首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When tracking a moving target in the natural world with pursuit eye movement, our visual system must compensate for the self-induced retinal slip of the visual features in the background to enable us to perceive their actual motion. We previously reported that the speed of the background stimulus in space is represented by dorsal medial superior temporal (MSTd) neurons in the monkey cortex, which compensate for retinal image motion resulting from eye movements when the direction of the pursuit and background motion are parallel to the preferred direction of each neuron. To further characterize the compensation observed in the MSTd responses to the background motion, we recorded single unit activities in cortical areas middle temporal (MT) and MSTd, and we selected neurons responsive to a large-field visual stimulus. We studied their responses to the large-field stimulus in the background while monkeys pursued a moving target and while fixated a stationary target. We investigated whether compensation for retinal image motion of the background depended on the speed of pursuit. We also asked whether the directional selectivity of each neuron in relation to the external world remained the same even during pursuit and whether compensation for retinal image motion occurred irrespective of the direction of the pursuit. We found that the majority of the MSTd neurons responded to the visual motion in space by compensating for the image motion on the retina resulting from the pursuit regardless of pursuit speed and direction, whereas most of the MT neurons responded in relation to the genuine retinal image motion.  相似文献   

2.
Primates are able to track a moving target with their eyes, even when the target is seen against a stationary textured background. In this situation, the tracking eye movement induces motion of the background images on the retina (reafference) that competes with the motion of the target's retinal image, potentially disrupting the tracking of the target. Previous work on humans reported that brief perturbations of the background in the opposite direction to pursuit were much less disruptive than perturbations in the same direction as pursuit. Furthermore, if the background moved together with the pursuit target--so as to effectively eliminate the reafference--then the effects of a subsequent background perturbation showed less dependence on direction. This suggested that the direction selectivity to background perturbations during pursuit against a stationary background was due, at least in part, to the prior motion of the background secondary to the pursuit. We now report similar findings in monkeys, and in addition, have investigated the effect of moving the background while the animal was fixating a stationary target. In this situation, the ocular tracking responses to subsequent brief perturbations of the moving background were weaker when the perturbations were in the same direction as the prior background motion than when in the opposite direction. This suggests that the selective insensitivity to the reafferent visual input associated with pursuit across a stationary background is, at least in part, independent of pursuit per se and attributable to a progressive reduction in the sensitivity to sustained background motion.  相似文献   

3.
Summary Motion of background visual images across the retina during slow tracking eye movements is usually not consciously perceived so long as the retinal image motion results entirely from the voluntary slow eye movement (otherwise the surround would appear to move during pursuit eye movements). To address the question of where in the brain such filtering might occur, the responses of cells in 3 visuo-cortical areas of macaque monkeys were compared when retinal image motion of background images was caused by object motion as opposed to a pursuit eye movement. While almost all cells in areas V4 and MT responded indiscriminately to retinal image motion arising from any source, most of those recorded in the dorsal zone of area MST (MSTd), as well as a smaller proportion in lateral MST (MST1), responded preferentially to externally-induced motion and only weakly or not at all to self-induced visual motion. Such cells preserve visuo-spatial stability during low-velocity voluntary eye movements and could contribute to the process of providing consistent spatial orientation regardless of whether the eyes are moving or stationary.  相似文献   

4.
When the eyes follow a small target moving across a stationary random dot pattern illuminated stroboscopically at 3--45 flashes . s-1, the structure of the random dot pattern is seen as moving in the direction of the eye pursuit movements (sigma-movement). At flash frequencies above 9.5 flashes . s-1, periodic stripes oriented perpendicularly to the direction of the pursuit eye movements appear and are also seen as moving in the direction of the eye pursuit movement. The period Ps of the apparent stripes depended on the flash frequency fs and the angular speed of the eyes Ve: Formula: see text. Apparent sigma-movement and apparent stripes were also seen when eye pursuit movements were initiated outside of the random dot pattern and they continued autonomously without a moving target across the pattern. The angular velocity of the sigma-pursuit movement across the random dot pattern depended on the flash frequency and the angular velocity of the initiating target. With the eyes stationary but a moving random dot pattern, the apparent stripes also appeared at flash frequencies fs greater than or equal to 9.5 flashes . s-1. Eq. (1) was valid when Ve was replaced by the target angular velocity Vs (k = 1).  相似文献   

