首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In blood vessels in the systemic circulation, the plasmalemmal Na+/H+ exchanger has been implicated in a variety of cellular functions, including the regulation of intracellular pH (pHi) and cell volume, and the response to smooth muscle mitogens. The role of this transport system in pulmonary vascular smooth muscle has not been explored. The present study examined the characteristics of Na+/H+ exchange in cultured guinea pig pulmonary artery smooth muscle cells. These cells were subjected to an acid load, and the recovery from acid loading was monitored using the fluorescent pH-sensitive dye 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF). In the absence of HCO3-, pHi recovery from acid loading was dependent on external Na+ and was inhibited by the Na+/H+ exchange inhibitor dimethylamiloride (DMA) (recovery rate was reduced from 54.4 +/- 5.5 to 12.8 +/- 2.0 mmol H+/liter.min). This exchanger was also active in the presence of HCO3-; DMA reduced resting pHi and slowed the rate of recovery from acid loading in HCO3- buffers. However, in the presence of HCO3-, other transport systems, presumably HCO3-/Cl- exchange, also contribute to the regulation of pHi. In HCO3- buffers, the rate of recovery from acid load averaged 40.8 +/- 1.8 mmol H+/liter.min. Addition of 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), an inhibitor of HCO3-/Cl- exchange, slowed this recovery to 25.5 +/- 1.6 mmol H+/liter.min. A combination of DIDS and DMA further slowed the recovery to 19.7 +/- 1.5 mmol H+/liter.min. These findings indicate that the Na+/H+ exchanger plays a significant role in the regulation of pHi in pulmonary artery smooth muscle cells, even in HCO(3-)-containing buffers.  相似文献   

2.
Migration of smooth muscle cells (SMCs) in hyperplasia is thought to have a correlation with blood flow conditions. In this study, the effect of shear stress applied to endothelial cells (ECs) on SMC migration was examined using a newly designed EC–SMC coculture model (CM), in which bovine SMCs and ECs were separated by a collagen layer and a membrane filter. After exposing the CM to shear stresses of 0.5, 1.0, or 1.5 Pa for 48 h, the number of SMCs migrating into the collagen layer was counted. Under static conditions, the migration of SMCs in the CM increased compared with SMCs cultured alone. Shear stress of 1.5 Pa significantly suppressed the SMC migration (p < 0.05) compared with the static CM. Media conditioned with the CM exposed to shear stress of 1.0 Pa (p < 0.05) and 1.5 Pa (p < 0.005) exhibited reduction in activated matrix metalloproteinase-2 (MMP-2) compared with the static CM, as analyzed by zymography. Addition of an inhibitor of nitric oxide (NO) synthase, N ω-nitro-l-arginine methyle ester, to the media inhibited the effect of 1.5 Pa shear stress on SMC migration but MMP-2 activity was unaffected. These results suggest that physiological shear stress has protective roles in atherosclerogenesis.  相似文献   

3.
Intracellular pH (pHi) was measured in isolated, nonperfused and perfused rat papillary thin limbs of Henle's loops in N-2-hydroxyethylpiperazine-N'-2-ethansulfonic acid (HEPES)- or HEPES/bicarbonate-buffered medium at pH 7.4 using the pH-sensitive fluorescent dye 2',7'-bis(2-carboxyethyl)-5,6-carboxyfluorescein (BCECF). Resting pHi was about 6.7 in descending thin limbs (DTL) and about 6.9 in ascending thin limbs (ATL), even with a medium pH of 7.4. These values appeared to reflect the acid pH of the blood in the neighboring vasa recta found in vivo. The resting pHi did not differ whether or not the medium contained bicarbonate although the total buffering capacity of the tubule cells was increased in the presence of bicarbonate. In nonperfused DTL and ATL, pHi was further acidified following an NH4Cl pulse. The rate of recovery of pHi from this level to the resting pHi was reduced by Na+ removal from the bath in both DTL and ATL and by the addition of ethylisopropylamiloride (EIPA) to the bath in the presence of Na+ in DTL. The rate of recovery was not affected by Cl- removal from the bath or K+ (75 mM) or 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS) addition to the bath in either DTL or ATL. These results suggest that the common, amiloride-sensitive, basolateral Na+/H+ exchanger plays a role in the regulation of pHi in rat papillary DTL but that a different basolateral Na+/H+ exchanger or a luminal Na+/H+ exchanger is important in rat papillary ATL.  相似文献   

