首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The processing of syntactic and semantic information in written sentences by native (L1) and non-native (L2) speakers was investigated in an fMRI experiment. This was done by means of a violation paradigm, in which participants read sentences containing either a syntactic, a semantic, or no violation. The results of this study were compared to those of a previous fMRI study, in which auditory sentence processing in L1 and L2 was investigated. The results indicate greater activation for L2 speakers as compared to L1 speakers when reading sentences in several language- and motor-related brain regions. The processing of syntactically incorrect sentences elicited no reliably greater activation in language areas in L2 speakers. In L1 speakers, on the other hand, syntactic processing, as compared to semantic processing, was associated with increased activation in left mid to posterior superior temporal gyrus. In response to the processing of semantically incorrect sentences, both L2 and L1 speakers demonstrated increased involvement of left inferior frontal gyrus. The results of this study were compared to a previously conducted fMRI study, which made use of identical sentence stimuli in the auditory modality. Results from the two studies are in general agreement with one another, although some differences in the response of brain areas very proximal to primary perceptual processing areas (i.e. primary auditory and visual cortex) were observed in conjunction with presentation in the different modalities. The combined results provide evidence that L1 and L2 speakers rely on the same cortical network to process language, although with a higher level of activation in some regions for L2 processing.  相似文献   

2.
We used intraoperative optical imaging of intrinsic signals (iOIS) and electrocortical stimulation mapping (ESM) to compare functionally active brain regions in 10 awake patients undergoing neurosurgical resection. Patients performed two to four tasks, including visual and auditory naming, word discrimination, and/or orofacial movements. All iOIS maps included areas identified by ESM mapping. However, iOIS also revealed topographical specificity dependent on language task. In Broca's area, naming paradigms activated both anterior and posterior inferior frontal gyrus (IFG), while the word discrimination paradigm activated only posterior IFG. In Wernicke's area, object naming produced activations localizing over the inferior and anterior/posterior regions, while the word discrimination task activated superior and anterior cortices. These results may suggest more posterior phonological activation and more anterior semantic activations in Broca's area, and more anterior/superior phonological activation and more posterior/inferior semantic activations in Wernicke's area. Although similar response onset was observed in Broca's and Wernicke's areas, temporal differences were revealed during block paradigm (20-s) activations. In Broca's area, block paradigms yielded a boxcar temporal activation profile (in all tasks) that resembled response profiles observed in motor cortex (with orofacial movements). In contrast, activations in Wernicke's area responded with a more dynamic profile (including early and late peaks) which varied with paradigm performance. Wernicke's area profiles were very similar to response profiles observed in sensory and visual cortex. The differing temporal patterns may therefore reflect unique processing performed by receptive (Wernicke's) and productive (Broca's) language centers. This study is consistent with task-specific semantic and phonologic regions within Broca's and Wernicke's areas and also is the first report of response profile differences dependent on cortical region and language task.  相似文献   

3.
Natural consonant-vowel syllables are reliably classified by most listeners as voiced or voiceless. However, our previous research [Liederman, J., Frye, R., Fisher, J.M., Greenwood, K., Alexander, R., 2005. A temporally dynamic context effect that disrupts voice onset time discrimination of rapidly successive stimuli. Psychon Bull Rev. 12, 380-386] suggests that among synthetic stimuli varying systematically in voice onset time (VOT), syllables that are classified reliably as voiceless are nonetheless perceived differently within and between listeners. This perceptual ambiguity was measured by variation in the accuracy of matching two identical stimuli presented in rapid succession. In the current experiment, we used magnetoencephalography (MEG) to examine the differential contribution of objective (i.e., VOT) and subjective (i.e., perceptual ambiguity) acoustic features on speech processing. Distributed source models estimated cortical activation within two regions of interest in the superior temporal gyrus (STG) and one in the inferior frontal gyrus. These regions were differentially modulated by VOT and perceptual ambiguity. Ambiguity strongly influenced lateralization of activation; however, the influence on lateralization was different in the anterior and middle/posterior portions of the STG. The influence of ambiguity on the relative amplitude of activity in the right and left anterior STG activity depended on VOT, whereas that of middle/posterior portions of the STG did not. These data support the idea that early cortical responses are bilaterally distributed whereas late processes are lateralized to the dominant hemisphere and support a "how/what" dual-stream auditory model. This study helps to clarify the role of the anterior STG, especially in the right hemisphere, in syllable perception. Moreover, our results demonstrate that both objective phonological and subjective perceptual characteristics of syllables independently modulate spatiotemporal patterns of cortical activation.  相似文献   

