首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Epithelial-mesenchymal transition (EMT) generates tumor cells with stem cell properties. The aim of our study was to investigate the effects of adipose tissue-derived stem cells (ASCs) on EMT of cancer cells and to further investigate the mechanisms involved. We demonstrate that conditioned medium from ASCs induces breast cancer cells (4T1) to express mesenchymal markers such as fibronectin, alpha smooth muscle actin and vimentin. Flow cytometry analyses show that ASC-conditioned medium promotes the expansion of CD44high/CD24low cancer stem cells. Soft agar assays using T47D, BT474 and MCF-7 breast cancer cells reveals that ASC conditioned medium promotes the anchorage-independent growth of cancer cells. These effects were inhibited by a neutralizing antibody against platelet-derived growth factor-D (PDGF-D). Furthermore, PDGF-D treated breast cancer cells grow faster in a mouse model, and this effect could be neutralized by a PDGF antibody. In conclusion, our data show that tissue-resident stem cells interact with the cancer microenvironment via PDGF-D, induce EMT in the cancer cells in a paracrine fashion, thereby increasing the number of cancer stem cells and increase tumor growth in a PDGF dependent manner. Our findings shed new light on mechanisms where local tissue-resident stem cells are able to promote the growth of breast cancer cells. Possibly this could open up a novel selective therapeutic strategy targeting EMT pathways and the specific communication between tissue-resident normal stem cell and cancer stem cells, assuming that the blockage of PDGF-D pathways is critical for tumor growth but would not affect normal tissue homeostasis.  相似文献   

2.
Emerging evidence demonstrates that platelet-derived growth factor-D (PDGF-D) plays a critical role in epithelial-mesenchymal transition (EMT) and drug resistance in hepatocellular carcinoma (HCC) cells. However, the underlying mechanism has not been fully elucidated. The objective is to explore the molecular mechanism of PDGF-D-mediated EMT in drug resistance HCC cells. To achieve our goal, we used multiple approaches including Western blotting, real-time RT-PCR, wound healing assay, invasion assay, luciferase activity assay, transfection, and immunohistochemistry. We found that PDGF-D is highly expressed in gemcitabine-resistant (GR) HCC cells. Moreover, PDGF-D markedly inhibited miR-106a expression and subsequently upregulated Twist1 expression. Notably, PDGF-D expression was associated with miR-106a and Twist1 in HCC patients. Our findings provide a possible molecular mechanism for understanding GR chemoresistance in HCC cells. Therefore, inactivation of PDGF-D/Twist or activation of miR-106a could be a novel strategy for the treatment of HCC.  相似文献   

3.
The Notch signaling pathway is known to be responsible for maintaining a balance between cell proliferation and death and, as such, plays important roles in the formation of many types of human tumors. Recently, Notch signaling pathway has been shown to control stem cell self-renewal and multi-potency. As many cancers are thought to be developed from a number of cancer stem-like cells, which are also known to be linked with the acquisition of epithelial-mesenchymal transition (EMT); and thus suggesting an expanding role of Notch signaling in human tumor progression.  相似文献   

4.
Platelet-derived growth factor-D (PDGF-D) has been linked with several human malignancies; however, its role in breast cancer progression is not known. We found that PDGF-D expressing breast cancer cell lines MDA-MB-231 and SUM-149 are more invasive compared to cell lines with little or no expression of PDGF-D such as MDA-MB-468 and MCF-7 cells. Over-expression of PDGF-D in PDGF-D low expressing MDA-MB-468 and MCF-7 cells by cDNA transfection showed increased cell proliferation while silencing the expression of PDGF-D by siRNA in PDGF-D high expressing MDA-MB-231 and SUM-149 cells showed decreased cell proliferation and increased apoptosis. Moreover, PDGF-D over-expression was positively correlated with the expression of Notch-1 and Jagged-1, and the expression of mesenchymal markers (Vimentin and ZEB-2) with concomitant decreased expression of epithelial marker E-cadherin. Since NF-κB activation plays a crucial role in Notch signaling as well as in epithelial–mesenchymal transition and tumor aggressiveness, we determined the DNA binding activity of NF-κB and our findings are consistent showing that PDGF-D over-expression led to increased DNA binding activity of NF-κB while it was found to be decreased by inactivation of PDGF-D. These results were also consistent with the expression and activity of MMP-9 and VEGF, as well as invasive characteristics. Further, forced expression of Notch-1/Jagged-1 by cDNA transfection de-repressed the effects of PDGF-D silencing on NF-κB activity and invasion. From these results, we conclude that PDGF-D plays an important role in breast tumor aggressiveness and this process is mechanistically linked with the activation of Notch and NF-κB signaling.  相似文献   