5.
Segregating a moving object from its visual context is particularly relevant for the control of smooth-pursuit eye movements. We examined the interaction between a moving object and a stationary or moving visual context to determine the role of the context motion signal in driving pursuit. Eye movements were recorded from human observers to a medium-contrast Gaussian dot that moved horizontally at constant velocity. A peripheral context consisted of two vertically oriented sinusoidal gratings, one above and one below the stimulus trajectory, that were either stationary or drifted into the same or opposite direction as that of the target at different velocities. We found that a stationary context impaired pursuit acceleration and velocity and prolonged pursuit latency. A drifting context enhanced pursuit performance, irrespective of its motion direction. This effect was modulated by context contrast and orientation. When a context was briefly perturbed to move faster or slower eye velocity changed accordingly, but only when the context was drifting along with the target. Perturbing a context into the direction orthogonal to target motion evoked a deviation of the eye opposite to the perturbation direction. We therefore provide evidence for the use of absolute and relative motion cues, or motion assimilation and motion contrast, for the control of smooth-pursuit eye movements.  相似文献   

6.
The smooth-pursuit system moves the eyes in space accurately to track slowly moving objects of interest despite visual inputs from the moving background and/or vestibular inputs during head movements. Recently, our laboratory has shown that young primates exhibit asymmetric eye movements during vertical pursuit across a textured background; upward eye velocity gain is reduced. To further understand the nature of this asymmetry, we performed three series of experiments in young monkeys. In Experiment 1, we examined whether this asymmetry was due to an un-compensated downward optokinetic reflex induced by the textured background as it moves across the retina in the opposite direction of the pursuit eye movements. For this, we examined the monkeys’ ability to fixate a stationary spot in space during movement of the textured background and compared it with vertical pursuit across the stationary textured background. We also examined gains of optokinetic eye movements induced by downward motion of the textured background during upward pursuit. In both task conditions, gains of downward eye velocity induced by the textured background were too small to explain reduced upward eye velocity gains. In Experiment 2, we examined whether the frame of reference for low-velocity, upward pursuit was orbital or earth vertical. To test this, we first applied static tilt in the roll plane until the animals were nearly positioned on their side in order to dissociate vertical or horizontal eye movements in the orbit from those in space. Deficits were observed for upward pursuit in the orbit but not in space. In Experiment 3, we tested whether asymmetry was observed during head-free pursuit that requires coordination between eye and head movements. Asymmetry in vertical eye velocity gains was still observed during head-free pursuit although it was not observed in vertical head velocity. These results, taken together, suggest that the asymmetric eye movements during vertical pursuit are specific for upward, primarily eye pursuit in the orbit.  相似文献   

7.
The smooth pursuit eye movement system uses retinal information about the image-slip-velocity of the target in order to match the eye-velocity-in-space (i.e., gaze-velocity) to the actual target velocity. To maintain the target image on the fovea during smooth gaze tracking, and to compensate for the long delays involved in processing visual motion information and/or eye velocity commands, the pursuit system must use prediction. We have shown recently that both retinal image-slip-velocity and gaze-velocity signals are coded in the discharge of single pursuit-related neurons in the simian periarcuate cortex. To understand how periarcuate pursuit neurons are involved in predictive smooth pursuit, we examined the discharge characteristics of these neurons in trained Japanese macaques. When a stationary target abruptly moved sinusoidally along the preferred direction at 0.5 Hz, the response delays of pursuit cells seen at the onset of target motion were compensated in succeeding cycles. The monkeys were also required to continue smooth pursuit of a sinusoidally moving target while it was blanked for about half of a cycle at 0.5 Hz. This blanking was applied before cell activity normally increased and before the target changed direction. Normalized mean gain of the cells' responses (re control value without blanking) decreased to 0.81(+/-0.67 SD), whereas normalized mean gain of the eye movement (eye gain) decreased to 0.65 (+/-0.16 SD). A majority (75%) of pursuit neurons discharged appropriately up to 500 ms after target blanking even though eye velocity decreased sharply, suggesting a dissociation of the activity of those pursuit neurons and eye velocity. To examine whether pursuit cell responses contain a predictive component that anticipates visual input, the monkeys were required to fixate a stationary target while a second test laser spot was moved sinusoidally. A majority (68%) of pursuit cells tested responded to the second target motion. When the second spot moved abruptly along the preferred direction, the response delays clearly seen at the onset of sinusoidal target motion were compensated in succeeding cycles. Blanking (400-600 ms) was also applied during sinusoidal motion at 1 Hz before the test spot changed its direction and before pursuit neurons normally increased their activity. Preferred directions were similar to those calculated for target motion (normalized mean gain=0.72). Similar responses were also evoked even if the second spot was flashed as it moved. Since the monkeys fixated the stationary spot well, such flashed stimuli should not induce significant retinal slip. These results taken together suggest that the prediction-related activity of periarcuate pursuit neurons contains extracted visual components that reflect direction and speed of the reconstructed target image, signals sufficient for estimating target motion. We suggest that many periarcuate pursuit neurons convey this information to generate appropriate smooth pursuit eye movements.  相似文献   

