首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 839 毫秒
1.
The thermoregulatory responses of ten paraplegic (PA; T3/4-L4) and nine able-bodied (AB) upper body trained athletes were examined at rest and during prolonged arm-cranking exercise and passive recovery. Exercise was performed for 90 min at 80% peak heart rate, and at 21.5 (1.7)°C and 47.0 (7.8)% relative humidity on a Monark cycle ergometer (Ergomedic 814E) adapted for arm exercise. Mean peak oxygen uptake values for the PA and AB athlete groups were 2.12 (0.41) min−1 and 3.19 (0.38) l · min−1, respectively (P<0.05). At rest, there was no difference in aural temperature between groups [36.2 (0.4)°C for both groups]. However, upper body skin temperatures for the PA athletes were approximately 1.0 °C warmer than for the AB athletes, whereas lower body skin temperatures were cooler than those for the AB athletes (1.3 °C and 2.7 °C for the thigh and calf, respectively). Upper and lower body skin temperatures for the AB athletes were similar. During exercise, blood lactate peaked after 15 min of exercise for both groups [3.33 (1.26) mmol · l−1 and 4.30 (1.03) mmol · l−1 for the PA and AB athletes, respectively, P<0.05] and decreased throughout the remainder of the exercise period. Aural temperature increased by 0.7 (0.5)°C and 0.6 (0.4)°C for the AB and PA athletes, respectively. Calf skin temperature for the PA athletes increased during exercise by 1.4 (2.8)°C (P<0.05), whereas a decrease of 0.8 (2.0)°C (P<0.05) was observed for the AB athletes. During the first 20 min of recovery from exercise, the calf skin temperature of the AB athletes decreased further [−2.6 (1.3)°C; P<0.05]. Weight losses and changes in plasma volume were similar for both groups [0.7 (0.5) kg and 0.7 (0.4) kg; 5.4 (4.9)% and 9.7 (6.2)% for the PA and AB athletes, respectively]. In conclusion, the results of this study suggest that the PA athletes exhibit different thermoregulatory responses at rest and during exercise and passive recovery to those of upper body trained AB athletes. Despite this, during 90 min of arm-crank exercise in a cool environment, the PA athletes appeared to be at no greater thermal risk than the AB athletes. Accepted: 7 May 1997  相似文献   

2.
The prediction of the mean skin temperature used for the Required Sweat Rate index was criticised for not being valid in conditions with high radiation and high humidity. Based on a large database provided by 9 institutes, 1999 data points obtained using steady-state conditions, from 1399 experiments and involving 377 male subjects, were used for the development of a new prediction model. The observed mean skin temperatures ranged from 30.7 °C to 38.6 °C. Experimental conditions included air temperatures (T a) between 20 and 55 °C, mean radiant temperatures (T r) up to 145 °C, partial vapour pressures (P a) from 0.2 to 5.3 kPa, air velocities (v a) between 0.1 and 2 m/s, and metabolic rates (M) from 102 to 620 W. Rectal temperature (T re) was included in the models to increase the accuracy of prediction. Separate models were derived for nude (clothing insulation, Icl, ≤0.2 clo, where 1 clo=0.155 m2 · °C · W−1, which is equivalent to the thermal insulation of clothing necessary to maintain a resting subject in comfort in a normally ventilated room, air movement=10 cm/s, at a temperature of 21 °C and a humidity of less than 50%) and clothed (0.6 ≤ Icl ≤ 1.0 clo) subjects using a multiple linear regression technique with re-sampling (non-parametric bootstrap). The following expressions were obtained for nude and clothed subjects, respectively: T sk=7.19 + 0.064T a + 0.061T r + 0.198P a− 0.348v a + 0.616T re and T sk=12.17 + 0.020T a + 0.044T r + 0.194P a − 0.253v a + 0.0029M + 0.513T re. For the nude and clothed subjects, 83.3% and 81.8%, respectively, of the predicted skin temperatures were within the range of ±1 °C of the observed skin temperatures. It is concluded that the proposed models for the prediction of the mean skin temperature are valid for a wide range of warm and hot ambient conditions in steady-state conditions, including those of high radiation and high humidity. Accepted: 7 February 2000  相似文献   

