首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is well known that altitude training stimulates erythropoiesis, but only few data are available concerning the direct altitude effect on red blood cell volume (RCV) in world class endurance athletes during exposure to continued hypoxia. The purpose of this study was to evaluate the impact of three weeks of traditional altitude training at 2050 m on total hemoglobin mass (tHb), RCV and erythropoietic activity in highly-trained endurance athletes. Total hemoglobin mass, RCV, plasma volume (PV), and blood volume (BV) from 6 males and 4 females, all members of a world class biathlon team, were determined on days 1 and 20 during their stay at altitude as well as 16 days after returning to sea-level conditions (800 m, only males) by using the CO-rebreathing method. In males tHb (14.0 +/- 0.2 to 15.3 +/- 1.0 g/kg, p < 0.05) and RCV (38.9 +/- 1.5 to 43.5 +/- 3.9 ml/kg, p < 0.05) increased at altitude and returned to near sea-level values 16 days after descent. Similarly in females, tHb (13.0 +/- 1.0 to 14.2 +/- 1.3 g/kg, p < 0.05) and RCV (37.3 +/- 3.3 to 42.2 +/- 4.1 ml/kg, p < 0.05) increased. Compared to their sea-level values, the BV of male and female athletes showed a tendency to increase at the end of the altitude training period, whereas PV was not altered. In male athletes, plasma erythropoietin concentration increased up to day 4 at altitude (11.8 +/- 5.0 to 20.8 +/- 6.0 mU/ml, p < 0.05) and the plasma concentration of the soluble transferrin receptor was elevated by about 11 % during the second part of the altitude training period, both parameters indicating enhanced erythropoietic activity. In conclusion, we show for the first time that a three-week traditional altitude training increases erythropoietic activity even in world class endurance athletes leading to elevated tHb and RCV. Considering the relatively fast return of tHb and RCV to sea-level values after hypoxic exposure, our data suggest to precisely schedule training at altitude and competition at sea level.  相似文献   

2.
Blood volume and hemoglobin mass in elite athletes of different disciplines   总被引:6,自引:0,他引:6  
Although it is well known that athletes have considerably larger blood volumes than untrained individuals, there is no data available describing the blood volume variability among differently trained athletes. The first aim of the study was to determine whether athletes from different disciplines are characterized by different blood volumes and secondly to what extent the blood volume can possibly limit endurance performance within a particular discipline. We investigated 94 male elite athletes subdivided into the following 6 groups: downhill skiing (DHS), swimming (S), running (R), triathlon (TA), cycling junior (CJ) and cycling professional (CP). Two groups of untrained subjects (UT) and leisure sportsmen (LS) served as controls. Total hemoglobin (tHb) and blood volume (BV) were measured by the CO-rebreathing method. In comparison to UT (mean +/- SD: tHb 11.0 +/- 1.1 g/kg, BV 78.3 +/- 7.9 ml/kg) tHb and BV were about 35 - 40 % higher in the endurance groups R, TA, CJ, and CP (e. g. in CP: tHb 15.3 +/- 1.3 g/kg, BV 107.1 +/- 7.0 ml/kg). Within the endurance groups we found no significant differences. The anaerobic discipline DHS was characterized by very low BV (87.6 +/- 3.1 ml/kg). S had an intermediate position (BV 97.4 +/- 6.1 ml/kg), probably because of the immersion effects during training in the water. VO(2)max was significantly related to tHb and BV not only in the whole group but also in all endurance disciplines. The reasons for the different BVs are an increased adaptation to training stimuli and probably also individual predisposing genetic factors.  相似文献   