5.
Transforming growth factor-beta1 (TGF-beta1) can be tumor-suppressive through the activation of the Smad-mediated signaling pathway. TGF-beta1 can also enhance tumor progression by stimulating epithelial-to-mesenchymal transition (EMT) through additional pathways. EMT is characterized by the acquisition of a fibroblast-like cell morphology, dissolution of tight junctions, disruption of adherence junctions, and formation of actin stress fibers. There is evidence linking the activation of mitogen-activated protein kinase pathways to the induction of TGF-beta1-mediated EMT. However, the role of Erk in the induction of TGF-beta1-mediated EMT remains unclear. TGF-beta1 treatment of normal murine mammary gland (NMuMG) epithelial cells resulted in increased gene expression of Ras, Raf, MEK1/2, and Erk1/2, as shown by microarray analysis and real-time polymerase chain reaction. Upon 24 and 48 hours of treatment with TGF-beta1, NMuMG and mouse cortical tubule (MCT) epithelial cells underwent EMT as shown by changes in cell morphology, delocalization of zonula occludens-1 and E-cadherin from cell-cell junctions, and formation of actin stress fibers. TGF-beta1 treatment also resulted in increased levels of phosphorylated Erk and Erk kinase activity. Treatment with an MEK inhibitor, U0126, inhibited increased Erk phosphorylation and kinase activity, and blocked TGF-beta1-induced EMT in both cell lines. These data show that TGF-beta1 induces the activation of the Erk signaling pathway, which is required for TGF-beta1-mediated EMT in vitro.  相似文献   

6.
7.
上皮细胞间质转型(EMT)以上皮细胞表型的缺失和问质特性的获得为主要特征.EMT增加细胞迁移、侵袭和抗凋亡能力,在肿瘤侵袭转移中发挥重要作用.钙黏素转换、生长因子、转录因子、microRNA和信号通路等在EMT调控胰腺癌侵袭转移中发挥重要作用.  相似文献   

8.
Xu L  Tong R  Cochran DM  Jain RK 《Cancer research》2005,65(13):5711-5719
Renal cell carcinoma is a highly malignant and often fatal disease of the kidney. It is difficult to treat, often because metastases are common at the time of presentation. Platelet-derived growth factor-D (PDGF-D) is a newly discovered member of the PDGF family; its function in tumor progression is largely unknown. Here, we examined the expression level of PDGF-D in human renal cell carcinoma by immunohistochemical staining using tissue arrays. We showed that human renal cell carcinoma expresses high levels of PDGF-D protein. The human renal cell carcinoma cell line SN12-C was stably transfected with pdgf-d cDNA. Overexpression of PDGF-D in SN12-C cells promoted tumor growth, angiogenesis, and metastasis of human renal cell carcinoma in an orthotopic severe combined immunodeficient (SCID) mouse model. PDGF-D overproduction in SN12-C cells increased the proliferation and migration of mural cells in vitro and improved perivascular cell coverage in vivo. Overexpression of PDGF-D led to increased expression of angiopoietin-1 and matrix metalloproteinase-9 in tumor tissues. ShRNAi and Gleevec were used to block PDGF-D expression and PDGF receptor beta (PDGFRbeta) signaling. Inhibition of PDGF-D expression by short hairpin RNA interference (shRNAi) and blockage of PDGFRbeta signaling by Gleevec inhibited the growth and lung metastasis of SN12-C cells grown orthotopically in SCID mice. Thus, PDGF-D is a potential candidate for controlling the progression of metastatic renal cell carcinoma. This opens up an avenue of investigation into novel therapeutic strategies for the treatment of renal cell carcinoma, including the use of recently developed tyrosine kinase inhibitors, such as Gleevec, which inhibit PDGF activity through inhibition of its receptor tyrosine kinase.  相似文献   