4.
Frühholz S  Grandjean D 《NeuroImage》2012,62(3):1658-1666
Vocal expressions commonly elicit activity in superior temporal and inferior frontal cortices, indicating a distributed network to decode vocally expressed emotions. We examined the involvement of this fronto-temporal network for the decoding of angry voices during attention towards (explicit attention) or away from emotional cues in voices (implicit attention) based on a reanalysis of previous data (Frühholz, S., Ceravolo, L., Grandjean, D., 2012. Cerebral Cortex 22, 1107-1117). The general network revealed high interconnectivity of bilateral inferior frontal gyrus (IFG) to different bilateral voice-sensitive regions in mid and posterior superior temporal gyri. Right superior temporal gyrus (STG) regions showed connectivity to the left primary auditory cortex and secondary auditory cortex (AC) as well as to high-level auditory regions. This general network revealed differences in connectivity depending on the attentional focus. Explicit attention to angry voices revealed a specific right-left STG network connecting higher-level AC. During attention to a nonemotional vocal feature we also found a left-right STG network implicitly elicited by angry voices that also included low-level left AC. Furthermore, only during this implicit processing there was widespread interconnectivity between bilateral IFG and bilateral STG. This indicates that while implicit attention to angry voices recruits extended bilateral STG and IFG networks for the sensory and evaluative decoding of voices, explicit attention to angry voices solely involves a network of bilateral STG regions probably for the integrative recognition of emotional cues from voices.  相似文献   

5.
Moont R  Crispel Y  Lev R  Pud D  Yarnitsky D 《Pain》2011,152(7):1469-1477
For most healthy subjects, both subjective pain ratings and pain-evoked potentials are attenuated under conditioned pain modulation (CPM; formerly termed diffuse noxious inhibitory controls, or DNIC). Although essentially spinal-bulbar, this inhibition is under cortical control. This is the first study to observe temporal as well as spatial changes in cortical activations under CPM. Specifically, we aimed to investigate the interplay of areas involved in the perception and processing of pain and those involved in controlling descending inhibition. We examined brief consecutive poststimulus time windows of 50 ms using a method of source-localization from pain evoked potentials, sLORETA. This enabled determination of dynamic changes in localized cortical generators evoked by phasic noxious heat stimuli to the left volar forearm in healthy young males, with and without conditioning hot-water pain to the right hand. We found a CPM effect characterized by an initial increased activation in the orbitofrontal cortex (OFC) and amygdala at 250-300 ms poststimulus, which was correlated with the extent of psychophysical pain reduction. This was followed by reduced activations in the primary and secondary somatosensory cortices, supplementary motor area, posterior insula, and anterior cingulate cortex from 400 ms poststimulus. Our findings show that the prefrontal pain-controlling areas of OFC and amygdala increase their activity in parallel with subjective pain reduction under CPM, and that this increased activity occurs prior to reductions in activations of the pain sensory areas. In conclusion, achieving pain inhibition by the CPM process seems to be under control of the OFC and the amygdala.  相似文献   