3.
The effects of the thermal state of the body (slightly cool and neutral) and moderate wind speeds on face temperature, blood pressure, respiratory function and pain sensation during cold exposure were studied on eight healthy male subjects. They were dressed in cold-protective clothing and preconditioned at +20 °C (TN) and −5 °C (CO) for 60 min, then exposed to −10 °C and 0 m · s−1 (NoW), 1 (W1) and 5 (W5) m · s−1 wind for 30 min. Thus, each individual was exposed six times. The exposure to wind entailed a combination of strong cooling of the bare face and mild body cooling. The forehead, cheek and nose temperatures decreased during cold exposure, and the decrease was greater at higher air velocities (P < 0.0001). All subjects reported pain sensations at 5 m · s−1. At the end of exposure only the nose temperature was significantly lower in CO than in TN subjects; it was about 2 °C and reached 0 °C in two experiments. The systolic and diastolic blood pressure (SBP and DBP, respectively) increased significantly by 7.7 and 5.9 mmHg, respectively, during preconditioning at −5 °C, but did not change at +20 °C. SBP and DBP increased during exposure to −10 °C in TN by approximately 9 mmHg. However, the total average increase of blood pressure (1–90 min) was similar in TN and CO (SBP 15 mmHg and DBP 13 mmHg). SBP and DBP increased more during exposure to 5 m · s−1 at −10 °C than NoW. Blood pressure responses as observed in this study (SBP and DBP up to 51 and 45 mmHg, respectively) are potential health risks for hypertensive individuals and angina patients. Respiratory functions (FVC, FEV1) were reduced by about 3% by the cold (−5 and −10 °C) compared to pre-experiment values. Furthermore, the Wind Chill Index seems to underestimate the cooling power of 5 m · s−1 at −10 °C of bare skin (e.g. face). Therefore it needs to be revised and we suggest that it is expanded to include risk levels for pain sensation. Accepted: 29 May 2000  相似文献   

4.
Sweat rate may affect sweat lactate concentration. The current study examined potential gender differences in sweat lactate concentrations because of varying sweat rates. Males (n=6) and females (n=6) of similar age, percentage body fat, and maximal oxygen consumption (VO2max) completed constant load (CON) cycling (30 min – approximately 40% VO2max) and interval cycling (INT) (15 1-min intervals each separated by 1 min of rest) trials at 32 (1) °C wet bulb globe temperature (WBGT). Trials were preceded by 15 min of warm-up (0.5 kp, 60 rpms) and followed by 15 min of rest. Blood and sweat samples were collected at 15, 25, 35, 45, and 60 min during each trial. Total body water loss was used to calculate sweat rate. Blood lactate concentrations (CON ≅ 2 mmol · l−1, INT ≅ 6 mmol · l−1) and sweat lactate concentrations (CON and INT ≅ 12 mmol · l−1) were not significantly different (P > 0.05) at any time between genders for CON or INT. Overall sweat rates (ml · h−1) were not significantly different (P > 0.05) between trials but were significantly greater (P 0.05) for males than for females for CON [779.7 (292.6) versus 450.3 (84.6) ml · h−1] and INT [798.0 (268.3) versus 503.0 (41.4) ml · h−1]. However, correcting for surface area diminished the difference [CON: 390.7 (134.4) versus 277.7 (44.4) ml · h−1, INT: 401.5 (124.1) versus 310.6 (23.4) ml · h−1 (P 0.07)]. Estimated total lactate secretion was significantly greater (P 0.05) in males for CON and INT. Results suggest that sweat rate differences do not affect sweat lactate concentrations between genders. Accepted: 7 February 2000  相似文献   

5.
Whole-body cooling prior to activity has the potential to reduce thermal strain and fatigue during subsequent endurance exercise. Intermittent activity is associated with greater increases in rectal temperature compared with continuous exercise. Thus, the effect of pre-cooling on thermoregulatory responses was examined during an intermittent test under “normal” environmental conditions. Six male university soccer players [mean (SD) age 27 (2) years; height 1.77 (0.3) m; mass 72.2 (1.5) kg; maximal oxygen consumption 58.9 (3.5) ml · kg−1 · min−1] completed a 90-minute soccer-specific intermittent exercise protocol on a non-motorised treadmill. The run was completed with and without pre-cooling under normal laboratory conditions (20°C) and without pre-cooling in a heated laboratory (26°C). The pre-cooling strategy involved exposure to a cold shower (26°C) for 60 min. The pre-cooling manipulation lowered rectal temperature prior to exercise [−0.6 (0.6)°C, range −1.5°C; P < 0.05]. The rectal temperature response to exercise was significantly lower following pre-cooling than in the heated condition [pre-cooled 38.1 (0.6)°C, heated 38.6 (0.3)°C]. The increase in rectal temperature during the second half of the protocol following pre-cooling was significantly greater than the increase observed under normal or heated conditions (P < 0.05). No significant differences were observed between the three conditions for oxygen consumption, heart rate, minute ventilation, rating of perceived exertion and plasma lactate, glucose or free fatty acid concentrations. Based on the current investigation, it can be concluded that there is no evidence for the beneficial effects of pre-cooling on the physiological responses to soccer-specific intermittent exercise under normal environmental conditions. Accepted: 30 June 1999  相似文献   