4.
A biphasic, anisotropic model of the deformable aortic wall in combination with computational fluid dynamics is used to investigate the variation of shear stress over smooth muscle cells (SMCs) with transmural pressure. The media layer is modeled as a porous medium consisting of SMCs and a homogeneous porous medium of interstitial fluid and elastin, collagen and proteoglycans fibers. Interstitial fluid enters the media through fenestral pores, which are distributed over the internal elastic lamina (IEL). The IEL is considered as an impermeable barrier to fluid flow except at fenestral pores. The thickness and the radius of aortic wall vary with transmural pressure ranging from 10 to 180 mm Hg. It is assumed that SMCs are cylinders with a circular cross section at 0 mm Hg. As the transmural pressure increases, SMCs elongate with simultaneous change of cross sectional shape into ellipse according to the strain field in the media. Results demonstrate that the variation of shear stress within the media layer is significantly dependent on the configuration and cross sectional shape of SMCs. In the staggered array of SMCs, the shear stress over the first SMC nearest to the IEL is about 2.2 times lower than that of the square array. The shear stress even over the second nearest SMC to the IEL is considerably higher (about 15%) in the staggered array. In addition to configuration and cross sectional shape of SMCs, the variation of structural properties of the media layer with pressure and the sensitivity of the local shear stress to the minimum distance between SMCs and the IEL (reducing with transmural pressure) between SMCs and the IEL are studied. At 180 mm Hg, the ratio of the local shear stress of the nearest SMC to that of the second nearest SMC is 4.8 in the square array, whereas it reduces to about 1.8 in the staggered array. The importance of the fluid shear stress is associated with its role in the biomolecular state of smooth muscle cells bearing the shear stress.  相似文献   

5.
A coculture of endothelial cells (ECs) and smooth muscle cells (SMCs), which mimics cellular interactions appearing in vivo, has been performed in studies on the relationship between atherogenesis and fluid shear stress conditions. Although healthy arteries in vivo consist of contractile phenotype SMCs, cultured cells used in many studies normally exhibit a synthetic phenotype. Here, we developed an EC–SMC coculture model to investigate the interactions between ECs and contractile SMCs, and examined the effect of shear stress applied to ECs on SMC phenotypes. Cultured human umbilical artery SMCs were differentiated into contractile states by arresting cell growth using a serum-free medium. Western blotting confirmed that SMC expression of contractile protein markers, α-smooth muscle actin (SMA) and calponin, increased to levels similar to those observed in arterial cells. After coculturing contractile SMCs with ECs separated by a collagen gel layer, the expression of α-SMA decreased under static conditions, indicating that the SMC phenotype tended to be synthetic by coculturing with ECs, but shear stress applied to cocultured ECs maintained the level of α-SMA expression in SMCs. The coculture model constructed in the present study will be a useful tool to investigate interactions between ECs and contractile SMCs under shear conditions.  相似文献   

6.
Pancreatic ducts secrete HCO3(-), but transport mechanisms are unresolved and possibly vary between species. Our aim was to study the intracellular pH (pHi) regulation and thus H+/HCO3- transport in rat pancreatic ducts. Of particular interest was the Na+/HCO3(-) cotransporter, thought to be important in HCO3(-) -transporting epithelia. pHi was measured with BCECF in freshly isolated intralobular ducts. A reduction in extracellular Na+ concentration or application of HOE 694 (1 microM) decreased pHi by 0.1 to 0.6 pH units, demonstrating Na+/H+ exchanger activity. A reduction in extracellular Cl- concentration or addition of H2DIDS (10 microM) increased pHi by 0.1 to 0.5 pH units, demonstrating Cl-/ HCO(3)- (OH ) exchanger activity. In experimental acidosis, extracellular HCO3(-)/CO2 buffer did not increase the rate of pHi recovery, indicating that provision of HCO3(-) by the Na+/HCO3(-) cotransporter was not apparent. Most importantly, Na+/HCO3(-) cotransport was not stimulated by secretin (1 nM). In contrast, in experimental alkalosis the pHi recovery was increased in HCO3(-)/CO2 buffer, possibly due to Na+/HCO3(-) cotransport in the efflux mode. Secretin (1 nM) and carbachol (1 microM) stimulated HCO3(-) efflux, which can account for the observed HCO3(-) concentrations in rat pancreatic juice. Acetate and HCO3(-) buffers were handled similarly, indicating similar transport mechanisms in pancreatic ducts.  相似文献   

