首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conventional chemotherapeutic approaches in cancer therapy such as surgery, chemotherapy, and radiotherapy have several disadvantages due to their nontargeted distributions in the whole body. On the other hand, nanoparticles (NPs) based therapies are remarkably progressing to solve several limitations of conventional drug delivery systems (DDSs) including nonspecific biodistribution and targeting, poor water solubility, weak bioavailability and biodegradability, low pharmacokinetic properties, and so forth. The enhanced permeability and retention effect escape from P-glycoprotein trap in cancer cells as a passive targeting mechanism, and active targeting strategies are also other most important advantages of NPs in cancer diagnosis and therapy. Folic acid (FA) is one of the biologic molecules which has been targeted overexpressed-folic acid receptor (FR) on the surface of cancer cells. Therefore, conjugation of FA to NPs most easily enhances the FR-mediated targeting delivery of therapeutic agents. Here, the recent works in FA which have been decorated NPs-based DDSs are discussed and cancer therapy potency of these NPs in clinical trials are presented.  相似文献   

2.
王俊  黄广建  刘瑜  陆伟跃 《药学学报》2022,(1):233-241+279
本文旨在为胃癌术前经内镜注射局部化疗研制一种具有良好稳定性、高药物含量和显著肿瘤细胞靶向性的叶酸修饰磷脂包被紫杉醇纳米晶(PTX NC@FA)。以“从小到大”法继以超声法制备PTX NC@FA,考察其颗粒形态、粒径分布、ζ-电位、药物含量、叶酸修饰磷脂(FA-DSPE-PEG2000)含量、晶型特征、稳定性、体外释放行为、对人胃癌细胞株SGC-7901的细胞毒性及在裸鼠SGC-7901皮下肿瘤模型两种不同肿瘤大小(瘤体积100 mm~3或300 mm~3)情况下单次瘤旁给药的缩瘤效果。动物实验经复旦大学药学院实验动物伦理委员会批准。结果表明, PTX NC@FA呈短棒状,平均粒径为175.3±2.5 nm (多分散指数0.17±0.02),ζ-电位为-2.5±0.2 mV, PTX含量为(28.23±0.74)%(w/w),FA-DSPE-PEG2000含量为(4.40±0.60)%(w/w),在磷酸盐缓冲液或含血清磷酸盐缓冲液中均能稳定至少4天,可在96 h内缓慢释放药物。PTX NC@FA对SGC-7901细胞的IC50显著低于无叶酸修饰...  相似文献   

3.
Transdermal drug delivery for local or systemic therapy provides a potential anticancer modality with a high patient compliance. However, the drug delivery efficiency across the skin is highly challenging due to the physiological barriers, which limit the desired therapeutic effects. In this study, we prepared liposome-in-hydrogels containing a tumor targeting photosensitizer IR780 (IR780/lipo/gels) for tumor photothermal therapy (PTT). The formulation effectively delivered IR780 to subcutaneous tumor and deep metastatic sites, while the hydrogels were applied on the skin overlying the tumor or on an area of distant normal skin. The photothermal antitumor activity of topically administered IR780/lipo/gels was evaluated following laser irradiation. We observed significant inhibition of the rate of the tumor growth without any toxicity associated with the topical administration of hydrogels. Collectively, the topical administration of IR780/lipo/gels represents a new noninvasive and safe strategy for targeted tumor PTT.  相似文献   

4.
目的 分离纯化乌贼墨纳米颗粒(squid ink nanoparticles,SINPs),开展材料学表征,考察其肿瘤光热治疗(photothermal therapy,PTT)作用。方法 通过搅拌、超声和离心纯化出SINPs,在近红外激光(Near Infra-Red,NIR)照射下考察其体外光热转化效果,采用CCK-8法测定细胞存活率,通过对小鼠瘤内注射给药的同时给予激光照射研究其体内抑瘤效果。结果 制备的SINPs粒径为(212 ± 1.4) nm,Zeta电位为(-14.5 ± 0.7) mV。测定其光热转化效率为35.5%,说明其可作为一种光热转化剂。800 μg/mL的SINPs在808 nm激光照射下小鼠乳腺癌细胞(4T1)的存活率为67.3%,表明SINPs联合PTT对4T1细胞有一定的细胞毒性,此外,在荷瘤小鼠体内,空白组瘤重为SINPs高+laser组瘤重的2.3倍,说明SINPs联合PTT有一定的抗瘤作用。结论 SINPs联合PTT能显著抑制荷瘤小鼠体内肿瘤组织的生长。作为一种天然纳米材料,SINPs具有良好的肿瘤PTT作用,提示其除传统药理作用外,作为天然、安全的纳米材料或载体,在肿瘤光学治疗领域具有一定应用前景。  相似文献   