6.
Passive temperature lability of nine circumpubertal children [11.4 (1.2) years] was compared to that of nine young adult males [26.6 (5.2) years]. Each subject completed a 20-min period of exercise, followed immediately by post-exercise immersion in water at 28°C. The aim of the exercise protocol was to induce a steady rate of sweating (E SW) while the postexercise immersion period induced cooling of the core region (tympanic temperature:T ty). TheT ty values (relative to rest, ΔT ty) at which sweating abated and at which shivering commenced were defined as the thresholds for the cessation of sweating and onset of shivering, respectively. While there was no significant difference between the ΔT ty sweating thresholds, the onset of shivering, as reflected in the oxygen uptake response, occurred at significantly higher (P < 0.05) ΔT ty values in the children [mean (SD): −0.07 (0.07)°C] than in the adults [−0.22 (0.10)°C]. The slope of theE SWT ty relationship was found to be significantly lower in the children (z = −5.64;P < 0.05), while the slopes of the /ΔT ty relationship were not significantly different (z = −0.84;P > 0.05). Skin blood perfusion was measured at the forehead (SkBP), and the slope of the SkBP/ΔT ty relationship across the nullzone was significantly less in the children than in the adults (z = −2.13;P < 0.05) with the greatest reduction in perfusion occurring prior to the offset of sweating in the children. The subjective ratings of thermal comfort indicated that the children were more sensitive to changes in core temperature than the adults. It is concluded that maturation plays an important role in modifying thermoregulatory responses to deviations in core temperature. These results suggest that there may be differences in thermoregulatory “strategies” which are maturationally related.  相似文献   

7.
Skin surface cooling has been shown to improve orthostatic tolerance; however, the influence of severe heat stress on cardiovascular and cerebrovascular responses to skin cooling remains unknown. Nine healthy males, resting supine in a water-perfusion suit, were heated to +1.0 and +2.0°C elevation in body core temperature (T c). Blood flow velocity in the middle cerebral artery (transcranial Doppler ultrasound), mean arterial pressure (MAP; photoplethysmography), stroke volume (SV; Modelflow), total peripheral resistance (TPR; Modelflow), heart rate (HR; ECG) and the partial pressure of end-tidal carbon dioxide (PETCO2) were measured continuously during 1-min baseline and 3-min lower body negative pressure (LBNP, −15 mm Hg) when heated without and again with skin surface cooling. Nine participants tolerated +1°C and six participants reached +2°C. Skin cooling elevated (P = 0.004) MAP ~4% during baseline and LBNP at +1°C T c. During LBNP, skin cooling increased SV (9%; P = 0.010) and TPR (0.9 mm Hg L−1 min, P = 0.013) and lowered HR (13 b min−1, P = 0.012) at +1°C T c and +2°C T c collectively. At +2°C T c, skin cooling elevated PETCO2 ~4.3 mm Hg (P = 0.011) and therefore reduced cerebral vascular resistance ~0.1 mm Hg cm−1 s at baseline and LBNP (P = 0.012). In conclusion, skin cooling under severe heating and mild orthostatic stress maintained cerebral blood flow more effectively than it did under moderate heating, in conjunction with elevated carbon dioxide pressure, SV and arterial resistance.  相似文献   

