首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kim HJ  Chakravarti N  Oridate N  Choe C  Claret FX  Lotan R 《Oncogene》2006,25(19):2785-2794
N-(4-hydroxyphenyl)retinamide (4HPR), a synthetic retinoid effective in cancer chemoprevention and therapy, is thought to act via apoptosis induction resulting from increased reactive oxygen species (ROS) generation. As ROS can activate MAP kinases and protein kinase C (PKC), we examined the role of such enzymes in 4HPR-induced apoptosis in HNSCC UMSCC22B cells. 4HPR increased ROS level within 1 h and induced activation of caspase 3 and PARP cleavage within 24 h. Activation of MKK3/6 and MKK4, JNK, p38 and ERK was detected between 6 and 12 h, increased up to 24 h and preceded apoptosis. 4HPR-induced activation of these kinases was abrogated by the antioxidants BHA and vitamin C. SP600125, a JNK inhibitor, suppressed 4HPR-induced c-Jun phosphorylation, cytochrome c release from mitochondria and apoptosis. Suppression of JNK1 and JNK2 using siRNA decreased, whereas overexpression of wild type-JNK1 enhanced 4HPR-induced apoptosis. PD169316, a p38, inhibitor suppressed phosphorylation of Hsp27 and apoptosis. PD98059, an MEK1/2 inhibitor, also suppressed ERK1/2 activation and apoptosis induced by 4HPR. Likewise, PKC inhibitor GF109203X suppressed ERK and p38 phosphorylation and PARP cleavage. These data indicate that 4HPR-induced apoptosis is triggered by ROS increase, leading to the activation of the mitogen-activated protein serine/threonine kinases JNK, p38, PKC and ERK, and subsequent apoptosis.  相似文献   

2.
Here we investigated CD95-mediated JNK activation pathways and their physiological relevance by employing a variety of cell lines with deficiencies in individual signal transmitting proteins. JNK activation was completely dependent on the activation of caspases in type I and type II cells, as revealed by the inhibitory effects of the caspase inhibitors zVAD-fmk or the cowpoxvirus-encoded CrmA protein. Jurkat cells deficient in caspase-8 or expressing a dominant negative (DN) form of FADD were unable to induce JNK in response to CD95 ligation, indicating that these death-inducing signaling complex (DISC) proteins are required for signal transmission. Activation of caspases, JNK and apoptosis occurred with a markedly slower kinetics in cells expressing a DN version of ASK1, revealing an important contribution of ASK1 for these processes. A C-terminally truncated version of Daxx impaired CD95-mediated apoptosis without affecting the JNK signal. DN forms of FADD, MKK4 and MKK7 completely inhibited CD95-mediated JNK activation but remained without impact on cell killing, indicating that JNK activation is not required for the execution process of CD95-mediated cell killing.  相似文献   

3.
4.
The tumor necrosis factor alpha receptor (TNFR1) activates downstream effectors that include the mitogen-activated protein kinase kinase 7 (MKK7)/c-Jun-NH(2)-kinase (JNK)/activator protein 1 (AP1) cascade. Here, we report that JNK is activated in a majority of spontaneous human squamous cell carcinomas (SCC). JNK pathway induction bypassed cell cycle restraints induced by oncogenic Ras and cooperated with Ras to convert normal human epidermis into tumors indistinguishable from SCC, confirming its oncogenic potency in human tissue. Inhibiting MKK7, JNK, and AP1 as well as TNFR1 itself using genetic, pharmacologic, or antibody-mediated approaches abolished invasive human epidermal neoplasia in a tumor cell autonomous fashion. The TNFR1/MKK7/JNK/AP1 cascade thus promotes human neoplasia and represents a potential therapeutic target for human epithelial cancers.  相似文献   