3.
Acclimatization to moderate high altitude accompanied by training at low altitude (living high–training low) has been shown to improve sea level endurance performance in accomplished, but not élite, runners. Whether élite athletes, who may be closer to the maximal structural and functional adaptive capacity of the respiratory (i.e. oxygen transport from environment to mitochondria) system, may achieve similar performance gains is unclear. To answer this question, we studied 14 élite men and eight élite women before and after 27 days of living at 2500 m while performing high‐intensity training at 1250 m. The altitude sojourn began 1 week after the USA Track and Field National Championships, when the athletes were close to their season's fitness peak. Sea level 3000‐m time trial performance was significantly improved by 1.1% (95% confidence limits 0.3–1.9%). One‐third of the athletes achieved personal best times for the distance after the altitude training camp. The improvement in running performance was accompanied by a 3% improvement in maximal oxygen uptake (72.1 ± 1.5–74.4 ± 1.5 ml kg? 1 min? 1). Circulating erythropoietin levels were near double initial sea level values 20 h after ascent (8.5 ± 0.5–16.2 ± 1.0 IU ml?1). Soluble transferrin receptor levels were significantly elevated on the 19th day at altitude, confirming a stimulation of erythropoiesis (2.1 ± 0.7–2.5 ± 0.6 μ g ml‐1). Hb concentration measured at sea level increased 1 g dl?1 over the course of the camp (13.3 ± 0.2–14.3 ± 0.2 g dl?1). We conclude that 4 weeks of acclimatization to moderate altitude, accompanied by high‐intensity training at low altitude, improves sea level endurance performance even in élite runners. Both the mechanism and magnitude of the effect appear similar to that observed in less accomplished runners, even for athletes who may have achieved near maximal oxygen transport capacity for humans.  相似文献   

4.
The underlying mechanisms of altitude training are still a matter of controversial discussion but erythropoietic adaptations with an increase of total haemoglobin mass (tHb) have been shown in several studies, partly depending on an adequate hypoxic dose. The aim of this retrospective study was to investigate if a 3 weeks sojourn at moderate altitude (1816 m) with conventional training sessions (live and train at moderate altitude), especially under real and uncontrolled conditions, results in an increased tHb. tHb was measured in seven male cyclists competing at elite level (German national cycling team, U23 category) prior to the ascent to altitude and immediately after descent to sea-level. The athletes completed a 21 days altitude training camp living at 1816 m and training at 1800–2400 m during the competitive season. No significant difference was found in tHb after the altitude sojourn (prior 927 ± 109 g vs. 951 ± 113 g post, 95% CI ?13–61 g). Additionally, the analysis of red cell volume, plasma volume and blood volume or haemoglobin concentration [Hb] as well as haematocrit (Hct) did not reveal any significant changes. The data supports the theory that an adequate hypoxic dose is required for adaptations of the erythropoietic system with an increase of tHb and a threshold of approximately 2100–2500 m has to be exceeded.  相似文献   

5.
PURPOSE: To determine whether total hemoglobin (tHb) mass and total blood volume (BV) are influenced by training, by chronic altitude exposure, and possibly by the combination of both conditions. METHODS: Four groups (N = 12, each) either from locations at sea level or at moderate altitude (2600 m) were investigated: 1) sea-level control group (UT-0 m), 2) altitude control group (UT-2600 m), 3) professional cyclists from sea level (C-0 m), and 4) professional cyclists from altitude (C-2600 m). All subjects from altitude were born at about 2600 m and lived all their lives (except during competitions at lower levels) at this altitude. tHb and BV were determined by the CO-rebreathing method. RESULTS: VO2max (mL x kg(-1) x min(-1)) was significantly higher in UT-0 m (45.3 +/- 3.2) than in UT-2600 m (39.6 +/- 4.0) but did not differ between C-0 m (68.2 +/- 2.7) and C-2600 m (69.9 +/- 4.4). tHb (g x kg(-1)) was affected by training (UT-0 m: 11.0 +/- 1.1, C-0 m: 15.4 +/- 1.3) and by altitude (UT-2600 m: 13.4 +/- 0.9) and showed both effects in C-2600 m (17.1 +/- 1.4). Because red cell volume showed a behavior similar to tHb and because plasma volume was not affected by altitude but by training, BV (mL x kg(-1)) was increased in C-0 m (UT-0 m: 78.3 +/- 7.9; C-0 m: 107.0 +/- 6.2) and in UT-2600 m (88.2 +/- 4.8), showing highest values in the C-2600 m group (116.5 +/- 11.4).CONCLUSION: In endurance athletes who are native to moderate altitude, tHb and BV were synergistically influenced by training and by altitude exposure, which is probably one important reason for their high performance.  相似文献   