8.
Eight female games players (GP) and eight female endurance athletes (EA) ran intermittently at high-intensity and for prolonged periods in hot (30°C) and moderate (16°C) ambient temperatures. The subjects performed a two-part (A, B) test based on repeated 20-m shuttle runs. Part A comprised 60 m of walking, a maximal 15-m sprint, 60 m of cruising (90% maximal oxygen uptake, O2max) and 60 m of jogging (45% O2max) repeated for 75 min with a 3-min rest every 15 min. Part B involved an exercise and rest pattern of 60-s running at 100% O2max and 60-s rest which was continued until fatigue. Although the GP and EA did not respond differently in terms of distances completed, performance was 25 (SEM 4)% less (main effect trial, P < 0.01) in the hot (HT) compared with the moderate trial (MT). Sprints of 15 m took longer to complete in the heat (main effect, trial, P < 0.01), and sprint performance declined during HT but not MT (interaction, trial × time, P < 0.01). A very high correlation was found between the rate of rise in rectal temperature in HT and the distance completed [GP, r =−0.94, P < 0.01; EA (n = 7), r = −0.93, P < 0.01]. Blood lactate [La ]b and plasma ammonia [NH3]p1 concentrations were higher for GP than EA, but were similar in HT and MT [La ]b, HT: GP vs EA, 8.0 (SEM 0.9) vs 4.9 (SEM 1.1) mmol · l−1; MT: GP vs EA, 8.0 (SEM 1.3) vs 4.4 (SEM 1.2) mmol · l−1; interaction, group × time, P < 0.01; [NH3]p1, HT: GP vs EA, 70.1 (SEM 12.7) vs 43.2 (SEM 6.1) mmol · l−1; MT: GP vs EA, 76.8 (SEM 8.8) vs 32.5 (SEM 3.8) μmol · l−1; interaction, group × time, P < 0.01. Ad libitum water consumption was higher in HT [HT: GP vs EA, 18.9 (SEM 2.9) vs 13.5 (SEM 1.7) ml · kg−1 · h−1; MT: GP vs EA, 12.7 (SEM 3.7) vs 8.5 (SEM 1.5) ml · kg−1 · h−1; main effect, group, n.s.; main effect, trial, P < 0.01]. These results would suggest that elevated body temperature is probably the key factor limiting performance of prolonged, intermittent, high-intensity running when the ambient temperature is high, but not because of its effect on the metabolic responses to exercise. Accepted: 19 July 1999  相似文献   

9.
Red blood cells (RBC) from an Indian elephant (Elephas maximus) were studied by light microscopy (LM), scanning electron microscopy (SEM) and a new nuclear magnetic resonance (NMR) ‘imaging’ method based on the translational diffusion of water, NMR q-space analysis. Also, the transmembrane diffusional permeability, P d of water in RBC was measured by using a Mn2+-doping NMR technique, taking human RBC as a reference. The main diameter of the elephant RBC was measured as 9.3 ± 0.7 μm by LM, 9.3 ± 0.7 μm by ‘shrinkage-corrected’ SEM, and 9.3 ± 0.4 μm by q-space anlaysis. The value is ∼1.4 μm larger than that for the human RBC. The values of P d were, in the case of elephant RBC, 3.2 × 10−3 cm/s at 25 °C, 3.9 × 10−3 cm/s at 30 °C, 5.2 × 10−3 cm/s at 37 °C and 6.5 × 10−3 cm/s at 42 °C; all values were significantly lower than the corresponding values of P d for human RBC, namely 4.3 × 10−3 cm/s at 25 °C, 5.2 × 10−3 cm/s at 30 °C, 6.1 × 10−3 cm/s at 37 °C, 7.8 × 10−3 cm/s at 42°C. The maximal inhibition of P d (56%) was reached in 30 min at 37 °C with 2 mm p-chloromercuribenzene sulphonate (PCMBS) for both species of RBC. The basal permeability to water at 37 °C was estimated to be 2.3 × 10−3 cm/s for elephant and 2.6 × 10−3 cm/s for human RBC. The values of the activation energy for water permeability (E a,d ) was significantly higher for elephant RBC (31.9 kJ/mol) than for human RBC (25.9 kJ/mol). This indicated that features other than the number of transporters per cell are likely to be important in defining the differences in water permeability in the RBC from the two species.  相似文献   