5.
c-Jun N-terminal kinase (JNK) has been reported to either potentiate or inhibit oncogenesis, depending upon the cellular context, but its role in lung neoplasia is unclear. Here we sought to define the role of JNK in lung neoplasia by examining evidence of JNK phosphorylation in non-small-cell lung cancer (NSCLC) biopsy samples and by using genetic and pharmacologic approaches to modulate JNK expression and activity in cultured cells. Immunohistochemical staining for JNK phosphorylation was detected in 114 (45%) of 252 NSCLC biopsy samples and was predominantly nuclear, providing evidence of JNK activation in a subset of NSCLC cases. Introduction of a doxycycline-inducible, constitutively active, mutant mitogen-activated protein kinase kinase 4 (MKK4) into the human bronchial epithelial cell lines BEAS-2B and HB56B increased the cells' proliferation, migration, invasion and clonogenicity. Depletion of JNK in MKK4 mutant-transformed BEAS-2B cells by introduction of JNK1/2 short hairpin RNA reversed the transformed phenotype, indicating that JNK activation is oncogenic and MKK4 confers neoplastic properties in these cells. The proliferation of NSCLC cell lines HCC827 and H2009, in which JNK and its substrate c-Jun are constitutively phosphorylated, was inhibited by SP600125, a JNK kinase inhibitor. We conclude that JNK is activated in a subset of NSCLC biopsy samples and promotes oncogenesis in the bronchial epithelium, suggesting that strategies to inhibit the JNK pathway should be considered for the prevention and treatment of NSCLC.  相似文献   

6.
Chuang SM  Wang IC  Yang JL 《Carcinogenesis》2000,21(7):1423-1432
Cadmium (Cd), a human carcinogen, can induce apoptosis in various cell types. Three major mitogen-activated protein kinases (MAPKs), c-JUN N-terminal kinase (JNK), p38 and extracellular signal-regulated kinase (ERK), have been shown to regulate apoptosis. In this study we explore the ability of Cd to activate JNK, p38 and ERK, including their effects on Cd-mediated growth inhibition and apoptosis in a human non-small cell lung carcinoma cell line, CL3. The kinase activity of JNK was induced dose-dependently by 30-160 microM CdCl(2). High cytotoxic doses of Cd (130-160 microM) markedly activated p38, but low Cd doses did not. Conversely, the activities of ERK1 and ERK2 were decreased by low cytotoxic doses of Cd (相似文献   

7.
Purpose: Ionizing radiation (IR) triggers several intracellular signaling cascades that have commonly been regarded as mitogenic, including the Raf–MEK–Erk kinase cascade. In addition to promoting proliferation, activated MEK and Erk may also prevent cell death induced by cytotoxic stimuli. Because Raf, MEK, and Erk are activated by IR in some tumor cell lines, this suggests that IR-induced activation of the kinase cascade may enhance the survival of irradiated cells.Methods and Materials: IR-induced activation of MEK and Erk was assessed in irradiated UM-SCC-6 cells, a human squamous carcinoma cell line. Activation of MEK and Erk was blocked with the pharmacological inhibitor of MEK activation, PD098059. Clonogenic survival was assessed in irradiated UM-SCC-6 cells that were pretreated with nothing or with the MEK inhibitor.Results: In UM-SCC-6 cells, IR doses as low as 2 Gy rapidly activated MEK and Erk. Pretreatment of the cells with the pharmacological inhibitor of MEK activation, PD098059, effectively blocked IR-induced activation of MEK and Erk. However, inhibition of the kinase cascade did not affect the clonogenic survival of irradiated cells in either early or delayed-plating experiments.Conclusion: Taken together, these results suggest that although MEK and Erk are rapidly activated by IR treatment, these protein kinases do not affect the clonogenic survival of irradiated UM-SCC6 cells.  相似文献   

8.
PURPOSE: Irradiated arteries of cancer patients can be associated with atherosclerosis-like lesions containing cholesterol-laden macrophages (foam cells). Endothelial cell damage by irradiation does not completely explain the foam cell formation. We investigated the possible underlying mechanisms for ionizing radiation (IR)-induced foam cell formation. METHODS AND MATERIALS: Human peripheral blood monocytes were activated by macrophage colony-stimulating factor and then treated with varying doses of IR in vitro in the absence of endothelial cells. Scavenger receptor expression and foam cell formation of IR-treated macrophages were investigated in the presence or absence of oxidized low-density lipoprotein. We also assessed the importance of mitogen-activated protein kinase activity in the macrophage colony-stimulating factor-activated human monocytes (macrophages) for the foam cell formation. RESULTS: We found that IR treatment of macrophage colony-stimulating factor-activated human peripheral blood monocytes resulted in the enhanced expression of CD36 scavenger receptors and that cholesterol accumulated in the irradiated macrophages with resultant foam cell formation in the presence of oxidized low-density lipoprotein. Furthermore, when cultured on collagen gels, human macrophages formed large foam cell aggregates in response to IR. Antibodies against CD36 inhibited the IR-induced foam cell formation and aggregation, indicating that the IR-induced foam cell formation and the subsequent aggregation are dependent on functional CD36. In addition, we found that IR of human macrophages resulted in c-Jun N-terminal kinase activation and that c-Jun N-terminal kinase inhibition suppressed IR-induced CD36 expression and the subsequent foam cell formation and aggregation. CONCLUSION: Taken together, these results suggest that IR-induced foam cell formation is mediated by c-Jun N-terminal kinase-dependent CD36 activation.  相似文献   