9.
Programmed death ligand 1 (PD-L1) plays an important role in the occurrence of hepatocellular carcinoma (HCC). The present study indicated that epithelial–mesenchymal transition (EMT) and induction of cancer stem cell (CSC)-like properties contribute to metastasis of cancers. However, the molecular mechanisms underlying PD-L1 and EMT and CSC phenotypes in HCC remain to be elucidated. Here, we report that PD-L1 regulates not only EMT but also the stem-like transition in liver cancer cells. We observed high PD-L1 expression in CD133+ liver CSCs and CSC-enriched tumor spheres. Altering PD-L1 expression promoted liver CSC phenotypes by increasing the expression of stemness genes, the CD133+ cell population sizes, and the ability to form tumor spheres. Programmed death ligand 1 enhanced HCC cell tumorigenicity and invasion in nude mice. Additionally, PD-L1 overexpression in cells significantly increased cell motility and invasion, as well as the EMT process. Conversely, suppression of PD-L1 in cells had an opposite effect. Prolonged treatment of HCC cells with Akt inhibitor prefosine leads to activation of serum and glucocorticoid kinase 2 (SGK2) and rescued downregulation of PD-L1. Mechanistically, PD-L1 directly interacted with SGK2. Programmed death ligand 1 upregulated SGK2 and activated the SGK2/β-catenin signaling pathway, and promoted EMT and CSC expansion in liver cancer cells, highlighting the role of SGK2 in PD-L1-mediated EMT and CSC phenotypes in liver cancer cells. In conclusion, our findings suggest that PD-L1 activated the SGK2/β-catenin signaling pathway, to induce EMT and acquisition of a stem cell phenotype.  相似文献   

10.
TGF-β对EMT的诱导及EMT抑制剂研究进展   总被引:1,自引:0,他引:1  
上皮-间质转化(EMT)是肿瘤细胞获得侵袭和转移能力的最主要途径。转化生长因子β(TGF-β)是已知诱导肿瘤细胞发生EMT的关键因子。本文系统介绍TGF-β及其诱导肿瘤细胞发生EMT的信号通路,并综述抑制EMT发生的新抑制剂。  相似文献   

11.
Colon cancer (CC) is the third most common cancer worldwide. Emodin is an anthraquinone-active substance that has the ability to affect tumor progression. Our study aims to explore the effects and the relevant mechanism of emodin on the invasion and migration of CC in vitro and in vivo. In our study, we found that emodin inhibited the invasion and migration abilities of RKO cells and decreased the expression of matrix metalloproteinase-7 (MMP-7), MMP-9, and vascular endothelial growth factor (VEGF) in a dose-dependent manner. Further research suggested that emodin inhibited EMT by increasing the mRNA level of E-cadherin and decreasing the expression of N-cadherin, Snail, and b-catenin. Emodin also significantly inhibited the activation of the Wnt/b-catenin signaling pathway by downregulating the expression of related downstream target genes, including TCF4, cyclin D1, and c-Myc. A Wnt/b-catenin signaling pathway agonist abolished the effect of emodin on EMT and cell mobility, suggesting that emodin exerted its regulating role through the Wnt/b-catenin pathway. The CC xenograft model was established to study the antitumor efficiency of emodin in vivo. The in vivo study further demonstrated that emodin (40 mg/kg) suppressed tumor growth by inhibiting EMT via the Wnt/b-catenin signaling pathway in vivo. Taken together, we suggest that emodin inhibits the invasion and migration of CC cells in vitro and in vivo by blocking EMT, which is related with the inhibition of the Wnt/b-catenin signaling pathway  相似文献   

