首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The SLC13 family in humans and other mammals consists of sodium-coupled transporters for anionic substrates: three transporters for dicarboxylates/citrate and two transporters for sulfate. This review will focus on the di- and tricarboxylate transporters: NaDC1 (SLC13A2), NaDC3 (SLC13A3), and NaCT (SLC13A5). The substrates of these transporters are metabolic intermediates of the citric acid cycle, including citrate, succinate, and α-ketoglutarate, which can exert signaling effects through specific receptors or can affect metabolic enzymes directly. The SLC13 transporters are important for regulating plasma, urinary and tissue levels of these metabolites. NaDC1, primarily found on the apical membranes of renal proximal tubule and small intestinal cells, is involved in regulating urinary levels of citrate and plays a role in kidney stone development. NaDC3 has a wider tissue distribution and high substrate affinity compared with NaDC1. NaDC3 participates in drug and xenobiotic excretion through interactions with organic anion transporters. NaCT is primarily a citrate transporter located in the liver and brain, and its activity may regulate metabolic processes. The recent crystal structure of the Vibrio cholerae homolog, VcINDY, provides a new framework for understanding the mechanism of transport in this family. This review summarizes current knowledge of the structure, function, and regulation of the di- and tricarboxylate transporters of the SLC13 family.  相似文献   

2.
The SLC13 gene family of sodium sulphate/carboxylate cotransporters   总被引:7,自引:2,他引:7  
The SLC13 gene family consist of five sequence-related members that have been identified in a variety of animals, plants, yeast and bacteria. Proteins encoded by these genes are divided into two functionally unrelated groups: the Na+-sulphate (NaS) cotransporters and the Na+-carboxylate (NaC) cotransporters. Members of this family include the renal Na+-dependent inorganic sulphate transporter-1 (NaSi-1, SLC13A1), the Na+-dependent dicarboxylate transporters NaDC-1/SDCT1 (SLC13A2), NaDC-3/SDCT2 (SLC13A3), the sulphate transporter-1 (SUT-1, SLC13A4) and the Na+-coupled citrate transporter (NaCT, SLC13A5). The general characteristics of the SLC13 proteins are that they encode multi-spanning proteins with 8–13 transmembrane domains, have a wide tissue distribution with most being expressed in the epithelial cells of the kidney and the gastrointestinal tract. They are Na+-coupled symporters, DIDS-insensitive, with strong cation preference for Na+, with a Na+:anion coupling ratio of around 3:1 and have a substrate preference for divalent anions, which include tetraoxyanions (for the NaS cotransporters) or Krebs cycle intermediates, including mono-, di-, and tri-carboxylates (for the NaC cotransporters). The purpose of this review is to provide an update on the most recent advances and to summarize the biochemical, physiological and structural aspects of the vertebrate SLC13 gene family.  相似文献   

3.
The organic anion transporting polypeptides (rodents: Oatps, human: OATPs) form a superfamily of sodium-independent transport systems that mediate the transmembrane transport of a wide range of amphipathic endogenous and exogenous organic compounds. Since the traditional SLC21 gene classification does not permit an unequivocal and species-independent identification of genes and gene products, all Oatps/OATPs are newly classified within the OATP/SLCO superfamily and subdivided into families (40% amino acid sequence identity), subfamilies (60% amino acid sequence identity) and individual genes and gene products according to their phylogenetic relationships and chronology of identification. Implementation of this new classification and nomenclature system occurs in agreement with the HUGO Gene Nomenclature Committee (HGNC). Among 52 members of the OATP/SLCO superfamily, 36 members have been identified so far in humans, rat and mouse. The latter are clustered within 6 (out of 12) families (OATP1–OATP6) and 13 subfamilies. Oatps/OATPs represent 12 transmembrane domain proteins and contain the superfamily signature D-X-RW-(I,V)-GAWW-X-G-(F,L)-L. Although species divergence, multispecificity and wide tissue distribution are common characteristics of many Oatps/OATPs, some members of the OATP/SLCO superfamily are highly conserved during evolution, have a high substrate specificity and exhibit unique cellular expression in distinct organs. Hence, while Oatps/OATPs with broad substrate specificity appear to play an important role in the bioavailability, distribution and excretion of numerous exogenous amphipathic organic anionic compounds, Oatps/OATPs with a narrow spectrum of transport substrates may exhibit more specific physiological functions in distinct organs.  相似文献   