7.
In this work we studied the proton secretion mechanisms in recently cloned MDCK-C11 cells. We measured intracellular pH (pHi) in monolayers grown on permeable filters, using the pH-sensitive probe BCECF and an inverted epifluorescence microscope. The cells have a basal pHi of 7.20+/-0.01 (n=136) and after an acid-releasing NH4Cl pulse pHi recovered at a rate (dpHi/dt) of 0.167+/-0.006 pH units/ per minute (n=20). This rate decreased significantly when Na+ was removed from both cell surfaces, and was further reduced when they were both perfused with a solution containing no Na+ and K+. pHi recovery fell again in the presence of concanamycin (at a concentration of 4.6x10(-8) M; a specific inhibitor of the vacuolar H+-ATPase). When Na+ was removed from the apical or the basolateral side, pHi recovery (in pH units per minute) was significantly reduced to 0.099+/-0.008 (n=11) and 0.086+/-0.01 (n=10), respectively. The Na+-independent mechanism of pHi recovery was significantly inhibited by the presence of 5 x 10(-5) M Schering 28080 (an inhibitor of the H+-K+-ATPase) at the apical side (0.065+/-0.01 versus 0.099+/-0.008 pH units per minute, P<0.05), but not at the basolateral side (0.072+/-0.01 versus 0.086+/-0.01 pH units per minute). On the other hand, concanamycin inhibited the Na+-independent pHi recovery when applied apically (0.0304+/-0.005 pH units per minute, n=7) and basolaterally (0.025+/-0.004 pH units per minute, n=7). From these results we conclude that monolayers of MDCK-C11 cells have a Na+/H+ exchanger and a concanamycin-sensitive H+-ATPase on their apical and basolateral membranes; and a K+-dependent, Schering 28080-sensitive H+-K+-ATPase on their apical side.  相似文献   

8.
We have used the pH-sensitive fluorescent dye 8-hydroxypyrene-1,3,6-trisulphonic acid (HPTS) to reexamine the mechanisms that extrude acid from voltage-clamped Helix aspersa neurones. Intracellular acid loads were imposed by three different methods: application of weak acid, depolarization and removal of extracellular sodium. In nominally CO2/HCO3-free Ringer the rate of recovery from acid loads was significantly slowed by the potent Na+/H+ exchange inhibitor 5-[N-ethyl-N-isopropyl]-amiloride (EIPA, 50 microM). Following depolarization-induced acidifications the rate of intracellular pH (pHi) recovery was significantly reduced from 0.41 +/- 0.13 pH units.h-1 in controls to 0.12 +/- 0.09 pH units.h-1 after treatment with EIPA at pHi approximately equal to 7.3 (n = 7). The amiloride analogue also reduced the rate of acid loading seen during extracellular sodium removal both in the presence and absence of the Na(+)-dependent Cl-/HCO3- exchange inhibitor 4-acetamido-4'-isothiocyanato-stilbene-2,2'-disulphonic acid (SITS, 50 microM). This is consistent with EIPA inhibiting reverse-mode Na+/H+ exchange. In 2.5% CO2/20 mM HCO3-buffered Ringer pHi recovery was significantly inhibited by SITS, but unaffected by EIPA. Our results indicate that there are two separate Na(+)-dependent mechanisms involved in the maintenance of pHi in Helix neurones: Na(+)-dependent Cl-/HCO3- exchange and Na+/H+ exchange. Acid extrusion from Helix neurones is predominantly dependent upon the activity of Na(+)-dependent Cl-/HCO3- exchange with a lesser role for Na+/H+ exchange. This adds further weight to the belief that the Na+/H+ exchanger is ubiquitous.  相似文献   