9.
Previous studies have demonstrated that gamma-irradiation (IR)-induced apoptosis in multiple myeloma (MM) is associated with activation of stress-activated protein kinase (SAPK). In the present study, we examined the molecules downstream of SAPK/C-Jun N-terminal kinase (JNK), focusing on the role of retinoblastoma protein (Rb) during IR-induced MM cell apoptosis. The results demonstrate that IR activates SAPK/JNK, which associates with Rb both in vivo and in vitro. Far Western blot analysis confirms that SAPK/JNK binds directly to Rb. IR-activated SAPK/JNK phosphorylates Rb, and deletion of the phosphorylation site in the COOH terminus domain of Rb abrogates phosphorylation of Rb by SAPK/JNK. Taken together, our results suggest that Rb is a target protein of SAPK/JNK and that the association of SAPK/JNK and Rb mediates IR-induced apoptosis in MM cells.  相似文献   

10.
Advances in clinical, translational, and basic studies of metastasis have identified molecular changes associated with specific facets of the metastatic process. Studies of metastasis suppressor gene function are providing a critical mechanistic link between signaling cascades and biological outcomes. We have previously identified c-Jun NH2-terminal kinase (JNK) kinase 1/mitogen-activated protein kinase (MAPK) kinase 4 (JNKK1/MKK4) as a prostate cancer metastasis suppressor gene. The JNKK1/MKK4 protein is a dual-specificity kinase that has been shown to phosphorylate and activate the JNK and p38 MAPKs in response to a variety of extracellular stimuli. In this current study, we show that the kinase activity of JNKK1/MKK4 is required for suppression of overt metastases and is sufficient to prolong animal survival in the AT6.1 model of spontaneous metastasis. Ectopic expression of the JNK-specific kinase MKK7 suppresses the formation of overt metastases, whereas the p38-specific kinase MKK6 has no effect. In vivo studies show that both JNKK1/MKK4 and MKK7 suppress the formation of overt metastases by inhibiting the ability of disseminated cells to colonize the lung (secondary site). Finally, we show that JNKK1/MKK4 and MKK7 from disseminated tumor cells are active in the lung but not in the primary tumor, providing a biochemical explanation for why their expression specifically suppressed metastasis while exerting no effect on the primary tumor. Taken together, these studies contribute to a mechanistic understanding of the context-dependent function of metastasis regulatory proteins.  相似文献   

11.
12.
Basu A  Adkins B  Basu C 《Cancer research》2008,68(8):2795-2802
Protein kinase C-delta (PKC delta) plays an important role in DNA damage-induced apoptosis. We have previously shown that the PKC delta inhibitor rottlerin protects against cisplatin-induced apoptosis acting upstream of caspase-9. In the present study, we have investigated if rottlerin regulates caspase-2 activation. Knockdown of caspase-2 by siRNA inhibited processing of apical caspase-9 and caspase-8, whereas depletion of caspase-9 had little effect on caspase-2 processing. Rottlerin inhibited activation and processing of caspase-9 and caspase-8 and cleavage of poly(ADP)ribose polymerase. We made a novel observation that rottlerin induced down-regulation of caspase-2 but not of caspase-3, caspase-7, caspase-8, or caspase-9. Pharmacologic inhibitors of PKC, such as G? 6983 and bisindolylmaleimide, or depletion of PKC delta by siRNA had no effect on the down-regulation of caspase-2 by rottlerin. The proteasome inhibitor MG132 reversed caspase-2 down-regulation by rottlerin, whereas calpain inhibitor had no effect. These results suggest that rottlerin induces down-regulation of caspase-2 via PKC delta-independent but ubiquitin proteasome-mediated pathway. Furthermore, down-regulation of caspase-2 by rottlerin can explain its antiapoptotic function during DNA damage-induced apoptosis.  相似文献   

