and lung wet weight/dry weight (W/D) ratio, suppressed myeloperoxidase (MPO) activity and nitric oxide (NO)/inducible nitric oxide synthases (iNOS) expression, downregulated hydroxyproline (HYP) levels, reduced total protein concentration and proinflammatory mediator release, and improved oxidative stress (malondialdehyde, MDA; superoxide dismutase, SOD; catalase, CAT; and glutathione peroxidase, GSH‐Px) in lung tissue and serum. Meanwhile, treatment with silymarin upregulated the levels of nuclear factor‐erythroid‐2‐related factor 2 (Nrf2), heme oxygenase‐1 (HO‐1) and NAD(P)H:quinone oxidoreductase‐1(NQO1). However, the addition of Nrf2 siRNA reduced the expression of Nrf2‐mediated antioxidant protein HO‐1 and thus reversed the protective effects of silymarin against oxidative stress and inflammatory response. These results suggest that silymarin may exert protective effects against PQ‐induced lung injury. Its mechanisms were associated with the Nrf2‐mediated pathway. Therefore, silymarin may be a potential therapeutic drug for lung injury.  相似文献   

17.
18.
It has been widely reported that silver nanoparticles (AgNPs) induce oxidative stress in various cell lines. However, the mechanism for this effect and its consequences for cellular signaling are poorly understood. In this study, human umbilical vein endothelial cells (HUVECs) were used to assess the toxicity and investigate the associated molecular mechanisms caused by exposure to AgNPs. We demonstrated that AgNP exposure significantly and dose‐dependently decreased the cell viability, induced reactive oxygen species (ROS) generation and led to early apoptosis in HUVECs. Our findings showed that AgNPs induced excess ROS production that affected the signaling pathways by a mechanism that depended on activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity through upregulation of NADPH oxidase 4 (NOX4) protein expressions. Moreover, AgNPs could disrupt the inactivation of the nuclear factor erythroid 2‐related factor 2 (Nrf2)‐mediated antioxidant response, which is considered another important element for oxidative stress caused by AgNPs in HUVECs. The redox imbalance between NOX4 and Nrf2 was an important cause for the ROS overproduction that led to cell injury in HUVECs. The results provided insight into the mechanisms of oxidative stress induced by AgNPs in vascular endothelial cells.  相似文献   

19.
Oxidative stress and inflammatory response are well known to be involved in the pathogenesis of acute liver injury. This study was performed to examine the hepatoprotective effect of ginsenoside Rg1 (Rg1) against CCl4‐induced acute liver injury, and further to elucidate the involvement of Nrf2 signaling pathway in vivo and in vitro. Mice were orally administered Rg1 (15, 30, and 60 mg/kg) or sulforaphane (SFN) once daily for 1 week prior to 750 μL/kg CCl4 injection. The results showed that Rg1 markedly altered relative liver weights, promoted liver repair, increased the serum level of TP and decreased the serum levels of ALT, AST and ALP. Hepatic oxidative stress was inhibited by Rg1, as evidenced by the decrease in MDA, and increases in GSH, SOD, and CAT in the liver. Further research demonstrated that Rg1 suppressed liver inflammation response through repressing the expression levels of inflammation‐related genes including TNF‐α, IL‐1β, IL‐6, COX‐2, and iNOS. In addition, Rg1 enhanced antioxidative stress and liver detoxification abilities by up‐regulating Nrf2 and its target‐genes such as GCLC, GCLM, HO‐1, NQO1, Besp, Mrp2, Mrp3, Mrp4, and down‐regulating Cyp2e1. However, the changes in Nrf2 target‐genes, as well as ameliorative liver histology induced by Rg1 were abrogated by Nrf2 antagonist all‐transretinoic acid in vivo and Nrf2 siRNA in vitro. Overall, the findings indicated that Rg1 might be an effective approach for the prevention against acute liver injury by activating Nrf2 signaling pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号