6.
Friederici AD  Kotz SA 《NeuroImage》2003,20(Z1):S8-17
Language comprehension can be subdivided into three processing steps: initial structure building, semantic integration, and late syntactic integration. The two syntactic processing phases are correlated with two distinct components in the event-related brain potential, namely an early left anterior negativity (ELAN) and a late centroparietal positivity (P600). Moreover, ERP findings from healthy adults suggest that early structure-building processes as reflected by the ELAN are independent of semantic processes. fMRI results have revealed that semantic and syntactic processes are supported by separable temporofrontal networks, with the syntactic processes involving the left superior temporal gyrus (STG), the left frontal operculum, and the basal ganglia (BG) in particular. MEG data from healthy adults have indicated that the left anterior temporal region and the left inferior frontal region subserve the early structure building processes. ERP data from patients with lesions in the left anterior temporal region and from patients with lesions in the left inferior frontal gyrus support this view, as these patients do not demonstrate an ELAN, although they do demonstrate a P600. Further results from patients with BG dysfunction suggest that parts of this subcortical structure are involved in late syntactic integrational processes. The data from the different experiments lead to the notion of separable brain systems responsible for early and late syntactic processes, with the former being subserved by the inferior frontal gyrus and the anterior STG and the latter being supported by the BG and more posterior portions of the STG.  相似文献   

7.
Local landmark-based mapping of human auditory cortex   总被引:3,自引:0,他引:3  
Kang X  Bertrand O  Alho K  Yund EW  Herron TJ  Woods DL 《NeuroImage》2004,22(4):1657-1670
Mammalian sensory cortex is functionally partitioned into cortical fields that are specialized for different processing operations. In theory, averaging functional and anatomical images across subjects can reveal both the average anatomy and the mean functional organization of sensory regions. However, this averaging process must overcome at least two obstacles: (1) the relative locations and sizes of cortical sensory areas vary in different subjects so that across-subject averaging introduces spatial smearing; (2) the relative locations and sizes of cortical areas vary between hemispheres, making it difficult to compare activations between hemispheres or to combine activations across hemispheres. These difficulties are particularly acute for small cortical regions such as auditory cortex. In whole-brain averaging procedures, considerable intersubject variance in the location and orientation of auditory cortex is introduced by variance of the size and shape of structures outside auditory cortex. Here, we compared these global methods with local landmark-based methods (LLMs) that use warping based on local anatomical landmarks. In comparison to maps made with global methods, LLMs produced anatomical maps of auditory cortex with clearer gyral and sulcal structure, and produce functional maps with improved resolution. These results suggest that LLMs have significant advantages over global mapping procedures in studying the details of auditory cortex organization.  相似文献   

8.
Obleser J  Meyer L  Friederici AD 《NeuroImage》2011,56(4):2310-2320
Under real-life adverse listening conditions, the interdependence of the brain's analysis of language structure (syntax) and its analysis of the acoustic signal is unclear. In two fMRI experiments, we first tested the functional neural organization when listening to increasingly complex syntax in fMRI. We then tested parametric combinations of syntactic complexity (argument scrambling in three degrees) with speech signal degradation (noise-band vocoding in three different numbers of bands), to shed light on the mutual dependency of sound and syntax analysis along the neural processing pathways. The left anterior and the posterior superior temporal sulcus (STS) as well as the left inferior frontal cortex (IFG) were linearly more activated as syntactic complexity increased (Experiment 1). In Experiment 2, when syntactic complexity was combined with improving signal quality, this pattern was replicated. However, when syntactic complexity was additive to degrading signal quality, the syntactic complexity effect in the IFG shifted dorsally and medially, and the activation effect in the left posterior STS shifted from posterior toward more middle sections of the sulcus. A distribution analysis of supra- as well as subthreshold data was indicative of this pattern of shifts in the anterior and posterior STS and within the IFG. Results suggest a signal quality gradient within the fronto-temporal language network. More signal-bound processing areas, lower in the processing hierarchy, become relatively more recruited for the analysis of complex language input under more challenging acoustic conditions ("upstream delegation"). This finding provides evidence for dynamic resource assignments along the neural pathways in auditory language comprehension.  相似文献   