4.
The SLC2 family of facilitated hexose and polyol transporters   总被引:1,自引:0,他引:1  
The SLC2 family of glucose and polyol transporters comprises 13 members, the glucose transporters (GLUT) 1–12 and the H+-myo-inositol cotransporter (HMIT). These proteins all contain 12 transmembrane domains with both the amino and carboxy-terminal ends located on the cytoplasmic side of the plasma membrane and a N-linked oligosaccharide side-chain located either on the first or fifth extracellular loop. Based on sequence comparison, the GLUT isoforms can be grouped into three classes: class I comprises GLUT1–4; class II, GLUT6, 8, 10, and 12 and class III, GLUT5, 7, 9, 11 and HMIT. Despite their sequence similarity and the presence of class-specific signature sequences, these transporters carry various hexoses and HMIT is a H+/myo-inositol co-transporter. Furthermore, the substrate transported by some isoforms has not yet been identified. Tissue- and cell-specific expression of the well-characterized GLUT isoforms underlies their specific role in the control of whole-body glucose homeostasis. Numerous studies with transgenic or knockout mice indeed support an important role for these transporters in the control of glucose utilization, glucose storage and glucose sensing. Much remains to be learned about the transport functions of the recently discovered isoforms (GLUT6–13 and HMIT) and their physiological role in the metabolism of glucose, myo-inositol and perhaps other substrates.An erratum to this article can be found at  相似文献   

5.
The solute carrier 26 (SLC26) transporters are anion transporters with diverse substrate specificity. Several members are ubiquitous while others show limited tissue distribution. They are expressed in many epithelia and to the extent known, play a central role in anion secretion and absorption. Members of the family are primarily Cl transporters, although some members transport mainly SO42−, Cl, HCO3 or  I. A defining feature of the family is their functional diversity. Slc26a1 and Slc26a2 function as specific SO42− transporters while Slc26a4 functions as an electroneutral Cl/I/HCO3 exchanger. Slc26a3 and Slc26a6 function as coupled electrogenic Cl/HCO3 exchangers or as bona fide anion channels. SLC26A7 and SLC26A9 function exclusively as Cl channels. This short review discusses the functional diversity of the SLC26 transporters.  相似文献   

6.
The SLC39 family of metal ion transporters   总被引:17,自引:0,他引:17  
SLC39 proteins are members of the broader ZIP family of metal ion transporters found in organisms at all phylogenetic levels. Most ZIP transporters have eight predicted transmembrane domains and a similar predicted topology. Their biochemical mechanism(s) of substrate transport are not yet known. Where characterized, these proteins have been found to transport metal ions from the cell exterior or lumen of intracellular organelles into the cytoplasm. Furthermore, members of the ZIP family have been implicated in the transport of zinc, iron, and/or manganese indicating that these proteins have diverse functions. There are 14 SLC39-related proteins encoded by the human genome. Studies of SLC39A1, SLC39A2, and SLC39A4, encoding the proteins hZip1, hZip2, and hZip4, have indicated roles in zinc uptake across the plasma membrane of various cell types. Genetic studies have specifically implicated SLC39A4 in the uptake of dietary zinc into intestinal enterocytes. Mutations in SLC39A4 have been identified in patients with acrodermatitis enteropathica, a genetic disease of zinc deficiency.  相似文献   