8.
1. We have investigated the role of retinal and extraretinal signals in the initiation and maintenance of smooth-pursuit eye movements in trained rhesus monkeys. Visual targets were presented in open-loop conditions by using electronic feedback of eye position to form the command for target position. This allowed us to present stimuli that were stabilized with respect to the moving eye or to provide small, precisely controlled retinal position or velocity errors. 2. Pursuit was maintained with only small decreases in eye velocity if retinal errors were eliminated by stabilizing the tracking target in front of the fovea during pursuit at 15 degrees/s. This argues that the pursuit system employs "velocity memory" to maintain pursuit. We suggest that velocity memory is effected by an extraretinal signal derived from positive feedback of eye-velocity commands. 3. Small retinal position errors caused smooth eye accelerations if imposed during pursuit, but were ineffective for initiating the transition from steady fixation to pursuit. Small retinal velocity errors were effective both for initiating pursuit from steady fixation and for altering eye velocity during pursuit. 4. Retinal position errors were effective at changing smooth eye velocity in a variety of conditions that required prior activation of the pursuit system. These include pursuit with or without a stationary background, pursuit with a background that was stabilized with respect to the eye, pursuit with combined eye and head motion (cancellation of the vestibuloocular reflex), and use of pursuit to suppress optokinetic nystagmus. Position errors were ineffective during fixation of stationary targets, even if head motion was provided to evoke the smooth eye velocity of the vestibuloocular reflex. 5. We conclude that retinal position errors are effective only after the pursuit system has been activated. It follows that pursuit initiation involves an active transition from steady fixation and that this transition is normally triggered by retinal velocity errors but not by retinal position errors.  相似文献   

9.
Anatomical and physiological studies have shown that the "frontal pursuit area" (FPA) in the arcuate cortex of monkeys is involved in the control of smooth pursuit eye movements. To further analyze the signals carried by the FPA, we examined the activity of pursuit-related neurons recorded from a discrete region near the arcuate spur during a variety of oculomotor tasks. Pursuit neurons showed direction tuning with a wide range of preferred directions and a mean full width at half-maximum of 129 degrees. Analysis of latency using the "receiver operating characteristic" to compare responses to target motion in opposite directions showed that the directional response of 58% of FPA neurons led the initiation of pursuit, while 19% led by 25 ms or more. Analysis of neuronal responses during pursuit of a range of target velocities revealed that the sensitivity to eye velocity was larger during the initiation of pursuit than during the maintenance of pursuit, consistent with two components of firing related to image motion and eye motion. FPA neurons showed correlates of two behavioral features of pursuit documented in prior reports. 1) Eye acceleration at the initiation of pursuit declines as a function of the eccentricity of the moving target. FPA neurons show decreased firing at the initiation of pursuit in parallel with the decline in eye acceleration. This finding is consistent with prior suggestions that the FPA plays a role in modulating the gain of visual-motor transmission for pursuit. 2) A stationary eccentric cue evokes a smooth eye movement opposite in direction to the cue and enhances the pursuit evoked by subsequent target motions. Many pursuit neurons in the FPA showed weak, phasic visual responses for stationary targets and were tuned for the positions about 4 degrees eccentric on the side opposite to the preferred pursuit direction. However, few neurons (12%) responded during the preparation or execution of saccades. The responses to the stationary target could account for the behavioral effects of stationary, eccentric cues. Further analysis of the relationship between firing rate and retinal position error during pursuit in the preferred and opposite directions failed to provide evidence for a large contribution of image position to the firing of FPA neurons. We conclude that FPA processes information in terms of image and eye velocity and that it is functionally separate from the saccadic frontal eye fields, which processes information in terms of retinal image position.  相似文献   

10.
Success of motor behavior often depends on the ability to predict the path of moving objects. Here we asked whether tracking a visual object with smooth pursuit eye movements helps to predict its motion direction. We developed a paradigm, "eye soccer," in which observers had to either track or fixate a visual target (ball) and judge whether it would have hit or missed a stationary vertical line segment (goal). Ball and goal were presented briefly for 100-500 ms and disappeared from the screen together before the perceptual judgment was prompted. In pursuit conditions, the ball moved towards the goal; in fixation conditions, the goal moved towards the stationary ball, resulting in similar retinal stimulation during pursuit and fixation. We also tested the condition in which the goal was fixated and the ball moved. Motion direction prediction was significantly better in pursuit than in fixation trials, regardless of whether ball or goal served as fixation target. In both fixation and pursuit trials, prediction performance was better when eye movements were accurate. Performance also increased with shorter ball-goal distance and longer presentation duration. A longer trajectory did not affect performance. During pursuit, an efference copy signal might provide additional motion information, leading to the advantage in motion prediction.  相似文献   