6.
For more than 40 years, the effects of classical altitude training on sea-level performance have been the subject of many scientific investigations in individual endurance sports. To our knowledge, no studies have been performed in team sports like football. Two well-controlled studies showed that living and training at an altitude of ≥1800–2700 m for 3–4 weeks is superior to equivalent training at sea level in well-trained athletes. Most of the controlled studies with elite athletes did not reveal such an effect. However, the results of some uncontrolled studies indicate that sea-level performance might be enhanced after altitude training also in elite athletes. Whether hypoxia provides an additional stimulus for muscular adaptation, when training is performed with equal intensity compared with sea-level training is not known. There is some evidence for an augmentation of total hemoglobin mass after classical altitude training with duration ≥3 weeks at an altitude ≥2000 m due to altitude acclimatization. Considerable individual variation is observed in the erythropoietic response to hypoxia and in the hypoxia-induced reduction of aerobic performance capacity during training at altitude, both of which are thought to contribute to inter-individual variation in the improvement of sea-level performance after altitude training.  相似文献   

7.
High doses of isolated antioxidant supplements such as vitamin C and E have demonstrated the potential to blunt cellular adaptations to training. It is, however, unknown whether intake of high doses of antioxidants from foods has similar effects. Hence, the aim of the study was to investigate whether intake of antioxidant‐rich foods affects adaptations to altitude training in elite athletes. In a randomized controlled trial, 31 national team endurance athletes (23 ± 5 years) ingested antioxidant‐rich foods (n = 16) or eucaloric control foods (n = 15) daily during a 3‐week altitude training camp (2320 m). Changes from baseline to post‐altitude in hemoglobin mass (Hbmass; optimized CO rebreathing), maximal oxygen uptake (VO 2max; n = 16) or 100 m swimming performance (n = 10), and blood parameters were compared between the groups. The antioxidant group significantly increased total intake of antioxidant‐rich foods (~118%) compared to the control group during the intervention. The total study population improved VO 2max by 2.5% (1.7 mL/kg/min, P  = .006) and Hbmass by 4.7% (48 g, P  < .001), but not 100 m swimming performance. No difference was found between the groups regarding changes in Hbmass, VO 2max or swimming performance. However, hemoglobin concentration increased more in the antioxidant group (effect size = 0.7; P  = .045) with a concomitantly larger decrease in plasma and blood volumes compared to control group. Changes in ferritin and erythropoietin from pre‐ to post‐altitude did not differ between the groups. Doubling the intake of antioxidant‐rich foods was well tolerated and did not negatively influence the adaptive response to altitude training in elite endurance athletes.  相似文献   

8.
OBJECTIVES: This investigation was designed to monitor altitude acclimatisation in an elite cohort of distance runners and follow the subsequent recovery from infectious mononucleosis which developed in one of these athletes. METHODS: Twenty six national standard distance runners performed treadmill tests 24 days before they travelled to an altitude camp (1500 to 2000 m). One of these athletes was diagnosed as suffering from infectious mononucleosis 14 days after return to sea level. A physician prescribed an individualised training programme which was designed to maximise recovery from the condition, which was monitored on days 16 and 147 after altitude training. RESULTS AND CONCLUSIONS: The data suggest that the athlete was in a state of over-reaching during the altitude sojourn. After return to sea level, the early stages of infectious mononucleosis resulted in a marked impairment in physiological response to endurance exercise, which improved over time. Longitudinal physiological monitoring in conjunction with a carefully prescribed training programme made recovery from this condition possible.  相似文献   

9.
Objectives: Inter-individual variations in sea level performance after altitude training have been attributed, at least in part, to an inter-individual variability in hypoxia induced erythropoiesis. The aim of the present study was to examine whether the variability in the increase in total haemoglobin mass after training at moderate altitude could be predicted by the erythropoietin response after 4 h exposure to normobaric hypoxia at an ambient Po2 corresponding to the training altitude.

Methods: Erythropoietin levels were measured in 16 elite junior swimmers before and after 4 h exposure to normobaric hypoxia (Fio2 0.15, ~2500 m) as well as repeatedly during 3 week altitude training (2100–2300 m). Before and after the altitude training, total haemoglobin mass (CO rebreathing) and performance in a stepwise increasing swimming test were determined.

Results: The erythropoietin increase (10–185%) after 4 h exposure to normobaric hypoxia showed considerable inter-individual variation and was significantly (p<0.001) correlated with the acute erythropoietin increase during altitude training but not with the change in total haemoglobin mass (significant increase of ~6% on average). The change in sea level performance after altitude training was not related to the change in total haemoglobin mass.

Conclusions: The results of the present prospective study confirmed the wide inter-individual variability in erythropoietic response to altitude training in elite athletes. However, their erythropoietin response to acute altitude exposure might not identify those athletes who respond to altitude training with an increase in total haemoglobin mass.