9.
Single and double-barreled pH-sensitive electrodes were used to study intracellular pH (pHi) regulation in glial cells of Necturus optic nerve in the nominal absence of HCO3-/CO2. After the cells were acidified by the addition and withdrawal of NH4+, the pHi recovered toward the original steady-state pHi. The recovery from acidification was Na+-dependent and inhibited by 1 mM amiloride. These results suggest the existence in intact vertebrate glial cells of a Na+/H+ exchanger which functions in acid extrusion.  相似文献   

10.
Regulation of intracellular pH (pHi) was studied in isolated rat renal inner medullary thin limbs of Henle's loop in bicarbonate/phosphate-buffered medium with high pCO2, high osmolality ( congruent with670 mosmol/kg H2O; 270 mM urea; 180 mM NaCl), organic osmolytes, and a pH of 6.8 to approximate the physiological in vivo environment. The pH-sensitive fluorescent dye 2',7'-bis(2-carboxyethyl)-5,6-carboxyfluorescein (BCECF) was used to measure pHi. Resting pHi was always acid and significantly more acid in descending thin limb (DTL) cells than in ascending thin limb (ATL) cells from pure or mixed-type thin limbs. Resting pHi was slightly but significantly higher in both DTLs and ATLs in high osmolality ( approximately 670 mosmol/kg H2O) than in low osmolality ( approximately 290 mosmol/kg H2O) medium but not when sucrose replaced urea. In both DTLs and ATLs the rate of recovery of pHi following additional acidification with an NH4Cl pulse was reduced by Na+ removal from the medium and by the addition of 60 microM HOE642 (an inhibitor of the Na+/H+ exchanger, NHE1), 55 microM S1611 (inhibitor of Na+/H+ exchanger, NHE3), 1 microM bafilomycin A1 (an inhibitor of vacuolar H+ -ATPase), or 20 microM Schering 28080 (an inhibitor of H+ -K+ -ATPase) to the medium. Resting pHi was also reduced by 60 microM HOE642, 55 microM S1611, and 20 microM Schering 28080. In both DTLs and ATLs, RT-PCR revealed message for NHE1, NHE3, and vacuolar H+ -ATPase; immunocytochemistry demonstrated the expression of the protein for NHE1 (basolateral membrane), NHE3 (luminal membrane), and H+ -K+ -ATPase (luminal membrane). These data suggest that pHi in rat inner medullary thin limbs is regulated by urea and by basolateral and luminal H+ extrusion via NHE1, NHE3, vacuolar H+ -ATPase, and H+ -K+ -ATPase.  相似文献   

11.
Understanding how vascular wall endothelial cells (ECs), smooth muscle cells (SMCs), and fibroblasts (FBs) sense and transduce the stimuli of hemodynamic forces (shear stress, cyclic strain, and hydrostatic pressure) into intracellular biochemical signals is critical to prevent vascular disease development and progression. ECs lining the vessel lumen directly sense alterations in blood flow shear stress and then communicate with medial SMCs and adventitial FBs to regulate vessel function and disease. Shear stress mechanotransduction in ECs has been extensively studied and reviewed. In the case of endothelial damage, blood flow shear stress may directly act on the superficial layer of SMCs and transmural interstitial flow may be elevated on medial SMCs and adventitial FBs. Therefore, it is also important to investigate direct shear effects on vascular SMCs as well as FBs. The work published in the last two decades has shown that shear stress and interstitial flow have significant influences on vascular SMCs and FBs. This review summarizes work that considered direct shear effects on SMCs and FBs and provides the first comprehensive overview of the underlying mechanisms that modulate SMC secretion, alignment, contraction, proliferation, apoptosis, differentiation, and migration in response to 2-dimensional (2D) laminar, pulsatile, and oscillating flow shear stresses and 3D interstitial flow. A mechanistic model of flow sensing by SMCs is also provided to elucidate possible mechanotransduction pathways through surface glycocalyx, integrins, membrane receptors, ion channels, and primary cilia. Understanding flow-mediated mechanotransduction in SMCs and FBs and the interplay with ECs should be helpful in exploring strategies to prevent flow-initiated atherosclerosis and neointima formation and has implications in vascular tissue engineering.  相似文献   