9.
The current study examined developmental changes in activation and effective connectivity among brain regions during a phonological processing task, using fMRI. Participants, ages 9-15, were scanned while performing rhyming judgments on pairs of visually presented words. The orthographic and phonological similarity between words in the pair was independently manipulated, so that rhyming judgment could not be based on orthographic similarity. Our results show a developmental increase in activation in the dorsal part of left inferior frontal gyrus (IFG), accompanied by a decrease in the dorsal part of left superior temporal gyrus (STG). The coupling of dorsal IFG with other selected brain regions involved in the phonological decision increased with age, while the coupling of STG decreased with age. These results suggest that during development there is a shift from reliance on sensory auditory representations to reliance on phonological segmentation and covert articulation for performing rhyming judgment on visually presented words. In addition, we found a developmental increase in activation in left posterior parietal cortex that was not accompanied by a change in its connectivity with the other regions. These results suggest that maturational changes within a cortical region are not necessarily accompanied by an increase in its interactions with other regions and its contribution to the task. Our results are consistent with the idea that there is reduced reliance on primary sensory processes as task-relevant processes mature and become more efficient during development.  相似文献   

10.
Neural correlates of the processing of musical syntax-like structures have been investigated via expectancy violation due to musically unrelated (i.e., unexpected) events in musical contexts. Previous studies reported the implication of inferior frontal cortex in musical structure processing. However - due to the strong musical manipulations - activations might be explained by sensory deviance detection or repetition priming. Our present study investigated neural correlates of musical structure processing with subtle musical violations in a musical priming paradigm. Instrumental and sung sequences ended on related and less-related musical targets. The material controlled sensory priming components, and differences in target processing required listeners' knowledge on musical structures. Participants were scanned with functional Magnetic Resonance Imaging (fMRI) while performing speeded phoneme and timbre identification judgments on the targets. Behavioral results acquired in the scanner replicated the facilitation effect of related over less-related targets. The blood oxygen level-dependent (BOLD) signal linked to target processing revealed activation of right inferior frontal areas (i.e., inferior frontal gyrus, frontal operculum, anterior insula) that was stronger for less-related than for related targets, and this was independent of the material carrying the musical structures. This outcome points to the implication of inferior frontal cortex in the processing of syntactic relations also for musical material and to its role in the processing and integration of sequential information over time. In addition to inferior frontal activation, increased activation was observed in orbital gyrus, temporal areas (anterior superior temporal gyrus, posterior superior temporal gyrus and sulcus, posterior middle temporal gyrus) and supramarginal gyrus.  相似文献   

11.
Kwan CL  Crawley AP  Mikulis DJ  Davis KD 《Pain》2000,85(3):359-374
The anterior cingulate cortex (ACC) and adjacent regions in the medial wall have been implicated in sensory, motor and cognitive processes, including pain. Our previous functional magnetic resonance imaging (fMRI) studies have demonstrated pain-related activation of the posterior portion of the ACC during transcutaneous electrical nerve stimulation (TENS) and variable patterns of cortical activation with innocuous and noxious thermal stimuli in individual subjects. The present study represents the companion paper to our recent study of pain- and thermal-related cortical activations with the aim to use fMRI to delineate the activations in the ACC and surrounding regions of the medial wall during application of innocuous and noxious thermal stimuli as well as during performance of a motor task in individual subjects. Ten normal subjects were imaged on a conventional 1.5 T GE 'echospeed' system. Functional images were obtained from sagittal sections through each hemisphere centered at approximately 3-5 and 7-9 mm from midline. Each subject was imaged during innocuous (cool, warm) and noxious thermal (cold, hot) stimulation of the thenar eminence, and execution of a motor (sequential finger-thumb opposition) task. Task-related activations were mostly confined to contralateral and medial ipsilateral images. Although the present results demonstrate intersubject variability in the task-related activations, some general modality-specific patterns were apparent: (i) innocuous thermal-related activations were located mainly in the anterior ACC; (ii) noxious thermal-related activations were primarily located in the anterior ACC, the ventral portion of the posterior ACC, and the supplementary motor area (SMA); (iii) motor-related activations were primarily located in the SMA and dorsal portion of the posterior ACC. These results indicate that specific spatial patterns of activation exist within the ACC and surrounding regions of the medial wall for innocuous and noxious thermal stimuli, and that noxious thermal- and motor-related activations appear to be segregated within the ACC. Therefore, we propose a segregation of the ACC into an anterior non-specific attention/arousal system and a posterior pain system.  相似文献   