11.
It is still a matter of debate whether the control of smooth pursuit eye movements involves an internal drive signal from object motion perception. We measured human target velocity and target position perceptions and compared them with the presumed pursuit control mechanism (model simulations). We presented normal subjects (Ns) and vestibular loss patients (Ps) with visual target motion in space. Concurrently, a visual background was presented, which was kept stationary or was moved with or against the target (five combinations). The motion stimuli consisted of smoothed ramp displacements with different dominant frequencies and peak velocities (0.05, 0.2, 0.8 Hz; 0.2–25.6°/s). Subjects always pursued the target with their eyes. In a first experiment they gave verbal magnitude estimates of perceived target velocity in space and of self-motion in space. The target velocity estimates of both Ns and Ps tended to saturate at 0.8 Hz and with peak velocities >3°/s. Below these ranges the velocity estimates showed a pronounced modulation in relation to the relative target-to-background motion ('background effect'; for example, 'background with'-motion decreased and 'against'-motion increased perceived target velocity). Pronounced only in Ps and not in Ns, there was an additional modulation in relation to the relative head-to-background motion, which co-varied with an illusion of self-motion in space (circular vection, CV) in Ps. In a second experiment, subjects performed retrospective reproduction of perceived target start and end positions with the same stimuli. Perceived end position was essentially veridical in both Ns and Ps (apart from a small constant offset). Reproduced start position showed an almost negligible background effect in Ns. In contrast, it showed a pronounced modulation in Ps, which again was related to CV. The results were compared with simulations of a model that we have recently presented for velocity control of eye pursuit. We found that the main features of target velocity perception (in terms of dynamics and modulation by background) closely correspond to those of the internal drive signal for target pursuit, compatible with the notion of a common source of both the perception and the drive signal. In contrast, the eye pursuit movement is almost free of the background effect. As an explanation, we postulate that the target-to-background component in the target pursuit drive signal largely neutralises the background-to-eye retinal slip signal (optokinetic reflex signal) that feeds into the eye premotor mechanism as a competitor of the target retinal slip signal. An extension of the model allowed us to simulate also the findings of the target position perception. It is assumed to be represented in a perceptual channel that is distinct from the velocity perception, building on an efference copy of the essentially accurate eye position. We hold that other visuomotor behaviour, such as target reaching with the hand, builds mainly on this target position percept and therefore is not contaminated by the background effect in the velocity percept. Generally, the coincidence of an erroneous velocity percept and an almost perfect eye pursuit movement during background motion is discussed as an instructive example of an action-perception dissociation. This dissociation cannot be taken to indicate that the two functions are internally represented in separate brain control systems, but rather reflects the intimate coupling between both functions. Electronic Publication  相似文献   

12.
To investigate the transformation of retinal image velocity into smooth pursuit eye velocity, eye movements were measured in the presence of two moving targets. In the first experiment, the targets were identical in all respects except for direction of motion, and the monkey was not cued to attend to either target. In this experiment, smooth pursuit eye velocity elicited by two targets was the vector average of the response evoked by each target alone. In subsequent experiments, we examined the effects of stimulus and task parameters on the selectivity of pursuit. When the targets were made different colors and monkeys were cued for the color of the rewarded target, their pursuit eye movements were biased in the direction of the rewarded target, but still showed a substantial influence of the nonrewarded target (distractor). It did not matter whether the same target color was used for an entire session or whether the color was randomized from trial to trial. Reducing uncertainty about the axis of motion of the rewarded target also had little effect. However, the pattern of image motion appeared to have a substantial effect; radial image motion favored averaging, and winner-take-all pursuit was found only with nonradial image motion. We conclude that the sensorimotor interface for pursuit uses a flexible decision rule that can vary continuously from vector averaging to winner-take-all. We present a simple recurrent network model that reflects this range of behavior. The model has allowed us to identify three computational elements (selection bias, competitive inhibition, and response normalization) that should be taken into consideration in future models of smooth pursuit.  相似文献   