12.
Regulation of intracellular pH (pHi) was investigated in Trypanosoma cruzi amastigotes and trypomastigotes using 2',7'-bis-(carboxyethyl)-5(and-6)-carboxyfluorescein (BCECF). pHi was determined to be 7.33 +/- 0.08 and 7.35 +/- 0.07 in amastigotes and trypomastigotes, respectively, and there were no significant differences in the regulation of pH, between the two stages. Steady-state pHi, recovery of pHi from acidification, and H+-efflux were all decreased markedly by the H+-ATPase inhibitors N,N'-dicyclohexylcarbodi-imide (DCCD), diethylstilbestrol (DES) and N-ethylmaleimide (NEM) supporting a significant role for a plasma membrane H+-ATPase in the regulation of pHi. pHi was maintained at neutrality over a range of external pH (pHe) from 5-8 in parasites suspended in a buffer containing Na+ and K+ (standard buffer) but was acidified at low pHe in the absence of these cations (choline buffer). The pHi of trypomastigotes decreased significantly when they transformed into amastigotes. The rate of recovery of pHi by acidified parasites was similar in Na+-free buffer and standard buffer but was slower in the absence of K+ (K+-free or choline buffer) and parasites suspended in choline buffer were acidic by 0.25 pH units as compared with controls. Ba2+ and Cs+ decreased the pHi of parasites suspended in standard but not choline buffer suggesting the presence of an inward directed K+ channel. The pHi of amastigotes and trypomastigotes suspended in Cl(-)-free buffer was decreased by 0.13 and 0.2 pH units, respectively, supporting the presence of a chloride conductive channel. No evidence of pH regulation via a Na+/H+ or Cl-/HCO3- exchanger was found. These results are consistent with the presence of a plasma membrane H+-ATPase that regulates pHi and is supported by K+ and Cl- channels.  相似文献   

13.
Heming TA  Bidani A 《Immunobiology》2003,207(2):141-148
The role of plasmalemmal V-type H+ translocating ATPase (V-ATPase) in regulation of intracellular pH (pHi) is unclear in monocytes. This study examined the plasmalemmal V-ATPase and Na+/H+ exchanger (NHE) in U937 human monocytes. The fluorescent probe 2',7'-biscarboxyethyl-5,6-carboxyfluorescein was used to monitor baseline pHi and the kinetics of pHi recovery from cytosolic acid-loads (NH4Cl prepulse). Bafilomycin A1 and 5-(N-ethyl-N-isopropyl)amiloride (EIPA) were used to delineate the activities of the H+-pump and NHE, respectively. Baseline pHi was approximately 7.13 at an extracellular pH (pHo) of 7.4 and fell progressively at lower pHo values. EIPA had no effect on baseline pHi at pHo 7.4, but caused a sustained decrement in pHi at pHo 6.0-7.0. Bafilomycin A1 had biphasic effects on baseline pHi at pHo 6.5-7.4; pHi declined approximately 0.1 units over the course of several minutes and then recovered. At pHo 6.0, bafilomycin A1 caused a sustained decrement in baseline pHi. Recovery from the bafilomycin-induced acidosis at pHo 6.5-7.4 was prevented by EIPA. Similarly, pHi recovery from NH4Cl prepulse acid-loads (pHo 7.4) was sensitive to both EIPA and bafilomycin A1. During this recovery process, Na+/H+ exchange (EIPA-sensitive component of apparent H+ efflux) was the predominant mechanism for H+ extrusion at acid-loaded pHi values < 7.0. At acid-loaded pHi values > or = 7.0, the V-ATPase (bafilomycin-sensitive component) and NHE contributed almost equally to H+ extrusion. The data provide the first evidence that plasmalemmal V-ATPase participates in pHi regulation in U937 cells. The H+-pump and NHE interacted to set baseline pHi and for pHi recovery following cytosolic acid-loading of the monocytes.  相似文献   