7.
The vesicular amine transporters (VATs) are expressed as integral proteins of the lipid bilayer membrane of secretory vesicles in neuronal and endocrine cells. Their function is to allow the transport of acetylcholine (by the vesicular acetylcholine transporter VAChT; SLC18A3) and biogenic amines (by the vesicular monoamine transporters VMAT1 and VMAT2; SLC18A1 and SLC18A2) into secretory vesicles, which then discharge them into the extracellular space by exocytosis. Transport of positively charged amines by members of the SLC18 family in all cases utilizes an electrochemical gradient across the vesicular membrane established by proton pumping into the vesicle via a vacuolar ATPase; the amine is accumulated in the vesicle at the expense of the proton gradient, at a ratio of one translocated amine per two translocated protons. The members of the SLC18 family have become important histochemical markers for chemical coding in neuroendocrine tissues and cells. The structural basis of their remarkable ability to transport positively charged amines against a very large concentration gradient, as well as potential disease association with impaired transporter function and expression, are under intense investigation.  相似文献   

8.
The SLC9 gene family encodes Na+/H+ exchangers (NHEs). These transmembrane proteins transport ions across lipid bilayers in a diverse array of species from prokaryotes to eukaryotes, including plants, fungi, and animals. They utilize the electrochemical gradient of one ion to transport another ion against its electrochemical gradient. Currently, 13 evolutionarily conserved NHE isoforms are known in mammals [22, 46, 128]. The SLC9 gene family (solute carrier classification of transporters: www.bioparadigms.org) is divided into three subgroups [46]. The SLC9A subgroup encompasses plasmalemmal isoforms NHE1-5 (SLC9A1-5) and the predominantly intracellular isoforms NHE6-9 (SLC9A6-9). The SLC9B subgroup consists of two recently cloned isoforms, NHA1 and NHA2 (SLC9B1 and SLC9B2, respectively). The SLC9C subgroup consist of a sperm specific plasmalemmal NHE (SLC9C1) and a putative NHE, SLC9C2, for which there is currently no functional data [46]. NHEs participate in the regulation of cytosolic and organellar pH as well as cell volume. In the intestine and kidney, NHEs are critical for transepithelial movement of Na+ and HCO3 ? and thus for whole body volume and acid–base homeostasis [46]. Mutations in the NHE6 or NHE9 genes cause neurological disease in humans and are currently the only NHEs directly linked to human disease. However, it is becoming increasingly apparent that members of this gene family contribute to the pathophysiology of multiple human diseases.  相似文献   

9.
CATs and HATs: the SLC7 family of amino acid transporters   总被引:18,自引:0,他引:18  
The SLC7 family is divided into two subgroups, the cationic amino acid transporters (the CAT family, SLC7A1–4) and the glycoprotein-associated amino acid transporters (the gpaAT family, SLC7A5–11), also called light chains or catalytic chains of the hetero(di)meric amino acid transporters (HAT). The associated glycoproteins (heavy chains) 4F2hc (CD98) or rBAT (D2, NBAT) form the SLC3 family. Members of the CAT family transport essentially cationic amino acids by facilitated diffusion with differential trans-stimulation by intracellular substrates. In some cells, they may regulate the rate of NO synthesis by controlling the uptake of l-arginine as the substrate for nitric oxide synthase (NOS). The heterodimeric amino acid transporters are, in contrast, quite diverse in terms of substrate selectivity and function (mostly) as obligatory exchangers. Their selectivity ranges from large neutral amino acids (system L) to small neutral amino acids (ala, ser, cys-preferring, system asc), negatively charged amino acid (system xc) and cationic amino acids plus neutral amino acids (system y+L and b0,+-like). Cotransport of Na+ is observed only for the y+L transporters when they carry neutral amino acids. Mutations in b0,+-like and y+L transporters lead to the hereditary diseases cystinuria and lysinuric protein intolerance (LPI), respectively.  相似文献   