10.
The effect of environmental temperature changes on hematological and biochemical parameters of Huso huso juveniles was studied. Six-month-old juveniles with mean body weight of 69.2 ± 4.1 g were subjected to different temperatures (9–14°C, 15–20°C, and 21–26°C, respectively). The hematological parameters, ion Ca2+, glucose, and the cortisol concentrations were assessed after a period of 21 days rearing at these temperatures. The results show that hematocrit, Ca2+, and eosinophil were affected by different temperatures. Increasing temperature led to a significant increase (P < 0.05) in the hematocrit, Ca2+, and eosinophil, but white blood cell count, lymphocyte, cortisol, and glucose concentrations were decreased slightly (P > 0.05). The rest of the parameters showed no significant effect with increase in environmental temperature (P > 0.05). These data show significant effect of temperature on the blood parameters of great sturgeon.  相似文献   

11.
Thermoregulatory responses of nine healthy elderly [seven men and two women; mean age (SD) 73.9 (4.8) years] were compared to those of nine young adult men [26.6 (5.2) years]. They exercised on a cycle ergometer for 20 min at an intensity inducing a heart rate equivalent to 65% of their predicted maximum, and were thereafter immersed in 28°C water. The exercise was conducted to elevate tympanic temperature (T ty) and initiate a steady rate of sweating. The post-exercise immersion period induced gradual cooling ofT ty, and changes inT ty relative to resting levels (ΔT ty) at which sweating abated and shivering commenced were defined as the ΔT ty thresholds for the cessation of sweating (T sw) and onset of shivering (T sh), respectively. In addition toT ty, oxygen uptake ( ; 1 · min−1), sweating rate (g · m−2 · min−1), and forehead skin blood perfusion were also measured during the trials. The mean (SD)T sw occurred at a significantly (P <0.005) higher ΔT ty [0.48 (0.18)°C] in the elderly than in the young adults [0.21(0.06)°C], while the Tsh occurred at significantly (P < 0.005) lower ΔT ty in the elderly [ −0.64 (0.34)°C] than in young adults [−0.22 (0.10)°C]. Decreases in ΔT ty below the shivering threshold were met with a significantly (P <0.01) reduced . The range of temperature lability between Ts, andT sh, defined as the null-zone, was significantly greater in the elderly [1.12 (0.39)°C] than in the young adults [0.43 (0.12)°C], and the slope of the vasoconstrictor response in the null-zone was significantly (P <0.001) lower in the elderly subjects. The present study demonstrates a greater passive core temperature lability in older individuals, since the effector responses of sweating and shivering were initiated at higher and lower levels ofT ty, respectively. The magnitudes of the effector responses beyond the thresholds were also significantly reduced, suggesting that the elderly may be more susceptible to hypo-/hyperthermia during periods of endogenous and/or exogenous thermal stress.  相似文献   

12.
This study examined whether a 5 mg dose of melatonin induced a lower rectal temperature (T re) response at rest in both a cool and hot environment while wearing normal military combat clothing, and then examined the influence of this response on tolerance to exercise in the heat while wearing protective clothing. Nine men performed four randomly ordered trials involving 2 h of rest at ambient temperatures of either 23 °C or 40 °C followed by exercise at an ambient temperature of 40 °C. The double-blind ingestion of placebo or melatonin occurred after 30 min of rest. The mean T re during rest at 23 °C had decreased significantly from 36.8 (SD 0.1) °C to 36.7 (SD 0.2) °C at 90 min following the ingestion of the drug, whereas values during the placebo trial did not change. The lower T re response during the melatonin trial remained during the first 50 min of exercise in the heat while wearing the protective clothing. Since the final mean T re at the end of exercise also was significantly reduced for the melatonin [39.0 (SD 0.4) °C] compared with the placebo [mean 39.1 (SD 0.3) °C] trial, tolerance times approximated 95 min in both conditions. During rest at 40 °C, melatonin did not affect the mean T re response which increased significantly during the last 90 min from 36.9 (SD 0.1) °C to 37.3 (SD 0.1) °C. This increase in T re during the rest period prior to donning the protective clothing decreased tolerance time approximately 30 min compared with the trials that had involved rest at 23 °C. Total heat storage summated over the rest and exercise periods was not different among the trials at 15 kJ · kg−1. It was concluded that the small decrease in T re following the ingestion of 5 mg of melatonin at rest in a cool environment had no influence on subsequent tolerance during uncompensable heat stress. Accepted: 26 June 2000  相似文献   