5.
For effectively treating tumor related-bone defects, design and fabrication of multifunctional biomaterials still remain a great challenge. Herein, we firstly fabricated magnetic SrFe12O19 nanoparticles modified-mesoporous bioglass (BG)/chitosan (CS) porous scaffold (MBCS) with excellent bone regeneration and antitumor function. The as-produced magnetic field from MBCS promoted the expression levels of osteogenic-related genes (OCN, COL1, Runx2 and ALP) and the new bone regeneration by activated BMP-2/Smad/Runx2 pathway. Moreover, the SrFe12O19 nanoparticles in MBCS improved the photothermal conversion property. Under the irradiation of near-infrared (NIR) laser, the elevated temperatures of tumors co-cultured with MBCS triggered tumor apoptosis and ablation. As compared with the pure scaffold group, MBCS/NIR group possessed the excellent antitumor efficacy against osteosarcoma via the hyperthermia ablation. Therefore, the multifunctional MBCS with excellent bone regeneration and photothermal therapy functions has a great application for treating the tumor-related bone defects.  相似文献   

6.
介孔二氧化硅纳米粒由于较高的物理化学稳定性、易于官能化、低毒性以及对许多不同类型治疗剂的巨大负载能力,涉及了化学药物治疗、光热治疗、光动力治疗以及联合治疗,在肿瘤治疗方面受到极大的关注和广泛的研究探索。本文介绍了近年来基于介孔二氧化硅纳米粒作为载体在肿瘤治疗方面的一些研究报道,这些智能化的多功能性已经促使介孔二氧化硅纳米粒成为将来用于临床的非常有前途的药物纳米载体。  相似文献   

7.
本课题采用改进的乳化溶剂蒸发法制备聚乳酸-羟基乙酸共聚物(PLGA)-聚乙烯亚胺(PEI)纳米粒,并通过亲疏水作用力和电性吸附原理分别将多西他赛(1)和光敏剂IR820共同装载于PLGA内核和PEI阳离子亲水外壳中。为使纳米粒具有长循环功能,选用负电性肝素(heparin,H)修饰在纳米粒表面使电荷翻转,得到共载药纳米粒(1@IR820/H NPs),从而实现将化疗/光热/光动3种肿瘤治疗相结合,达到理想的抗乳腺癌细胞增殖和转移的治疗效果。制备并表征了所得纳米粒的物理化学性质,并考察了其在体外经近红外光(808 nm)照射处理后对乳腺癌细胞4T1增殖和转移的影响。结果显示,所得的1@IR820/H NPs的粒径为(192.7±4.1)nm,ζ电位为(-22.6±1.9)mV。细胞摄取试验表明,与1@IR820/HNPs共孵育的4T1细胞经近红外光照射处理后,明显增强了摄取能力。体外活性氧试验表明,细胞摄取的增强可提高光动治疗效果。另外,共载药纳米粒的细胞毒性明显高于游离药物。抗肿瘤转移试验表明IR820及共载药纳米粒可抑制肿瘤细胞转移,并且Western Blot技术表征显示抗转移作用...  相似文献   

8.
Luteolin (Lut) is a natural flavonoid polyphenolic compound with multiple pharmacological activities, such as anti-oxidant, anti-inflammatory, and anti-tumor effects. However, the poor aqueous solubility and low bioactivity of Lut restrict its clinical translation. Herein, we developed a reactive oxygen species (ROS)-responsive nanoplatforms to improve the bioactivity of Lut. Folic acid (FA) was employed to decorate the nanoparticles (NPs) to enhance its targeting ability. The size of Lut-loaded ROS-responsive nanoparticles (Lut/Oxi-αCD NPs) and FA-modified Lut/Oxi-αCD NPs (Lut/FA-Oxi-αCD NPs) is 210.5 ± 6.1 and 196.7 ± 1.8 nm, respectively. Both Lut/Oxi-αCD NPs and Lut/FA-Oxi-αCD NPs have high drug loading (14.83 ± 3.50 and 16.37 ± 1.47%, respectively). In vitro cellular assays verified that these NPs could be efficiently internalized by 4T1 cells and the released Lut from NPs could inhibit tumor cells proliferation significantly. Animal experiments demonstrated that Lut/Oxi-αCD NPs, especially Lut/FA-Oxi-αCD NPs obviously accumulated at tumor sites, and inhibited tumor growth ∼3 times compared to the Lut group. In conclusion, the antitumor efficacy of Lut was dramatically improved by targeting delivery with the ROS-responsive nanoplatforms.  相似文献   