14.
Replacement of external NaCl with LiCl induced cytoplasmic alkalinization in CCL-39 cells and rat L6 myoblasts expressing the endogenous Na+/H+ exchanger isoform NHE1. This Li+-induced alkalinization is due to activation of the Na+/H+ exchanger because it was completely inhibited by 100 microM ethylisopropylamiloride (apparent Kd=1 microM) and because it did not occur in exchanger-deficient PS120 cells. The effect of Li+ was not mimicked by Na+, K+, Cs+ and choline+. Li+ caused cytoplasmic alkalinization in PS120 cells expressing NHE1 or NHE2, but not NHE3, when Li+ was added to cells at a concentration high enough to saturate their external transport sites as predicted from Li+ affinities. Li+ did not induce phosphatidylinositol (PI) turnover or intracellular Ca2+ mobilization. Li+-induced alkalinization was not affected by protein kinase C down-regulation, loss of glycogen synthase kinase 3beta caused by antisense oligonucleotide treatment, or pretreatment with calphostin C, pertussis toxin, MEK inhibitor PD98059 and PI3-kinase inhibitor LY294002. However, it was markedly suppressed by the tyrosine kinase inhibitor genistein (10 microM). Thus, externally added Li+ activates NHE1 and NHE2 via a mechanism possibly involving a tyrosine kinase, causing an increase in cytoplasmic pH that could potentially affect various cell functions.  相似文献   

15.
We investigated disorders and regulation of cytosolic pH (pHi) in isolated perfused crypts from rat distal colon using the pH-sensitive dye BCECF. This preparation allows distinct examination of either luminal or basolateral transport. The effects of luminal weak organic acids and bases on pHi were examined. The physiological concentrations of both luminal CO2/HCO3- and acetic acid/acetate acidified pHi significantly, but less than when applied from the basolateral side. Corresponding changes (luminal versus basolateral) in pHi were -0.17+/-0.04 versus -0.39+/-0.04, (n=8) and -0.15+/-0.02 versus -0.41+/-0.04, (n=8), respectively. Basolateral versus luminal application of NH3/NH4+ led to a more marked change in pHi, namely 0.35+/-0.03 versus 0.008+/-0.007 pH units, (n=19). The luminal perfusion of NH3/NH4+ was controlled by applying fura-2 acid to the luminal side and at the same time recording fura-2-specific fluorescence. Hence, the influence of luminal acid/base on colonic pHi homeostasis was limited. To examine pHi regulation, we investigated the recovery from an intracellular acid load using the NH3/NH4+ pulse method. Recovery was completely dependent on basolateral Na+, indicating that luminal acid/base transport does not play a major role in pHi homeostasis. The basolateral transporters involved in pHi recovery are probably the EIPA- and HOE694-inhibitable (IC50=0.2 and 2 micromol/l, respectively) Na+/H+ exchanger NHE1 and the DIDS-inhibitable Na+-dependent HCO3- importer.  相似文献   

16.
1. We have measured intracellular pH (pHi) in freshly isolated pyramidal neurones from the CA1 region of the rat hippocampus using the fluorescent indicator 2',7'-bis(carboxy-ethyl)-5-(and-6)-carboxyfluorescein (BCECF). 2. The neurones selected by our isolation procedure, when studied in the nominal absence of CO2-HCO3-, had a mean steady-state pHi of 6.81 +/- 0.02 (n = 163). The recovery of pHi from acid loads was very slow. The rate of recovery from acid loads was reduced by Na+ removal, but only very slightly inhibited by 1 mM amiloride. 3. The addition of 5% CO2-25 mM HCO3- caused steady-state pHi to increase from 6.74 +/- 0.05 to 7.03 +/- 0.03 (n = 28). In the presence of 5% CO2-25 mM HCO3-, the rate of pHi recovery from acid loads was much faster than in its absence. 4. The HCO(3-)-induced alkalinization was reversible, and did not occur in the absence of extracellular Na+ or in the presence of DIDS (4,4'-diisothiocyanatostilbene- 2,2'-disulphonic acid). 5. In the absence of external Cl-, successive exposures to CO2-HCO3- elicited alkalinizations that were progressively reduced in rate and amplitude. This effect, presumably due to gradual depletion of internal Cl-, was rapidly reversed by returning Cl- to the external medium. 6. We conclude that the major acid-extrusion mechanism in pyramidal CA1 neurones is the Na(+)-dependent Cl(-)-HCO3- exchanger. The Na(+)-dependent mechanism that operates in the nominal absence of HCO3- is far less active.  相似文献   