13.
Chuang SM  Liou GY  Yang JL 《Carcinogenesis》2000,21(8):1491-1500
In this study we have explored the involvement of oxidative stress in Cr(VI)-induced JNK, p38 and ERK signaling pathways and their effects on Cr(VI) cytotoxicity in human non-small cell lung carcinoma CL3 cells. Exposure to K(2)Cr(2)O(7) markedly activated JNK and p38 and moderately activated ERK in a dose- (10-80 microM) and time-dependent (1-12 h) manner. The activated p38 decreased markedly and rapidly and the activated JNK decreased gradually when Cr(VI) was removed from the medium. Post-incubation of Cr(VI)-treated cells with H(2)O(2) increased the activities of JNK and p38, but not ERK. Co-administering Cr(VI) with 3-amino-1,2, 4-triazole (3AT), a catalase inhibitor, enhanced p38 activation, but did not influence JNK and ERK activation by Cr(VI). Conversely, co-administering Cr(VI) with mannitol, a hydroxyl radical scavenger and a Cr(V) chelator, reduced p38 activation and increased JNK and ERK activation by Cr(VI). These results indicate that p38 activation by Cr(VI) is positively correlated with oxidative stress, while JNK activity can be enhanced by either a quencher (mannitol) or activator (H(2)O(2)) of redox reactions in Cr(VI)-exposed CL3 cells. However, both 3AT and mannitol reduced the cytotoxicity of Cr(VI), but H(2)O(2) did not. The JNK activated by Cr(VI) was decreased (approximately 50%) by expression of a kinase-defective form of MKK7 (MKK7A) but not that of MKK4 (MKK4KR), suggesting that activation of JNK by Cr(VI) is mediated through MKK7. SB202190, a specific inhibitor of p38, markedly decreased JNK but did not change ERK activation by Cr(VI). PD98059, a specific inhibitor of ERK kinases MKK1/2, blocked ERK and p38 but did not alter JNK activation by Cr(VI). Neither the specific kinase inhibitors nor expression of MKK7A altered Cr(VI)-induced cytotoxicity. Together, these results suggest that activation of the JNK, p38 and ERK pathways by Cr(VI) is mediated through diverse redox mechanisms, yet their activation does not correlate with Cr(VI) cytotoxicity.  相似文献   

14.
15.
Despite considerable efforts to improve early detection of ovarian cancer, the majority of women at time of diagnosis will have metastatic disease. Understanding and targeting the molecular underpinnings of metastasis continues to be the principal challenge in the clinical management of ovarian cancer. Whereas the multistep process of metastasis development has been well established in both clinical and experimental models, the molecular factors and signaling pathways involved in successful colonization of a secondary site by disseminated cancer cells are not well defined. We have previously identified mitogen-activated protein kinase (MAPK) kinase 4/c-Jun NH2-terminal kinase (JNK)-activating kinase (MKK4/JNKK1/SEK1, hereafter referred to as MKK4) as a metastasis suppressor protein in ovarian carcinoma. In this study, we elucidate key mechanisms of MKK4-mediated metastasis suppression. Through the use of a kinase-inactive mutant, we show that MKK4 kinase activity is essential for metastasis suppression and prolongation of animal survival. Because MKK4 can activate either of two MAPKs, p38 or JNK, we expressed MKK6 or MKK7, specific activators of these MAPKs, respectively, to delineate which MAPK signaling module was involved in MKK4-mediated metastasis suppression. We observed that MKK6 expression suppressed metastatic colonization whereas MKK7 had no effect. Our finding that MKK4 and MKK6 both suppress metastasis points to the p38 pathway as an important regulatory pathway for metastatic colonization in ovarian cancer.  相似文献   

16.
Lan T  Chen Y  Sang J  Wu Y  Wang Y  Jiang L  Tao Y 《Oncology reports》2012,27(6):2039-2044
Our previous research data showed that type II cGMP-dependent protein kinase (PKGII) inhibited EGF-induced MAPK/ERK-mediated signal transduction through blocking the phosphorylation of EGFR caused by EGF. Since EGFR also mediates other MAPK-mediated signal transduction pathways, this study was designed to investigate whether PKGII inhibits EGF-induced MAPK/c-Jun N-terminal kinase (JNK) signal transduction. MCF-7 human breast cancer cells were infected with adenoviral constructs encoding the cDNA of PKGII (pAd-PKGII) to increase the expression of PKGII and treated with 8-pCPT-cGMP to activate the enzyme. Western blotting was applied to detect the phosphorylation/activation of EGFR, JNK, MKK7 and c-Jun. The Pull-down method was used to detect the activation of Ras protein. Co-IP was used to analyze the binding between Grb2 and Sos1. TUNEL staining was used to detect the apoptosis of MCF-7 cells. The results showed that EGF treatment increased the phosphorylation of EGFR, the binding between Grb2 and Sos1, the activation of Ras, and the phosphorylation/activation of MKK7, JNK and c-Jun, but decreased the apoptosis of the cells. Increase of PKGII activity through infection with pAd-PKGII and stimulation with 8-pCPT-cGMP efficiently reversed the above changes caused by EGF. The results suggest that PKGII also inhibits EGF-induced MAPK/JNK-mediated signal transduction and further confirmed that PKGII can block the activation of EGFR.  相似文献   