9.
Chemodynamic therapy (CDT) by triggering Fenton reaction or Fenton-like reaction to generate hazardous hydroxyl radical (•OH), is a promising strategy to selectively inhibit tumors with higher H2O2 levels and relatively acidic microenvironment. Current Fe-based Fenton nanocatalysts mostly depend on slowly releasing iron ions from Fe or Fe oxide-based nanoparticles, which leads to a limited rate of Fenton reaction. Herein, we employed black phosphorene nanosheets (BPNS), a biocompatible and biodegradable photothermal material, to develop iron-mineralized black phosphorene nanosheet (BPFe) by in situ deposition method for chemodynamic and photothermal combination cancer therapy. This study demonstrated that the BPFe could selectively increase cytotoxic ·OH in tumor cells whereas having no influence on normal cells. The IC50 of BPFe for tested tumor cells was about 3–6 μg/mL, which was at least one order of magnitude lower than previous Fe-based Fenton nanocatalysts. The low H2O2 level in normal mammalian cells guaranteed the rare cytotoxicity of BPFe. Moreover, the combination of photothermal therapy (PTT) with CDT based on BPFe was proved to kill tumors more potently with spatiotemporal accuracy, which exhibited excellent anti-tumor effects in xenografted MCF-7 tumor mice models.  相似文献   

10.
目的:研究金纳米颗粒包覆的介孔硅二氧化硅(MSN@Au)的制备方法,合成后的MSN@Au纳米材料具有光热抗肿瘤作用。方法以材料对卵巢癌(Hela)细胞的抑制率作为评价指标,综合考察自制的纳米材料的抗肿瘤作用。结果合成的MSN纳米颗粒粒径均一、分散性良好,均匀吸附金纳米颗粒后的材料利用808 nm NIR照射3 min后,癌细胞存活率只有50%以下。结论制备出的MSN@Au纳米材料,利用NIR照射后,能在肿瘤细胞局部产热,杀伤肿瘤细胞,对肿瘤细胞有热疗作用。  相似文献   

11.
Retinoblastoma (RB) is a malignant intraocular neoplasm that occurs in children. Diagnosis and therapy are frequently delayed, often leading to metastasis, which necessitates effective imaging and treatment. In recent years, the use of nanoplatforms allowing both imaging and targeted treatment has attracted much attention. Herein, we report a novel nanoplatform folate-receptor (FR) targeted laser-activatable liposome termed FA-DOX-ICG-PFP@Lip, which is loaded with doxorubicin (DOX)/indocyanine green (ICG) and liquid perfluoropentane (PFP) for photoacoustic/ultrasound (PA/US) dual-modal imaging-guided chemo/photothermal RB therapy. The dual-modal imaging capability, photothermal conversion under laser irradiation, biocompatibility, and antitumor ability of these liposomes were appraised. The multifunctional liposome showed a good tumor targeting ability and was efficacious as a dual-modality contrast agent both in vivo and in vitro. When laser-irradiated, the liposome converted light energy to heat. This action caused immediate destruction of tumor cells, while simultaneously initiating PFP phase transformation to release DOX, resulting in both photothermal and chemotherapeutic antitumor effects. Notably, the FA-DOX-ICG-PFP@Lip showed good biocompatibility and no systemic toxicity was observed after laser irradiation in RB tumor-bearing mice. Hence, the FA-DOX-ICG-PFP@Lip shows great promise for dual-modal imaging-guided chemo/photothermal therapy, and may have significant value for diagnosing and treating RB.  相似文献   

12.
The booming photothermal therapy (PTT) has achieved great progress in non-invasive oncotherapy, and paves a novel way for clinical oncotherapy. Of note, mild temperature PTT (mPTT) of 42–45 °C could avoid treatment bottleneck of the traditional PTT, including nonspecific injury to normal tissues, vasculature and host antitumor immunity. However, cancer cells can resist mPTT via heat shock response and autophagy, thus leading to insufficient mPTT monotherapy to ablate tumor. To overcome the deficient antitumor efficacy caused by thermo-resistance of cancer cells and mono mPTT, synergistic therapies towards cancer cells have been conducted with mPTT. This review summarizes the recent advances in nanomedicine-potentiated mPTT for cancer treatment, including strategies for enhanced single-mode mPTT and mPTT plus synergistic therapies. Moreover, challenges and prospects for clinical translation of nanomedicine-potentiated mPTT are discussed.  相似文献   