  相似文献   

10.
11.
PURPOSE: To determine the role of the ACE (I/D) gene polymorphism on erythropoietic response in endurance athletes after natural exposure to moderate altitude. METHODS: Erythropoietic activity was measured in 63 male endurance athletes following natural exposure to moderate altitude (2200 m) during 48 h. Erythropoietin (EPO) levels and hemoglobin (Hb) concentrations were measured at baseline and 12, 24, and 48 h after reaching the set altitude. Reticulocyte counts were determined at baseline and 48 h thereafter. Subjects were grouped into two groups (responders and nonresponders) based on significant increase in EPO levels (median: > 16.5 ng x m(-1)) after 24 h at altitude. ACE gene polymorphism was ascertained by polymerase chain reaction (DD, 31 (49%); ID, 24 (38%); II, 8 (13%)). RESULTS: Overall, EPO levels significantly increased at 12 (70%; P = 0.0001) and 24 h (72%; P = 0.0001) above baseline concentration following exposure to 2200 m. Thereafter, EPO concentration decreased at 48 h, but a significant increase in Hb levels (4.6 +/- 4%; P = 0.0001) and reticulocyte count (50.5 +/- 79%; P = 0.0001) was observed at the end of the experiment, suggesting negative feedback. There were no significant differences in EPO and Hb concentration profiles between subjects with DD genotype and those with other genotypes (ID/II). Moreover, responders (N = 42; DD, 50%; ID/II, 50%) and nonresponders (N = 21; DD, 48%; ID/II, 52%) showed a similar erythropoietic profile during the experiment and the ACE gene polymorphism did not influence the time course of the erythropoietic response. CONCLUSIONS: The ACE gene polymorphism does not influence erythropoietic activity in endurance athletes after short-term exposure to moderate altitude.  相似文献   

12.

Background

It is unclear whether world class endurance athletes, in contrast with less well trained subjects, increase their haemoglobin mass on a regimen of living high and training low (LHTL).

Objective

To assess whether haemoglobin mass increases in world class athletes on LHTL and whether this increase is associated with peak performance at a subsequent important competition.

Methods

Two Swiss world class runners (one 5000 m and one marathon) lived for 26 days (18 hours a day) at an altitude of 2456 m and trained at 1800 m. This LHTL camp was the preparation for the World Athletic Championships taking place 27–29 days after the end of the camp. Haemoglobin mass and other haematological variables were measured before and after the LHTL camp. The performance parameter was the race times during that period.

Results

Haemoglobin mass increased by 3.9% and 7.6%, and erythrocyte volume by 5.8% and 6.3%. The race times, as well as the ranking at the World Championships, indicated clearly improved performance after the LHTL camp.

Conclusions

The results suggest that LHTL with an adequate dose of hypoxia can increase haemoglobin mass even in world class athletes, which may translate into improved performance at important competitions at sea level.  相似文献   

13.
We investigated heavy training- and overtraining-induced changes in heart rate and blood pressure variability during supine rest and in response to head-up tilt in female endurance athletes. Nine young female experimental athletes (ETG) increased their training volume at the intensity of 70-90% of maximal oxygen uptake (VO2max) by 125% and training volume at the intensity of < 70% of VO2max by 100% during 6-9 weeks. The corresponding increases in 6 female control athletes were 5% and 10%. The VO2max of the ETG and the control athletes did not change, but it decreased from 53.0 +/- 2.2 ml x kg(-1) x min(-1) to 50.2 +/- 2.3 ml x kg(-1) x min(-1) (mean+/-SEM, p < 0.01) in five overtrained experimental athletes. In the ETG, low-frequency power of R-R interval (RRI) variability during supine rest increased from 6 +/- 1 ms2 x 10(2) to 9 +/- 2 ms2 x 10(2) (p < 0.05). The 30/15 index (= RRI(max 30)/RRI(min 15), where RRI(max 30) denotes the longest RRI close to the 30th RRI and RRI(min 15) denotes the shortest RRI close to the 15th RRI after assuming upright position in the head-up tilt test), decreased as a result of training (analysis of variance, p = 0.05). In the ETG, changes in VO2max were related to the changes in total power of RRI variability during standing (r = 0.74, p < 0.05). Heart rate response to prolonged standing after head-up tilt was either accentuated or attenuated in the overtrained athletes as compared to the normal training state. We conclude that heavy training could increase cardiac sympathetic modulation during supine rest and attenuated biphasic baroreflex-mediated response appearing just after shifting to an upright position. Heavy-training-/overtraining-induced decrease in maximal aerobic power was related to decreased heart rate variability during standing. Physiological responses to overtraining were individual.  相似文献   