13.
Prediction equations of shivering metabolism are critical to the development of models of thermoregulation during cold exposure. Although the intensity of maximal shivering has not yet been predicted, a peak shivering metabolic rate (Shivpeak) of five times the resting metabolic rate has been reported. A group of 15 subjects (including 4 women) [mean age 24.7 (SD 6) years, mean body mass 72.1 (SD 12) kg, mean height 1.76 (SD 0.1) m, mean body fat 22.3 (SD 7)% and mean maximal oxygen uptake (O2max) 53.2 (SD 9) ml O2 · kg−1 · min−1] participated in the present study to measure and predict Shivpeak. The subjects were initially immersed in water at 8°C for up to 70 min. Water temperature was then gradually increased at 0.8 °C · min−1 to a value of 20 °C, which it was expected would increase shivering heat production based on the knowledge that peripheral cold receptors fire maximally at approximately this temperature. This, in combination with the relatively low core temperature at the time this water temperature was reached, was hypothesized would stimulate Shivpeak. Prior to warming the water from 8 to 20 °C, the oxygen consumption was 15.1 (SD 5.5) ml · kg−1 · min−1 at core temperatures of approximately 35 °C. After the water temperature had risen to 20 °C, the observed Shivpeak was 22.1 (SD 4.2) ml O2 · kg−1 · min−1 at core and mean skin temperatures of 35.2 (SD 0.9) and 22.1 (SD 2.2) °C, respectively. The Shivpeak corresponded to 4.9 (SD 0.8) times the resting metabolism and 41.7 (SD 5.1)% of O2max. The best fit equation predicting Shivpeak was Shivpeak (ml O2 · kg−1 · min−1)=30.5 + 0.348 ×O2max (ml O2 · kg−1 · min−1) − 0.909 × body mass index (kg · m−2) − 0.233 × age (years); (P=0.0001; r 2=0.872). Accepted: 7 September 2000  相似文献   

14.
We evaluated the hypothesis that females would show a greater postexercise hypotension and concurrently a greater increase in the onset threshold for sweating. Fourteen subjects (7 males and 7 females) of similar age, body composition, and fitness status participated in the study. Esophageal temperature was monitored as an index of core temperature while sweat rate was measured by using a ventilated capsule placed on the upper back. Subjects cycled at either 60% (moderate) or 80% (intense) of peak oxygen consumption followed by 20-min recovery. Subjects then donned a liquid-conditioned suit used to regulate mean skin temperature. The skin was then heated (∼4.3°C·h−1) until sweating occurred. Esophageal temperatures were similar to baseline before the start of whole body warming for all conditions. The postexercise threshold values for sweating following moderate and intense exercise were an esophageal temperature increase of 0.10 ± 0.02 and 0.22 ± 0.04°C, respectively for males, and 0.15 ± 0.03 and 0.34 ± 0.01°C, respectively for females. All were elevated above baseline resting (P < 0.05) and a significant sex-related difference was observed for sweating threshold values following intense exercise (P < 0.05). This was paralleled by a greater decrease in mean arterial pressure in females at the end of the 20-min recovery (P < 0.05). In conclusion, females demonstrate a greater postexercise onset threshold for sweating, which is paralleled by a greater postexercise hypotensive response following intense exercise.  相似文献   

15.
Summary The dynamics of sweating was investigated at rest in 8 men and 8 women. Electrical skin resistance (ESR), rectal temperature (Tre) and mean skin temperature were measured in subjects exposed to 40‡ C environmental temperature, 30% relative air humidity, and 1 m · s−1 air flow. Sweat rate was computed from continuous measurement of the whole body weight loss. It was found that increases in Tre, and mean body temperature were higher in women than in men by 0.16, 0.38 and 0.21‡ C, but only the difference in δ was significant (p<0.05). The dynamics of sweating in men and women respectively, was as follows: delay (td) 7.8 and 18.1 min (p<0.01), time constant (Τ) 7.5 and 8.8 min (N.S.), inertia time (ti) 15.3 and 26.9 min (p<0.002), and total body weight loss 153 and 111 g · m−2 · h−1 (p<0.001). Dynamic parameters of ESR did not differ significantly between men and women. Inertia times of ESR and sweat rate correlated in men (r=0.93, p<0.001), and in women (r=0.76, p<0.02). In men, δ Tre correlated with inertia time of sweat rate (r=0.81, p<0.01) as well as with the inertia time of ESR (r=0.83, p<0.001). No relation was found between δ Tre and the dynamics of sweating in women. It is concluded that the dynamics of sweating plays a decisive role in limiting δ Tre in men under dry heat exposure. The later onset of sweating in women does not influence the rectal temperature increase significantly. In women, δ Tre is probably limited by a complex interaction of sweating, skin blood flow increase, and metabolic rate decrease. This work was supported by the Centre National de la Recherche Scientifique and Polish Academy of Siences  相似文献   