10.
SLC4 transporters are membrane proteins that in general mediate the coupled transport of bicarbonate (carbonate) and share amino acid sequence homology. These proteins differ as to whether they also transport Na+ and/or Cl?, in addition to their charge transport stoichiometry, membrane targeting, substrate affinities, developmental expression, regulatory motifs, and protein–protein interactions. These differences account in part for the fact that functionally, SLC4 transporters have various physiological roles in mammals including transepithelial bicarbonate transport, intracellular pH regulation, transport of Na+ and/or Cl?, and possibly water. Bicarbonate transport is not unique to the SLC4 family since the structurally unrelated SLC26 family has at least three proteins that mediate anion exchange. The present review focuses on the first of the sodium-dependent SLC4 transporters that was identified whose structure has been most extensively studied: the electrogenic Na+-base cotransporter NBCe1. Mutations in NBCe1 cause proximal renal tubular acidosis (pRTA) with neurologic and ophthalmologic extrarenal manifestations. Recent studies have characterized the important structure–function properties of the transporter and how they are perturbed as a result of mutations that cause pRTA. It has become increasingly apparent that the structure of NBCe1 differs in several key features from the SLC4 Cl?–HCO3 ? exchanger AE1 whose structural properties have been well-studied. In this review, the structure–function properties and regulation of NBCe1 will be highlighted, and its role in health and disease will be reviewed in detail.  相似文献   

11.
The SLC22 drug transporter family   总被引:24,自引:0,他引:24  
The SLC22 family comprises organic cation transporters (OCTs), zwitterion/cation transporters (OCTNs), and organic anion transporters (OATs). These transporters contain 12 predicted -helical transmembrane domains (TMDs) and one large extracellular loop between TMDs 1 and 2. Transporters of the SLC22 family function in different ways: (1) as uniporters that mediate facilitated diffusion in either direction (OCTs), (2) as anion exchangers (OAT1, OAT3 and URAT1), and (3) as Na+/l-carnitine cotransporter (OCTN2). They participate in the absorption and/or excretion of drugs, xenobiotics, and endogenous compounds in intestine, liver and/or kidney, and perform homeostatic functions in brain and heart. The endogenous substrates include monoamine neurotransmitters, choline, l-carnitine, -ketoglutarate, cAMP, cGMP, prostaglandins, and urate. Defect mutations of transporters of the SLC22 family may cause specific diseases such as "primary systemic carnitine deficiency" or "idiopathic renal hypouricemia" or change drug absorption or excretion.  相似文献   

12.
13.
The concentrative nucleoside transporter family,SLC28   总被引:13,自引:0,他引:13  
The SLC28 family consists of three subtypes of sodium-dependent, concentrative nucleoside transporters, CNT1, CNT2, and CNT3 (SLC28A1, SLC28A2, and SLC28A3, respectively), that transport both naturally occurring nucleosides and synthetic nucleoside analogs used in the treatment of various diseases. These subtypes differ in their substrate specificities: CNT1 is pyrimidine-nucleoside preferring, CNT2 is purine-nucleoside preferring, and CNT3 transports both pyrimidine and purine nucleosides. Recent studies have identified key amino acid residues that are determinants of pyrimidine and purine specificity of CNT1 and CNT2. The tissue distributions of the CNTs vary: CNT1 is localized primarily in epithelia, whereas CNT2 and CNT3 have more generalized distributions. Nucleoside transporters in the SLC28 and SLC29 families play critical roles in nucleoside salvage pathways where they mediate the first step of nucleotide biosynthesis. In addition, these transporters work in concert to terminate adenosine signaling. SLC28 family members are crucial determinants of response to a variety of anticancer and antiviral nucleoside analogs, as they modulate the entry of these analogs into target tissues. Further, this family is involved in the absorption and disposition of many nucleoside analogs. Several CNT single nucleoside polymorphisms (SNPs) have been identified, but have yet to be characterized.  相似文献   