14.
The aim of the study was to test the hypothesis that iron supplementation in well-trained non-iron-depleted athletes leads to an enhanced increase of total body hemoglobin (TBH) during training at moderate altitude. Therefore, the members of the national German boxing team were randomly assigned to treatment with ferrous-glycine-sulfate (1335 mg equivalent to 200mg elementary iron daily) or with placebo during 18 days of endurance training at moderate altitude (1800 m). Before and after altitude training TBH was determined by CO-rebreathing, measures of exercise performance were determined with an incremental treadmill test. Before, during and after the stay at moderate altitude erythropoietin (Epo), reticulocytes (Retics) and parameters of iron metabolism were measured in venous blood. The results show that TBH did not change significantly in the placebo-group and even slightly, but significantly decreased in the iron-treated group. However, there was a significant increase of Epo and Retics in both groups during training at moderate altitude whereas parameters of iron metabolism remained unchanged. VO2max did not change either. To test whether a training-induced hemolysis, an increased urinary iron excretion or gastrointestinal blood loss could explain the unexpected drop of TBH we tested most of the boxers again during a similar training camp at low altitude (400-1000 m) to obtain measures of hemolysis, urinary iron excretion and occult hemoglobin loss with the stools. Although there were signs of an increased erythrocyte turnover no iron loss could be observed. We conclude that 18 days of endurance training at an altitude of 1800 m does not lead to an increase of TBH in non-iron-depleted athletes with and without iron supplementation.  相似文献   

15.
Changes in heart rate variability induced by an intermittent exposure to hypoxia were evaluated in athletes unacclimatized to altitude. Twenty national elite athletes trained for 13 days at 1200 m and either lived and slept at 1200 m (live low, train low, LLTL) or between 2500 and 3000 m (live high, train low, LHTL). Subjects were investigated at 1200 m prior to and at the end of the 13-day training camp. Exposure to acute hypoxia (11.5% O(2)) during exercise resulted in a significant decrease in spectral components of heart rate variability in comparison with exercise in normoxia: total power (p < 0.001), low-frequency component. LF (p < 0.001), high-frequency component, HF (p < 0.05). Following acclimatization, the LHTL group increased its LF component (p < 0.01) and LF/HF ratio during exercise in hypoxia after the training period. In parallel, exposure to intermittent hypoxia caused an increased ventilatory response to hypoxia. Acclimatization modified the correlation between the ventilatory response to hypoxia at rest and the difference in total power between normoxia and hypoxia (r (2) = 0.65, p < 0.001). The increase in total power, LF component, and LF/HF ratio suggests that intermittent hypoxic training increased the response of the autonomic nervous system mainly through increased sympathetic activity.  相似文献   

16.
Effects of various training modalities on blood volume   总被引:3,自引:0,他引:3  
It is controversially discussed whether soccer games should be played at moderate (2001–3000 m) and high altitudes (3001–5500 m) or should be restricted to near sea level and low altitude (501–2000 m) conditions. Athletes living at altitude are assumed to have a performance advantage compared with lowlanders. One advantage of altitude adaptation concerns the expansion of total hemoglobin mass (tHb-mass), which is strongly related to endurance performance at sea level. Cross-sectional studies show that elite athletes posses ∼35% higher tHb-mass than the normal population, which is further elevated by 14% in athletes native to altitude of 2600 m. Although the impact of this huge tHb-mass expansion on performance is not yet investigated for altitude conditions, lowland athletes seek for possibilities to increase tHb-mass to similar levels. At sea level tHb-mass is only moderately influenced by training and depends more on genetic predisposition. Altitude training in contrast, using either the conventional altitude training or the live high–train low (>14 h/day in hypoxia) protocol for 3–4 weeks above 2500 m leads to mean increases in tHb-mass of 6.5%. This increase is, however, not sufficient to close the gap in tHb-mass to elite athletes native to altitude, which may be in advantage when tHb-mass has the same strong influence on aerobic performance at altitude as it has on sea level.  相似文献   