16.
The influence of glucose ingestion on substrate utilization during prolonged exercise in children and adolescents is currently unknown. In the present study we determined the effect of intermittent exogenous glucose (GLUexo) ingestion on substrate utilization during prolonged exercise, in adolescent boys ages 13–17 years. Healthy untrained volunteers performed four 30-min exercise bouts on a cycle ergometer, separated by 5-min rest periods (≅60% maximum O2 consumption), on two occasions spaced 1–4 weeks apart. Two trials were performed, a control trial (CT), in which subjects ingested water intermittently during the exercise, and a glucose trial (GT), in which subjects ingested a 13C-enriched GLUexo drink (≅3 g glucose · kg body mass−1), also intermittently during the exercise. Total free fatty acids (FATtotal), glucose (GLUtotal) and carbohydrate (CHOtotal) oxidation was determined from indirect calorimetry, while GLUexo oxidation was calculated from the 13C/12C ratio in expired air after 5–10 min and 25–30 min of exercise in each bout. Heart rate and rating of perceived exertion (RPE) were determined at the same time intervals. The oxidation of CHOtotal was 169.1 (12.9) g · 120 min−1 and 203.1 (15.9) g · 120 min−1 (P < 0.01) and that of FATtotal was 31.0 (4.2) g · 120 min−1 and 17.1 (2.5) g · 120 min−1 (P < 0.01) in CT and GT, respectively. GLUexo oxidation in GT was 57.8 (4.3) g · 120 min−1, or 34.2 (2.2)% of that ingested. Endogenous glucose oxidation was 169.1 (12.9) g · 120 min−1 and 145.3 (11.9) g · 120 min−1 (P < 0.01) in CT and GT, respectively. Insulin and glucose concentrations were higher in GT than in CT by 226% and 37%, respectively (both P < 0.05). Free fatty acids and glycerol concentrations were lower in GT than in CT, by 27% and 79%, respectively (both P < 0.05). Heart rate was similar between trials, but RPE was lower in GT vs CT at both 115 and 135 min. Thus, under these experimental conditions, GLUexo intake spares endogenous carbohydrate and fat by 16% and 45%, respectively, contributes to approximately 25% of the total energy demand of exercise, and lowers the RPE. Accepted: 21 May 2000  相似文献   

17.
Future activities in space will require greater periods of time in extreme environments in which the body periphery will be vulnerable to chilling. Maintaining the hands and fingers in comfortable conditions enhances finger flexibility and dexterity, and thus effects better work performance. We have evaluated the efficacy of promoting heat transfer and release by the extremities by increasing the blood flow to the periphery from more distant parts of the body. The experimental garment paradigm developed by the investigators was used to manipulate the temperature of different body areas. Six subjects, two females and four males, were evaluated in a stage-1 baseline condition, with the inlet temperature of the circulating water in the liquid cooling/warming garment (LCWG) at 33 °C. At stage 2 the total LCWG water inlet temperature was cooled to 8 °C, and at stage 3 the inlet water temperature in specific segments of the LCWG was warmed (according to protocol) to 45 °C, while the inlet temperature in the rest of the LCWG was maintained at 8 °C. The following four body- area-warming conditions were studied in separate sessions: (1) head, (2) upper torso/arm, (3) upper torso/arm/head, and (4) legs/feet. Skin temperature, heat flux and blood perfusion of the fingers, and subjective perception of thermal sensations and overall physical comfort were assessed. Finger temperature (T fing) analyses showed a statistically significant condition × stage interaction. Post-hoc comparisons (T fing) indicated that at stage 3, the upper torso/arm/head warming condition was significantly different from the head, upper torso/arm and legs/feet conditions, showing an increase in T fing. There was a significant increase in blood perfusion in the fingers at stage 3 in all conditions. Subjective perception of hand warmth, and overall physical comfort level significantly increased in the stage 3 upper torso/arm/head condition. The findings indicate that physiological methods to enhance heat transfer by the blood to the periphery within protective clothing provide an additional tool for increasing total and local human comfort in extreme environments. Accepted: 20 December 1999  相似文献   