13.
Gastric cancer (GC) is a serious disease with high morbidity and mortality rates worldwide. Chemotherapy plays a key role in GC treatment, while inevitable drug resistance and systematic side effects hinder its clinical application. Fenton chemistry-based chemodynamic therapy (CDT) has been used as a strategy for cancer ferroptosis, and the CDT efficiency could be enhanced by photothermal therapy (PTT). With the trend of treatment and diagnosis integration, the combination of magnetic resonance imaging (MRI) and CDT/PTT exhibits enormous progress. Herein, we constructed a platform based on PEGylated manganese-containing polydopamine (PDA) nanoparticles, named as PEG-PDA@Mn (PP@Mn) NPs. The PP@Mn NPs were stable and globular. Furthermore, they demonstrated near-infrared (NIR)-triggered PTT and Fenton-like reaction-based CDT effects and T1-weighted MRI capabilities. According to in vitro studies, the PP@Mn NPs trigger ferroptosis in cancer cells by producing abundant reactive oxygen species (ROS) via a Fenton-like reaction combined with PTT. Furthermore, in vivo studies showed that, under MRI guidance, the PP@Mn NPs combined with the PTT at the tumor region, have CDT anti-tumor effect. In conclusion, the PP@Mn NPs could provide an effective strategy for CDT/PTT synergistic ferroptosis therapy for GC.  相似文献   

14.
Photothermal therapy (PTT) has become one of the most promising therapies in cancer treatment as its noninvasiveness, high selectivity, and favorable compliance in clinic. However, tumor thermotolerance and distal metastasis reduce its efficacy, becoming the bottleneck of applying PTT in clinic. In this study, a chidamide-loaded magnetic polypyrrole nanocomposite (CMPP) has been fabricated as a visualized cancer photothermal agent (PTA) to counter tumor thermotolerance and metastasis. The efficacy of CMPP was characterized by in vitro and in vivo assays. As a result, this kind of magnetic polypyrrole nanocomposites were black spherical nanoparticles, possessing a favorable photothermal effect and the suitable particle size of 176.97 ± 1.45 nm with a chidamide loading rate of 12.92 ± 0.45%. Besides, comparing with PTT, CMPP exhibited significantly higher cytotoxicity and cellular apoptosis rate in two tumor cell lines (B16-F10 and HepG2). In vivo study, the mice showed obvious near-infrared (NIR) and magnetic resonance imaging (MRI) dual-modal imaging at tumor sites and sentinel lymph nodes (SLNs); on the other hand, magnetic targeting guided CMPP achieved a cure level on melanoma-bearing mice through preventing metastasis and thermotolerance. Overall, with high loading efficiency of chidamide and strong magnetic targeting to tumor sites and SLNs, CMPP could significantly raise efficiency of PTT by targeting tumor thermotolerance and metastasis, and this strategy may be exploited therapeutically to upgrade PTT with MPP as one of appropriate carriers for histone deacetylase inhibitors (HDACis).  相似文献   

15.
肿瘤乏氧的微环境使光动力治疗的疗效降低,抑制肿瘤细胞自身呼吸耗氧比增加氧供给更能有效地克服肿瘤乏氧,提高光动力治疗疗效.为了实现这一策略,本研究采用纳米沉淀法制备了装载光敏剂维替泊芬(verteporfin,VER)、耗氧抑制剂阿托伐醌(atovaquone,ATO)及稳定剂聚乙烯吡咯烷酮(PVP)-K30的超分子纳米...  相似文献   

16.
Importance of the field: Plasmonic nanoparticles provide a new route to treat cancer owing to their ability to convert light into heat effectively for photothermal destruction. Combined with the targeting mechanisms possible with nanoscale materials, this technique has the potential to enable highly targeted therapies to minimize undesirable side effects.

Areas covered in this review: This review discusses the use of gold nanocages, a new class of plasmonic nanoparticles, for photothermal applications. Gold nanocages are hollow, porous structures with compact sizes and precisely controlled plasmonic properties and surface chemistry. Also, a recent study of gold nanocages as drug-release carriers by externally controlling the opening and closing of the pores with a smart polymer whose conformation changes at a specific temperature is discussed. Release of the contents can be initiated remotely through near-infrared irradiation. Together, these topics cover the years from 2002 to 2009.