12.
Schürmann M  Raij T  Fujiki N  Hari R 《NeuroImage》2002,16(2):434-440
The temporospatial pattern of brain activity during auditory imagery was studied using magnetoencephalography. Trained musicians were presented with visual notes and instructed to imagine the corresponding sounds. Brain activity specific to the auditory imagery task was observed, first as enhanced activity of left and right occipital areas (average onset 120-150 ms after the onset of the visual stimulus) and then spreading to the midline parietal cortex (precuneus) and to such extraoccipital areas that were not activated during the visual control condition (e.g., the left temporal auditory association cortex and the left and right premotor cortices). The latest activations, with average onset latencies of 270-400 ms clearly separate from the earliest ones, occurred in the left sensorimotor cortex and the right inferotemporal visual association cortex. These data imply a complex temporospatial activation sequence of multiple cortical areas when musicians recall firmly established audiovisual associations.  相似文献   

13.
Lateralization of scalp-recorded event-related potentials (ERPs) and functional MRI (fMRI) activation was investigated using a verb generation task in 10 healthy right-handed adults. ERPs showed an early transient positivity in the left inferior temporal region (500-1250 ms) following auditory presentation of the stimulus noun. A sustained slow cortical negativity of later onset (1250-3000 ms) was then recorded, most pronounced over left inferior frontal regions. fMRI data were in agreement with both ERP effects, showing left lateralized activation in inferior and superior temporal as well as inferior frontal cortices. Lateralized ERP effects occurred during the verb generation task but not during passive word listening or during word- and nonword repetition. Thus, ERPs and fMRI provided convergent evidence regarding language lateralization, with ERPs revealing the temporal sequence of posterior to anterior cortical activation during semantic retrieval.  相似文献   

14.
Low frequency vibrations can be detected by both tactile and auditory systems. The aim of the present study is to find out, by means of whole-scalp magnetoencephalography (MEG), whether vibrotactile stimulation alone would activate human auditory cortical areas. We recorded MEG signals from eleven normal-hearing adults to 200-Hz vibrations (on average 19.5 dB above the individual tactile detection threshold), delivered to right-hand fingertips. All subjects reported a perception of a sound when they touched the vibrating tube, and they reported to perceive nothing when not touching the tube. The vibrotactile stimuli elicited clear and reproducible vibrotactile evoked fields (VTEFs) in ten subjects, whereas no MEG responses were observed when the tube was not touched. First responses to the vibrotactile stimuli, peaking around 60 ms, originated in the primary somatosensory cortex in all subjects. They were followed by activations in the auditory cortices, either bilaterally (N = 5) or unilaterally (N = 5), and by activations in the secondary somatosensory (SII) cortex, either contralaterally (N = 3) or ipsilaterally (N = 4). Both the SII and auditory activations consisted of transient responses at 100-200 ms. Additional auditory sustained activation was identified in nine subjects, either bilaterally (N = 2) or ipsilaterally (N = 7), at 200-700 ms. Our results suggest convergence of vibrotactile input to the auditory cortex in normal-hearing adults, in agreement with results previously obtained in a congenitally deaf adult.  相似文献   