18.
The purpose of the present study was to investigate the effect of recruitment on the relationship between peak torque and physiological cross-sectional area (PCSA) in human muscle. A group of 11 healthy men participated in this study. Isokinetic knee extension torques at seven (0, 30, 60, 120, 180, 240, and 300° · s−1) velocities were determined. Magnetic resonance imaging (MRI) was performed to calculate PCSA of right quadriceps femoris (QF) muscle. Exercise-induced contrast shifts in spin-spin relaxation time (T2)-weighted MRI were taken at rest and immediately after repetitive knee-extension exercise and T2 of QF were calculated. The MRI pixels with T2 values more than 1 SD greater than the means at rest were considered to represent QF muscle that had contracted. The area of activated PCSA within the total in QF was expressed as percentage activated PCSA and used as an index of muscle recruitment. The PCSA correlated with peak torque at 0° · s−1 (r=0.615, P < 0.05); in contrast, activated PCSA correlated with peak torque at 120° · s−1 (r=0.603, P < 0.05) and 180° · s−1 (r=0.606, P < 0.05). Additionally, there was a significant difference in correlation coefficients between the activated PCSA-peak torque relationship and the PCSA-torque relationship (P < 0.05). These results suggested that muscle recruitment affects the PCSA-torque relationship. Accepted: 11 August 2000  相似文献   

19.
This study examined whether palm cooling (PC) could reduce heat strain, measured through changes in core, mean skin, mean body temperatures, and thermal sensation in resting hyperthermic subjects wearing chemical protective garments. Ten male subjects performed three exercise bouts (6.1 km h−1, 2–4% grade) in a hot, dry environment [mean (SD) air temperature 42.2 (0.5°C), relative humidity 36.5 (1%)] until core temperature reached 38.8°C. Subjects then simulated transport in an armoured vehicle by resting in a seated position for 50 min with either no cooling (NC), (PC at 10°C) or palm cooling with vacuum application around the hand (PCVAC, 10°C, 7.47 kPa negative pressure). Core, skin, and mean body temperatures with PC and PCVAC were lower (P < 0.05) than NC from 15 to 50 min of cooling, and thermal sensation was lower (P < 0.05) from 30 to 50 min, with no differences in any variables between PC and PCVAC. Maximal heat extraction averaged 42 (12 W), and core temperature was reduced by 0.38 (0.21°C) after 50 min of PC. Heat extraction with PC was modest compared to other cooling approaches in the literature.  相似文献   

20.
In the study reported here, we examined blood pressure and endocrine responses in cold conditions during salt load in young healthy subjects who had previously shown increased resting blood pressure during acutely increased sodium intake. Subjects (n=53) added 121 mmol sodium into their normal diet for 1 week. If their mean arterial pressure had increased by a minimum of 5 mmHg compared to the previous measure they were selected for subsequent experiments. The subjects (n=8) were given 121 mmol supplemental sodium · day−1 for 14 days. They were then put into a wind tunnel for 15 min (temperature −15 °C, wind speed 3.5 · ms−1). Their blood pressure increased (P < 0.05) during the cold exposure, independent of the sodium intake. Their mean (SEM) plasma noradrenaline increased from 3.58 (0.62) nmol · l−1 to 5.61 (0.79) nmol · l−1 (P < 0.05) when the subjects were given a normal diet, and from 2.45 (0.57) nmol · l−1 to 5.06 (0.56) nmol · l−1 (P < 0.05) when the subjects were given an elevated sodium diet. The starting concentrations and the endpoint concentrations were statistically similar. The plasma levels of the N-terminal fragment of pro-atrial natriuretic peptide decreased during the whole-body cold exposure: with the sodium load the change was from 256.6 (25.5) nmol · l−1 to 208.0 (25.3) nmol · l−1, and with the normal diet, from 205.8 (16.4) nmol · l−1 to 175.1 (16.1) nmol · l−1. The haematocrit and red blood cell count increased (P < 0.05) with normal and elevated sodium diet in cold conditions, but haemoglobin increased (P < 0.05) only with high salt in cold conditions. To conclude, acutely increased sodium intake does not change the blood pressure response or hormonal responses to exposure to acute cold stress in healthy subjects. Accepted: 28 September 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号