What the reader will gain: The reader will be exposed to different aspects of gold nanocages, including synthesis, surface modification, in vitro studies, intial in vivo data and perspectives on future studies.

Take home message: Gold nanocages are a promising platform for cancer therapy in terms of both photothermal destruction and drug delivery.  相似文献   

17.
Hypoxia is a typical feature of solid tumors, which highly limits the application of the oxygen-dependent therapy. Also, the dense and hyperbaric tumor tissues impede the penetration of nanoparticles into the deep tumor. Thereby, we designed a novel localized injectable hydrogel combining the photothermal therapy (PTT) and the thermodynamic therapy (TDT), which is based on the generation of free radicals even in the absence of oxygen for hypoxic tumor therapy. In our study, gold nanorods (AuNRs) and 2,2′-Azobis[2-(2-imidazalin-2-yl)propane] dihydrochlaride (AIPH) were incorporated into the hydrogel networks, which were formed by the copolymerization of hydrophobic N-isopropyl acrylamide (NIPAM) and hydrophilic glycidyl methacrylate modified hyaluronic acid (HA-GMA) to fabricate an injectable and near-infrared (NIR) responsive hydrogel. The crosslinked in situ forming hydrogel could not only realize PTT upon the NIR laser irradiation, but also generate free radicals even in hypoxic condition. Meanwhile the shrink of hydrogels upon thermal could accelerate the generation of free radicals to further damage the tumors, achieving the controlled drug release on demand. The designed hydrogel with a sufficient loading capacity, excellent biocompatibility and negligible systemic toxicity could serve as a long-acting implant for NIR-triggered thermo-responsive free radical generation. The in vitro cytotoxicity result and the in vivo antitumor activity illustrated the excellent therapeutic effect of hydrogels even in the absence of oxygen. Therefore, this innovative oxygen-independent platform combining the antitumor effects of PTT and TDT would bring a new insight into hypoxic tumor therapy by the application of alkyl free radical.  相似文献   

18.
Driven by the lifestyle habits of modern people, such as excessive smoking, drinking, and chewing betel nut and other cancer-causing foods, the incidence of oral cancer has increased sharply and has a trend of becoming younger. Given the current mainstream treatment means of surgical resection will cause serious damage to many oral organs, so that patients lose the ability to chew, speak, and so on, it is urgent to develop new oral cancer treatment methods. Based on the strong killing effect of photothermal therapy on exposed superficial tumors, we developed a pH-responsive charge reversal nanomedicine system for oral cancer which is a kind of classic superficial tumor. With excellent photothermal properties of polydopamine (PDA) modified black phosphorus nanosheets (BP NSs) as basal material, then used polyacrylamide hydrochloride-dimethylmaleic acid (PAH-DMMA) charge reversal system for further surface modification, which can be negatively charged at blood circulation, and become a positive surface charge in the tumor site weakly acidic conditions due to the breaking of dimethylmaleic amide. Therefore, the uptake of oral cancer cells was enhanced and the therapeutic effect was improved. It can be proved that this nanomedicine has excellent photothermal properties and tumor enrichment ability, as well as a good killing effect on oral cancer cells through in vitro cytotoxicity test and in vivo photothermal test, which may become a very promising new model of oral cancer treatment.  相似文献   

19.
Quite a great proportion of known tumor cells carry mutation in TP53 gene, expressing mutant p53 proteins(mutp53) missing not only original genome protective activities but also acquiring gain-of-functions that favor tumor progression and impede treatment of cancers. Zinc ions were reported as agents cytocidal to mutp53-carrying cells by recovering p53 normal functions and abrogating mutp53. Meanwhile in a hyperthermia scenario, the function of wild type p53 is required to ablate tumors upon hea...  相似文献   

20.
Photothermal(PTT) and photodynamic(PDT) combined therapy has been hindered to clinical translation, due to the lack of available biomaterials, difficult designs of functions,and complex chemical synthetic or preparation procedures. To actualize a high-efficiency combination therapy for cancer via a feasible approach, three readily available materials are simply associated together in one-pot, namely the single-walled carbon nanohorns(SWCNH), zinc phthalocyanine(ZnPc), and surfactant TPGS. The es...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号