12.
Platelet-derived growth factor-D (PDGF-D) signaling plays critical roles in the pathogenesis and progression of human malignancies; however, the precise mechanism by which PDGF-D causes tumor cell invasion and angiogenesis remain unclear. Because Notch-1, nuclear factor-kappaB (NF-kappaB), vascular endothelial growth factor (VEGF), and matrix metalloproteinases (MMP) are critically involved in the processes of tumor cell invasion and metastasis, we investigated whether PDGF-D down-regulation could be mechanistically associated with the down-regulation of Notch-1, NF-kappaB, VEGF, and MMP-9, resulting in the inhibition of tumor cell invasion and angiogenesis. Our data showed that down-regulation of PDGF-D leads to the inactivation of Notch-1 and NF-kappaB DNA-binding activity and, in turn, down regulates the expression of its target genes, such as VEGF and MMP-9. We also found that the down-regulation of PDGF-D by small interfering RNA (siRNA) decreased tumor cell invasion, whereas PDGF-D overexpression by cDNA transfection led to increased cell invasion. Consistent with these results, we also found that the down-regulation of PDGF-D not only decreased MMP-9 mRNA and its protein expression but also inhibited the processing of pro-MMP-9 protein to its active form. Moreover, conditioned medium from PDGF-D siRNA-transfected cells showed reduced levels of VEGF and, in turn, inhibited the tube formation of human umbilical vascular endothelial cells, suggesting that down-regulation of PDGF-D leads to the inhibition of angiogenesis. Taken together, we conclude that the down-regulation of PDGF-D by novel approaches could lead to the down-regulation of Notch-1 and, in turn, inactivate NF-kappaB and its target genes (i.e., MMP-9 and VEGF), resulting in the inhibition of invasion and angiogenesis.  相似文献   

13.
Colon cancer (CC) is the third most common cancer worldwide. Emodin is an anthraquinone-active substance that has the ability to affect tumor progression. Our study aims to explore the effects and the relevant mechanism of emodin on the invasion and migration of CC in vitro and in vivo. In our study, we found that emodin inhibited the invasion and migration abilities of RKO cells and decreased the expression of matrix metalloproteinase-7 (MMP-7), MMP-9, and vascular endothelial growth factor (VEGF) in a dose-dependent manner. Further research suggested that emodin inhibited EMT by increasing the mRNA level of E-cadherin and decreasing the expression of N-cadherin, Snail, and b-catenin. Emodin also significantly inhibited the activation of the Wnt/b-catenin signaling pathway by downregulating the expression of related downstream target genes, including TCF4, cyclin D1, and c-Myc. A Wnt/b-catenin signaling pathway agonist abolished the effect of emodin on EMT and cell mobility, suggesting that emodin exerted its regulating role through the Wnt/b-catenin pathway. The CC xenograft model was established to study the antitumor efficiency of emodin in vivo. The in vivo study further demonstrated that emodin (40 mg/kg) suppressed tumor growth by inhibiting EMT via the Wnt/b-catenin signaling pathway in vivo. Taken together, we suggest that emodin inhibits the invasion and migration of CC cells in vitro and in vivo by blocking EMT, which is related with the inhibition of the Wnt/b-catenin signaling pathway.  相似文献   

14.
孙丹  辛彦 《现代肿瘤医学》2011,19(10):2088-2091
上皮间质转化(epithelial-mesenchymal transition,EMT)是指上皮细胞失去极性,失去与基底膜的连接等上皮表型,通过特定程序转化为具有间质表型的生物学过程,从而获得了较高的迁移与侵袭、抗凋亡和降解细胞外基质的能力,与肿瘤的侵袭转移密切相关。参与这一过程的细胞内信号转导途径主要有:TGF-β信号途径、PI3K/AKT途径、Notch信号通路、Wnt信号通路等。本文就EMT在肿瘤侵袭转移中的作用及其分子机制的研究作一综述。  相似文献   