15.
目的:探讨首发未服药精神分裂症患者进行威斯康星卡片分类测验(WCST)操作时的脑功能状态特点。方法:20名健康受试者(对照组)和20名首发未服药精神分裂症患者(患者组)操作WCST和颜色卡片分类测验(CCST)时进行脑功能磁共振成像(fMRI),比较2组激活脑区的激活体积。结果:对照组WCST和CCST功能图像相减获得的脑活动功能图像显示,激活主要分布在双侧前额叶,尤其是背外侧部以及顶叶后下部皮质和前扣带回。患者组WCST操作成绩较对照组差,有显著性差异(P<0.01)。与对照组相比,患者组的左侧前额叶背外侧部、左前扣带回皮质激活低下,左顶叶后下部皮质激活增加(P<0.01或0.05)。结论:双侧前额叶,尤其是背外侧部,以及顶叶后下部皮质和前扣带回皮质参与WCST操作的高级认知过程。精神分裂症患者在未治疗前就存在执行功能缺陷,其前额叶和扣带回功能低下,可能与患者执行功能障碍相关;后顶叶皮质功能亢进,可能对前额叶功能低下有补偿作用。  相似文献   

16.
Adults and children processing music: an fMRI study   总被引:5,自引:0,他引:5  
Koelsch S  Fritz T  Schulze K  Alsop D  Schlaug G 《NeuroImage》2005,25(4):1068-1076
The present study investigates the functional neuroanatomy of music perception with functional magnetic resonance imaging (fMRI). Three different subject groups were investigated to examine developmental aspects and effects of musical training: 10-year-old children with varying degrees of musical training, adults without formal musical training (nonmusicians), and adult musicians. Subjects made judgements on sequences that ended on chords that were music-syntactically either regular or irregular. In adults, irregular chords activated the inferior frontal gyrus, orbital frontolateral cortex, the anterior insula, ventrolateral premotor cortex, anterior and posterior areas of the superior temporal gyrus, the superior temporal sulcus, and the supramarginal gyrus. These structures presumably form different networks mediating cognitive aspects of music processing (such as processing of musical syntax and musical meaning, as well as auditory working memory), and possibly emotional aspects of music processing. In the right hemisphere, the activation pattern of children was similar to that of adults. In the left hemisphere, adults showed larger activations than children in prefrontal areas, in the supramarginal gyrus, and in temporal areas. In both adults and children, musical training was correlated with stronger activations in the frontal operculum and the anterior portion of the superior temporal gyrus.  相似文献   

17.
Kondo HM  Kashino M 《NeuroImage》2007,36(1):123-130
Prolonged listening to a repeated word without a pause produces a series of illusory transitions of the physically unchanging word, which is called verbal transformation. Verbal transformations provide a rare opportunity to examine how auditory percepts are formed in the brain. We found that verbal forms are affected by phonetic reorganization of a word, rather than by auditory adaptation and lexical distortion of it. We identified brain activity leading to individual differences between perceptual transitions and tone detection. An event-related fMRI analysis revealed that the left inferior frontal cortex (IFC), anterior cingulate cortex (ACC), and the left prefrontal cortex were activated when perceptual transitions from one verbal form to another occurred, but not when tone pips were detected. The number of perceptual transitions showed positive and negative correlations with signal intensity in the left IFC and the left ACC, respectively. The results suggest that active generation of verbal forms is linked with articulatory gestures for speech production and that the frequency of perceptual transitions is determined by a balance of the activations between the two brain regions. Structural equation modeling demonstrated that individual differences in the number of perceptual transitions rely on negative feedback from the ACC to the IFC via the posterior insula. These findings suggest that distributed frontal areas are involved in auditory awareness underlying verbal transformations.  相似文献   