14.
Mammalian members of the SLC15 family are electrogenic transporters that utilize the proton-motive force for uphill transport of short chain peptides and peptido-mimetics into a variety of cells. The prototype transporters of this family are PEPT1 (SLC15A1) and PEPT2 (SLC15A2), which mediate the uptake of peptide substrates into intestinal and renal epithelial cells. More recently, other sites of functional expression of the two proteins have been identified such as bile duct epithelium (PEPT1), glia cells and epithelia of the choroid plexus, lung and mammary gland (PEPT2). Both proteins can transport essentially every possible di- and tripeptide regardless of the substrate's net charge, but operate stereoselectively. Based on peptide-like structures, various drugs and prodrugs are transported as well, allowing efficient intestinal absorption of the compounds via PEPT1. In kidney tubules both peptide transporters can mediate the renal reabsorption of the filtered compounds thus affecting their pharmacokinetics. Recently, two new peptide transporters, PHT1 (SLC15A4) and PHT2 (SLC15A3), were identified in mammals. They possess an overall amino acid identity with the PEPT-series of 20% to 25%. PHT1 and PHT2 were shown to transport free histidine and certain di- and tripeptides, but it is not yet clear whether they are located on the plasma membrane or represent lysosomal transporters for the proton-dependent export of histidine and dipeptides from lysosomal protein degradation into the cytosol.  相似文献   

15.
The heteromeric amino acid transporters (HATs) are composed of a light and a heavy subunit linked by a disulfide bridge. The heavy subunits are the SLC3 members (rBAT and 4F2hc), whereas the light subunits are members of the SLC7 family of amino acid transporters. SLC3 proteins are type II membrane glycoproteins (i.e., one single transmembrane domain and the C-terminus located outside the cell) with a bulky extracellular domain that shows homology with alpha-glucosidases. rBAT heterodimerizes with b(0,+)AT (SLC7A9) constituting the amino acid transport b(0,+), the main system responsible for the apical reabsorption of cystine in kidney. The defect in this system causes cystinuria, the most common primary inherited aminoaciduria. 4F2hc subserves various amino acid transport systems by dimerization with different SLC7 proteins. The main role of SLC3 proteins is to help routing of the holotransporter to the plasma membrane. A working model for the biogenesis of HATs based on recent data on the rBAT/b(0,+)AT heterodimeric complex is presented. 4F2hc is a multifunctional protein, and in addition to its role in amino acid transport, it may be involved in other cellular functions. Studies on two SLC7 members (Asc-2 and AGT1) demonstrate heterodimerization with unknown heavy subunits.  相似文献   

16.
The equilibrative nucleoside transporter family,SLC29   总被引:20,自引:0,他引:20  
The human SLC29 family of proteins contains four members, designated equilibrative nucleoside transporters (ENTs) because of the properties of the first-characterised family member, hENT1. They belong to the widely-distributed eukaryotic ENT family of equilibrative and concentrative nucleoside/nucleobase transporters and are distantly related to a lysosomal membrane protein, CLN3, mutations in which cause neuronal ceroid lipofuscinosis. A predicted topology of 11 transmembrane helices with a cytoplasmic N-terminus and an extracellular C-terminus has been experimentally confirmed for hENT1. The best-characterised members of the family, hENT1 and hENT2, possess similar broad substrate specificities for purine and pyrimidine nucleosides, but hENT2 in addition efficiently transports nucleobases. The ENT3 and ENT4 isoforms have more recently also been shown to be genuine nucleoside transporters. All four isoforms are widely distributed in mammalian tissues, although their relative abundance varies: ENT2 is particularly abundant in skeletal muscle. In polarised cells ENT1 and ENT2 are found in the basolateral membrane and, in tandem with concentrative transporters of the SLC28 family, may play a role in transepithelial nucleoside transport. The transporters play key roles in nucleoside and nucleobase uptake for salvage pathways of nucleotide synthesis, and are also responsible for the cellular uptake of nucleoside analogues used in the treatment of cancers and viral diseases. In addition, by regulating the concentration of adenosine available to cell surface receptors, they influence many physiological processes ranging from cardiovascular activity to neurotransmission.  相似文献   