17.
Altitude training has been used regularly for the past five decades by elite endurance athletes, with the goal of improving performance at sea level. The dominant paradigm is that the improved performance at sea level is due primarily to an accelerated erythropoietic response due to the reduced oxygen available at altitude, leading to an increase in red cell mass, maximal oxygen uptake, and competitive performance. Blood doping and exogenous use of erythropoietin demonstrate the unequivocal performance benefits of more red blood cells to an athlete, but it is perhaps revealing that long-term residence at high altitude does not increase hemoglobin concentration in Tibetans and Ethiopians compared with the polycythemia commonly observed in Andeans. This review also explores evidence of factors other than accelerated erythropoiesis that can contribute to improved athletic performance at sea level after living and/or training in natural or artificial hypoxia. We describe a range of studies that have demonstrated performance improvements after various forms of altitude exposures despite no increase in red cell mass. In addition, the multifactor cascade of responses induced by hypoxia includes angiogenesis, glucose transport, glycolysis, and pH regulation, each of which may partially explain improved endurance performance independent of a larger number of red blood cells. Specific beneficial nonhematological factors include improved muscle efficiency probably at a mitochondrial level, greater muscle buffering, and the ability to tolerate lactic acid production. Future research should examine both hematological and nonhematological mechanisms of adaptation to hypoxia that might enhance the performance of elite athletes at sea level.  相似文献   

18.
In brief: This review explores the effects of endurance training at moderate altitude on performance at lower elevations. While many coaches and athletes believe in the value of altitude training, the literature is often ambiguous and frequently contradictory. At altitude the body responds with favorable adjustments in hematological and other variables, which may provide for supranormal oxygen transport and increased performance on return to a normoxic environment. Individual differences in response may explain why some studies have shown altitude training to be beneficial while others have not.  相似文献   

19.
Both strength and endurance training have several positive effects on aging muscle and physical performance of middle‐aged and older adults, but their combination may compromise optimal adaptation. This study examined the possible interference of combined strength and endurance training on neuromuscular performance and skeletal muscle hypertrophy in previously untrained 40–67‐year‐old men. Maximal strength and muscle activation in the upper and lower extremities, maximal concentric power, aerobic capacity and muscle fiber size and distribution in the vastus lateralis muscle were measured before and after a 21‐week training period. Ninety‐six men [mean age 56 (SD 7) years] completed high‐intensity strength training (S) twice a week, endurance training (E) twice a week, combined training (SE) four times per week or served as controls (C). SE and S led to similar gains in one repetition maximum strength of the lower extremities [22 (9)% and 21 (8)%, P<0.001], whereas E and C showed minor changes. Cross‐sectional area of type II muscle fibers only increased in S [26 (22)%, P=0.002], while SE showed an inconsistent, non‐significant change [8 (35)%, P=0.73]. Combined training may interfere with muscle hypertrophy in aging men, despite similar gains in maximal strength between the strength and the combined training groups.  相似文献   

20.
The purpose of this study was to monitor general and individual changes in hematological variables during long-term endurance training, detraining and altitude training in elite Olympic distance triathletes. Over a period of three years, a total of 102 blood samples were collected in eleven (7-male and 4 female) elite Olympic distance triathletes (mean +/- SD; age = 26.4 +/- 5.1 yr; VO(2) max = 67.9 +/- 6.6 ml/min/kg) for determination of hemoglobin (Hb), hematocrit (Hct), red blood cell count (RBC), Mean corpuscular hemoglobin (MCH), Mean corpuscular hemoglobin content (MCHC), Mean corpuscular volume (MCV) and plasma ferritin. The data were pooled and divided into three periods; off-season, training season and race season. Blood samples obtained before and after altitude training were analyzed separately. Of all measured variables only RBC showed a significant decrease (p < 0.05) during the race season compared to the training season. Hematological values below the lower limit of the normal range were found in 46 % of the athletes during the off-season. This percentage increased from 55 % during the training season to 72 % of the athletes during the race season. Hemoglobin and ferritin values were most frequently below the normal range. There was a weak correlation between Hb levels and VO(2) max obtained during maximal cycling (r = 0.084) and running (r = 0.137) tests. Unlike training at 1500 m and 1850 m, training at an altitude of 2600 m for three weeks showed significant increases in Hb (+ 10 %; p < 0.05), Hct (+ 11 %; p < 0.05) and MCV (+ 5 %; p < 0.05). Long-term endurance training does not largely alter hematological status. However, regular screening of hematological variables is desirable as many athletes have values near or below the lower limit of the normal range. The data obtained from altitude training suggest that a minimum altitude (>2000 m) is necessary to alter hematological status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号