18.
Attention is, in part, a mechanism for identifying features of the sensory environment of potential relevance to behavior. The network of brain areas sensitive to the behavioral relevance of multimodal sensory events has not been fully characterized. We used event-related fMRI to identify brain regions responsive to changes in both visual and auditory stimuli when those changes were either behaviorally relevant or behaviorally irrelevant. A widespread network of "context-dependent" activations responded to both task-irrelevant and task-relevant events but responded more strongly to task-relevant events. The most extensive activations in this network were located in right and left temporoparietal junction (TPJ), with smaller activations in left precuneus, left anterior insula, left anterior cingulate cortex, and right thalamus. Another network of "context-independent" activations responded similarly to all events, regardless of task relevance. This network featured a large activation encompassing left supplementary and cingulate motor areas (SMA/CMA) as well as right IFG, right/left precuneus, and right anterior insula, with smaller activations in right/left inferior temporal gyrus and left posterior cingulate cortex. Distinct context-dependent and context-independent subregions of activation were also found within the left and right TPJ, left anterior insula, and left SMA/CMA. In the right TPJ, a subregion in the supramarginal gyrus showed sensitivity to the behavioral context (i.e., relevance) of stimulus changes, while two subregions in the superior temporal gyrus did not. The results indicate a role for the TPJ in detecting behaviorally relevant events in the sensory environment. The TPJ may serve to identify salient events in the sensory environment both within and independent of the current behavioral context.  相似文献   

19.
Complex Regional Pain Syndromes (CRPS) are characterized by a triad of sensory, motor and autonomic dysfunctions of still unknown origin. Pain and mechanical hyperalgesia are hallmarks of CRPS. There are several lines of evidence that central nervous system (CNS) changes are crucial for the development and maintenance of mechanical hyperalgesia. However, little is known about the cortical structures associated with the processing of hyperalgesia in pain patients. This study describes the use of functional magnetic resonance imaging (fMRI) to delineate brain activations during pin-prick hyperalgesia in CRPS. Twelve patients, in whom previous quantitative sensory testing revealed the presence of hyperalgesia to punctuate mechanical stimuli (i.e. pin-prick hyperalgesia), were included in the study. Pin-prick-hyperalgesia was elicited by von-Frey filaments at the affected limb. For control, the identical stimulation was performed on the unaffected limb. fMRI was used to explore the corresponding cortical activations. Mechanical stimulation at the unaffected limb was non-painful and mainly led to an activation of the contralateral primary somatosensory cortex (S1), insula and bilateral secondary somatosensory cortices (S2). The stimulation of the affected limb was painful (mechanical hyperalgesia) and led to a significantly increased activation of the S1 cortex (contralateral), S2 (bilateral), insula (bilateral), associative-somatosensory cortices (contralateral), frontal cortices and parts of the anterior cingulate cortex. The results of our study indicate a complex cortical network activated during pin-prick hyperalgesia in CRPS. The underlying neuronal matrix comprises areas not only involved in nociceptive, but also in cognitive and motor processing.  相似文献   

20.
OBJECTIVE: A case study was conducted to examine a patient with chronic neuropathic pain of the right foot following peripheral nerve injury and characterize associated sensory abnormalities. METHODS: Multimodal psychophysical examination of the patient's affected and nonaffected foot included thermal sensibility, dynamic touch, and directional sensibility. In addition, we used functional magnetic resonance imaging to study cortical representation of brush-evoked allodynia. RESULTS: Detailed psychophysical examination revealed substantial deficits in warm, cool, and tactile perception on the injured foot. These findings indicated severe dysfunction of perceptual processes mediated by A beta, A delta, and C fibers. Despite reduced tactile perception, light touch evoked a deep burning pain in the foot. Functional magnetic resonance imaging during brushing of the patient's injured foot showed that tactile allodynia led to activation of several cortical regions including secondary somatosensory cortex, anterior and posterior insular cortex, and anterior cingulate cortex. Brushing of the patient's nonaffected foot led to fewer activated regions. DISCUSSION: The profound sensory disturbances suggest a possible deafferentation type of tactile allodynia mediated by changes within the central nervous system, such as a disruption of normal tactile or thermal inhibition of nociception. The functional magnetic resonance imaging data suggest that tactile allodynia is represented in similar brain regions as experimental pain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号