17.
A novel parallel-plate bioreactor has been designed to apply a consistent level of fluid flow-induced shear stress to tissue-engineered articular cartilage in order to improve the matrix composition and mechanical properties and more nearly approximate to that of native tissue. Primary bovine articular chondrocytes were seeded into the bioreactor at high densities (1.7 x 10(6) cell/cm2) without a scaffold and cultured for two weeks under static, no-flow conditions. A mean fluid flow-induced shear stress of 1 dyne/cm2 was then applied continuously for 3 days. The application of flow produced constructs with significantly (p < 0.05) higher amounts of total collagen (via hydroxyproline) and specifically type II collagen (via ELISA) (25.3 +/- 2.5% and 22.1 +/- 4.7% of native tissue, respectively) compared to static controls (22.4 +/- 1.7% and 9.5 +/- 2.3%, respectively). Concurrently, the tensile Young's modulus and ultimate strength were significantly increased in flow samples (2.28 +/- 0.19 MPa and 0.81 +/- 0.07 MPa, respectively) compared to static controls (1.55 +/- 0.10 MPa and 0.62 +/- 0.05 MPa, respectively). This study suggests that flow-induced shear stresses and/or enhanced mass transport associated with the hydrodynamic environment of our novel bioreactor may be an effective functional tissue-engineering strategy for improving matrix composition and mechanical properties in vitro.  相似文献   

18.
To evaluate interactions between human endothelial cells (ECs) and smooth muscle cells (SMCs) for the development of tissue-engineered vessels, we examined the adhesion and key cell properties of human ECs grown on quiescent human aortic SMCs. ECs attached to SMCs spread more slowly than ECs attached to fibronectin surfaces, and ECs aligned along the direction of the SMCs. ECs attached firmly and less than 5% of the cells were removed by shear stresses as high as 300 dyn cm−2. Unlike porcine SMCs and co-cultures, human SMCs or co-cultures do not contract under flow, and the human ECs and SMCs in co-culture align toward the direction of flow. A confluent endothelium could be maintained in co-culture for over 30 days, and some of the ECs reoriented perpendicular to the SMCs after 9 days in static culture. Surface tissue factor levels in ECs and SMCs were less in co-culture than in monoculture. Co-culture induced an increase in calponin expression in SMCs. These findings show that human co-cultures can be maintained for long culture periods, where the endothelium remains confluent and responds to long-term exposure to flow, and EC–SMC interactions lead to an increase in SMC differentiation and an EC surface that is less thrombotic.  相似文献   

19.
20.
Colon cells are subjected to high concentrations of NH3 and NH4+, and a sizeable portion of this buffer is absorbed. The flux of these components into cells causes opposite effects on their pH; this effect is largely used to induce an acid load and to observe the mechanism of acid extrusion from cells. We studied cells of microdissected colon crypts loaded with BCECF and superfused with NH4Cl-containing Krebs-Ringer solution. We found a marked transient reduction in pH measured by ratiometric fluorescence microscopy, from a control value of 7.51 +/- 0.041 to 7.15 +/- 0.041 (n = 21), instead of the initial alkalinization found in most cells. This pH was reached at a rate of 0.95 +/- 0.07 pH units/min. Addition of 1 mmol/l furosemide, a blocker of Na+,K+,2Cl- cotransport, to the ammonium solution inverted this acidification toward alkalinization (pH 7.89 +/- 0.041, n = 5), and superfusion with furosemide plus 0.1 mmol/l hexamethylene amiloride, a specific blocker of Na+/H+ exchange, increased this initial alkalinization further to 8.10 +/- 0.117 (n = 7). When Krebs-Ringer with 0 Cl- containing (NH4)2SO4 instead of NH4Cl was superfused, the acid transient was also reverted to alkalinization; however, a higher degree of alkalinization was observed either when 1 mmol/l furosemide was added to the superfusing sulfate solution (when a pH of 7.78 +/- 0.010 was reached), or when ammonium gluconate was used instead of ammonium sulfate. The addition of Ba2+ to the superfusion solution did not alter the initial acidification. These data indicate that in colon crypt cells, basolateral membrane transporters, in particular the Na+,K+,2Cl- cotransporter and the Na+/H+ exchanger (but not Ba(2+)-sensitive K+ channels), mediate the predominant influx of NH4+ ions leading to the initial transient acidification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号