17.
The SLC34 family of sodium-dependent phosphate transporters   总被引:1,自引:0,他引:1  
The SLC34 family of sodium-driven phosphate cotransporters comprises three members: NaPi-IIa (SLC34A1), NaPi-IIb (SLC34A2), and NaPi-IIc (SLC34A3). These transporters mediate the translocation of divalent inorganic phosphate (HPO4 2?) together with two (NaPi-IIc) or three sodium ions (NaPi-IIa and NaPi-IIb), respectively. Consequently, phosphate transport by NaPi-IIa and NaPi-IIb is electrogenic. NaPi-IIa and NaPi-IIc are predominantly expressed in the brush border membrane of the proximal tubule, whereas NaPi-IIb is found in many more organs including the small intestine, lung, liver, and testis. The abundance and activity of these transporters are mostly regulated by changes in their expression at the cell surface and are determined by interactions with proteins involved in scaffolding, trafficking, or intracellular signaling. All three transporters are highly regulated by factors including dietary phosphate status, hormones like parathyroid hormone, 1,25-OH2 vitamin D3 or FGF23, electrolyte, and acid–base status. The physiological relevance of the three members of the SLC34 family is underlined by rare Mendelian disorders causing phosphaturia, hypophosphatemia, or ectopic organ calcifications.  相似文献   

18.
Transporters of the SLC38 family are found in all cell types of the body. They mediate Na+-dependent net uptake and efflux of small neutral amino acids. As a result they are particularly expressed in cells that grow actively, or in cells that carry out significant amino acid metabolism, such as liver, kidney and brain. SLC38 transporters occur in membranes that face intercellular space or blood vessels, but do not occur in the apical membrane of absorptive epithelia. In the placenta, they play a significant role in the transfer of amino acids to the foetus. Members of the SLC38 family are highly regulated in response to amino acid depletion, hypertonicity and hormonal stimuli. SLC38 transporters play an important role in amino acid signalling and have been proposed to act as transceptors independent of their transport function. The structure of SLC38 transporters is characterised by the 5?+?5 inverted repeat fold, which is observed in a wide variety of transport proteins.  相似文献   

19.
The sodium-coupled neutral amino acid transporters (SNAT) of the SLC38 gene family resemble the classically-described System A and System N transport activities in terms of their functional properties and patterns of regulation. Transport of small, aliphatic amino acids by System A subtypes (SNAT1, SNAT2, and SNAT4) is rheogenic and pH sensitive. The System N subtypes SNAT3 and SNAT5 also countertransport H(+), which may be key to their operation in reverse, and have narrower substrate profiles than do the System A subtypes. Glutamine emerges as a favored substrate throughout the family, except for SNAT4. The SLC38 transporters undoubtedly play many physiological roles including the transfer of glutamine from astrocyte to neuron in the CNS, ammonia detoxification and gluconeogenesis in the liver, and the renal response to acidosis. Probing their regulation has revealed additional roles, and recent work has considered SLC38 transporters as therapeutic targets in neoplasia.  相似文献   

20.
The SLC6 family is a diverse set of transporters that mediate solute translocation across cell plasma membranes by coupling solute transport to the cotransport of sodium and chloride down their electrochemical gradients. These transporters probably have 12 transmembrane domains, with cytoplasmic N- and C-terminal tails, and at least some may function as homo-oligomers. Family members include the transporters for the inhibitory neurotransmitters GABA and glycine, the aminergic transmitters norepinephrine, serotonin, and dopamine, the osmolytes betaine and taurine, the amino acid proline, and the metabolic compound creatine. In addition, this family includes a system B(0+) cationic and neutral amino acid transporter, and two transporters for which the solutes are unknown. In general, SLC6 transporters act to regulate the level of extracellular solute concentrations. In the central and the peripheral nervous system, these transporters can regulate signaling among neurons, are the sites of action of various drugs of abuse, and naturally occurring mutations in several of these proteins are associated with a variety of neurological disorders. For example, transgenic animals lacking specific aminergic transporters show profoundly disturbed behavioral phenotypes and probably represent excellent systems for investigating psychiatric disease. SLC6 transporters are also found in many non-neural tissues, including kidney, intestine, and testis, consistent with their diverse physiological roles. Transporters in this family represent attractive therapeutic targets because they are subject to multiple forms of regulation by many different signaling cascades, and because a number of pharmacological agents have been identified that act specifically on these proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号