15.
Kong D  Banerjee S  Huang W  Li Y  Wang Z  Kim HR  Sarkar FH 《Cancer research》2008,68(6):1927-1934
Platelet-derived growth factor-D (PDGF-D) is a newly recognized growth factor known to regulate many cellular processes, including cell proliferation, transformation, invasion, and angiogenesis. Recent studies have shown that PDGF-D and its cognate receptor PDGFR-beta are expressed in prostate tumor tissues, suggesting that PDGF-D might play an important role in the development and progression of prostate cancer. However, the biological role of PDGF-D in tumorigenesis remains elusive. In this study, we found that PDGF-D-overexpressing PC3 cells (PC3 cells stably transfected with PDGF-D cDNA and referred to as PC3 PDGF-D) exhibited a rapid growth rate and enhanced cell invasion that was associated with the activation of mammalian target of rapamycin (mTOR) and reduced Akt activity. Rapamycin repressed mTOR activity and concomitantly resulted in the activation of Akt, which could attenuate the therapeutic effects of mTOR inhibitors. In contrast, B-DIM (BR-DIM from Bioresponse, Inc.; a chemopreventive agent) significantly inhibited both mTOR and Akt in PC3 PDGF-D cells, which were correlated with decreased cell proliferation and invasion. Moreover, conditioned medium from PC3 PDGF-D cells significantly increased the tube formation of human umbilical vein endothelial cells, which was inhibited by B-DIM treatment concomitant with reduced full-length and active form of PDGF-D. Our results suggest that B-DIM could serve as a novel and efficient chemopreventive and/or therapeutic agent by inactivation of both mTOR and Akt activity in PDGF-D-overexpressing prostate cancer.  相似文献   

16.
17.
18.
上皮间质转化与肿瘤侵袭转移关系的研究进展   总被引:1,自引:0,他引:1  
孙丹  辛彦 《陕西肿瘤医学》2011,(10):2088-2091
上皮间质转化(epithelial-mesenchymal transition,EMT)是指上皮细胞失去极性,失去与基底膜的连接等上皮表型,通过特定程序转化为具有间质表型的生物学过程,从而获得了较高的迁移与侵袭、抗凋亡和降解细胞外基质的能力,与肿瘤的侵袭转移密切相关。参与这一过程的细胞内信号转导途径主要有:TGF-β信号途径、PI3K/AKT途径、Notch信号通路、Wnt信号通路等。本文就EMT在肿瘤侵袭转移中的作用及其分子机制的研究作一综述。  相似文献   

19.
Hepatocellular carcinoma (HCC) is one of the common malignances in the world and has high mortality in part due to development of acquired drug resistance. Therefore, it is urgent to investigate the molecular mechanism of drug resistance in HCC. To explore the underlying mechanism of drug resistance in HCC, we developed gemcitabine-resistant (GR) HCC cells. We used multiple methods to achieve our goal including RT-PCR, Western blotting analysis, transfection, Wound-healing assay, migration and invasion assay. We observed that gemcitabine-resistant cells acquired epithelial-mesenchymal transition (EMT) phenotype. Moreover, we found that PDGF-D is highly expressed in GR cells. Furthermore, down-regulation of PDGF-D in GR cells led to partial reversal of the EMT phenotype. Our findings demonstrated that targeting PDGF-D could be a novel strategy to overcome gemcitabine resistance in HCC.  相似文献   

20.

Background  

Transforming growth factor (TGF)-β plays a dual role during mammary gland development and tumorigenesis and has been shown to stimulate epithelial-mesenchymal transition (EMT) as well as cellular migration. The Wnt/β-catenin pathway is also implicated in EMT and inappropriate activation of the Wnt/β-catenin signaling pathway leads to the development of several human cancers, including breast cancer. Secreted frizzled-related protein 1 (SFRP1) antagonizes this pathway and loss of SFRP1 expression is frequently observed in breast tumors and breast cancer cell lines. We previously showed that when SFRP1 is knocked down in immortalized non-malignant mammary epithelial cells, the cells (TERT-siSFRP1) acquire characteristics associated with breast tumor initiating cells. The phenotypic and genotypic changes that occur in response to SFRP1 loss are consistent with EMT, including a substantial increase in the expression of ZEB2. Considering that ZEB2 has been shown to interact with mediators of TGF-β signaling, we sought to determine whether TGF-β signaling is altered in TERT-siSFRP1 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号