17.
Choi KM  Kang CM  Cho ES  Kang SM  Lee SB  Um HD 《Oncology reports》2007,17(5):1183-1188
Ionizing radiation (IR) is known to induce genotoxic damage to DNA, chromosomes, and the nucleus. However, the damage that IR causes to the nucleus has received much less attention. Given that reactive oxygen species (ROS) are involved in IR-induced DNA breaks and chromosomal aberrations, this study examined the role of ROS in IR-induced damage to the nucleus. Human Jurkat T cells were irradiated with gamma-rays at a dose of 2.5 Gy, which resulted in a dramatic increase in both the cellular ROS levels and the number of micronuclei. This latter event was attenuated when the IR-induced ROS were eliminated through the exogenous application of an antioxidant enzyme catalase. The ability of IR to induce the accumulation of ROS and micronucleus formation was also reduced either when the cells were irradiated in the presence of rotenone, a mitochondrial respiratory chain inhibitor, or when the cellular Nox1 levels were reduced by RNA interference. These results suggest that IR stimulates both the mitochondria and Nox1 to produce ROS, and that these ROS are involved in the IR-induced formation of micronuclei. IR also activated c-Jun N-terminal kinase (JNK), which was reversed by catalase, rotenone, or Nox1 RNA interference. SP600125, a JNK-specific inhibitor, suppressed the IR-induced accumulation of ROS. This inhibitor consistently attenuated the IR-induced formation of micronuclei. Therefore, ROS and JNK appear to act in a positive mutual manner in IR-induced signaling processes. Overall, IR appears to induce the formation of micronuclei by inducing ROS through mitochondria, Nox1, and JNK.  相似文献   

18.
19.
20.
Lin CW  Hou WC  Shen SC  Juan SH  Ko CH  Wang LM  Chen YC 《Carcinogenesis》2008,29(9):1807-1815
Quercetin (QUE; 3,5,7,3',4'-tetrahydroxyflavone) has been shown to possess several beneficial biological activities including antitumor, anti-inflammation and antioxidant properties; however, the effects of QUE in preventing invasion by breast carcinoma cells are still undefined. Increases in the protein, messenger RNA and enzyme activity levels of matrix metalloproteinase (MMP)-9 were observed in 12-O-tetradecanoylphorbol-13-acetate (TPA)-treated MCF-7 cells, and these were blocked by QUE, but not by quercitrin or rutin. A translocation of protein kinase C (PKC)delta from the cytosol to the membrane followed by activation of extracellular signal-regulated kinase (ERK) and c-Jun/activator protein-1 (AP-1) by TPA was demonstrated, and TPA-induced MMP-9 activation and migration were inhibited by the pan PKC inhibitor, GF109203X, the specific PKCdelta inhibitor, rottlerin, an ERK inhibitor (PD98059) and an AP-1 inhibitor (curcumin). Application of QUE significantly suppressed TPA-induced activation of the PKCdelta/ERK/AP-1-signaling cascade. To elucidate the importance of hydroxyl (OH) substitutions to QUE's inhibition of tumor migration, several structurally related flavones of QUE including 3',4'-diOH, 3',4'-diOCH(3), 3,5,7-triOH, 3,4',4'-triOH, 3,3',4'-triOCH(3), luteolin and fisetin were used. Results suggested that OH groups at both C3' and C4' play central roles in QUE's inhibition of TPA-induced MMP-9 activation and migration, and an additional OH at C3, C5 or C7 may increase the inhibitory potency of the 3',4'-diOH flavone against TPA-induced MMP-9 activity and migration. The antitumor invasion and migration effects of breast carcinoma cells induced by QUE with the structure-activity relationship analysis were identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号