13.
The smooth pursuit system moves the eyes in space accurately while compensating for visual inputs from the moving background and/or vestibular inputs during head movements. To understand the mechanisms underlying such interactions, we examined the influence of a stationary textured visual background on smooth pursuit tracking and compared the results in young and adult humans and monkeys. Six humans (three children, three adults) and six macaque monkeys (five young, one adult) were used. Human eye movements were recorded using infrared oculography and evoked by a sinusoidally moving target presented on a computer monitor. Scleral search coils were used for monkeys while they tracked a target presented on a tangent screen. The target moved in a sinusoidal or trapezoidal fashion with or without whole body rotation in the same plane. Two kinds of backgrounds, homogeneous and stationary textured, were used. Eye velocity gains (eye velocity/target velocity) were calculated in each condition to compare the influence of the textured background. Children showed asymmetric eye movements during vertical pursuit across the textured (but not the homogeneous) background; upward pursuit was severely impaired, and consisted mostly of catch-up saccades. In contrast, adults showed no asymmetry during pursuit across the different backgrounds. Monkeys behaved similarly; only slight effects were observed with the textured background in a mature monkey, whereas upward pursuit was severely impaired in young monkeys. In addition, VOR cancellation was severely impaired during upward eye and head movements, resulting in residual downward VOR in young monkeys. From these results, we conclude that the directional asymmetry observed in young primates may reflect a different neural organization of the vertical, particularly upward, pursuit system in the face of conflicting visual and vestibular inputs that can be associated with pursuit eye movements. Apparently, proper compensation matures later. Electronic Publication  相似文献   

14.
Periarcuate frontal cortex is involved in the control of smooth pursuit eye movements, but its role remains unclear. To better understand the control of pursuit by the "frontal pursuit area" (FPA), we applied electrical microstimulation when the monkeys were performing a variety of oculomotor tasks. In agreement with previous studies, electrical stimulation consisting of a train of 50-microA pulses at 333 Hz during fixation of a stationary target elicited smooth eye movements with a short latency (approximately 26 ms). The size of the elicited smooth eye movements was enhanced when the stimulation pulses were delivered during the maintenance of pursuit. The enhancement increased as a function of ongoing pursuit speed and was greater during pursuit in the same versus opposite direction of the eye movements evoked at a site. If stimulation was delivered during pursuit in eight different directions, the elicited eye velocity was fit best by a model incorporating two stimulation effects: a directional signal that drives eye velocity and an increase in the gain of ongoing pursuit eye speed in all directions. Separate experiments tested the effect of stimulation on the response to specific image motions. Stimulation consisted of a train of pulses at 100 or 200 Hz delivered during fixation so that only small smooth eye movements were elicited. If the stationary target was perturbed briefly during microstimulation, normally weak eye movement responses showed strong enhancement. If delivered at the initiation of pursuit, the same microstimulation caused enhancement of the presaccadic initiation of pursuit for steps of target velocity that moved the target either away from the position of fixation or in the direction of the eye movement caused by stimulation at the site. Stimulation in the FPA increased the latency of saccades to stationary or moving targets. Our results show that the FPA has two kinds of effects on the pursuit system. One drives smooth eye velocity in a fixed direction and is subject to on-line gain control by ongoing pursuit. The other causes enhancement of both the speed of ongoing pursuit and the responses to visual motion in a way that is not strongly selective for the direction of pursuit. Enhancement may operate either at a single site or at multiple sites. We conclude that the FPA plays an important role in on-line gain control for pursuit as well as possibly delivering commands for the direction and speed of smooth eye motion.  相似文献   

15.
Due to delays in visuomotor processing, eye movements directed toward moving targets must integrate both target position and velocity to be accurate. It is unknown where and how target velocity information is incorporated into the planning of rapid (saccadic) eye movements. We recorded the activity of neurons in frontal eye fields (FEFs) while monkeys made saccades to stationary and moving targets. A substantial fraction of FEF neurons was found to encode not only the initial position of a moving target, but the metrics (amplitude and direction) of the saccade needed to intercept the target. Many neurons also encoded target velocity in a nearly linear manner. The quasi-linear dependence of firing rate on target velocity means that the neuronal response can be directly read out to compute the future position of a target moving with constant velocity. This is demonstrated using a quantitative model in which saccade amplitude is encoded in the population response of neurons tuned to retinal target position and modulated by target velocity.  相似文献   

16.
1. Monkeys normally use a combination of smooth head and eye movements to keep the eyes pointed at a slowly moving object. The visual inputs from target motion evoke smooth pursuit eye movements, whereas the vestibular inputs from head motion evoke a vestibuloocular reflex (VOR). Our study asks how the eye movements of pursuit and the VOR interact. Is there a linear addition of independent commands for pursuit and the VOR? Or does the interaction of visual and vestibular stimuli cause momentary, "parametric" modulation of transmission through VOR pathways? 2. We probed for the state of the VOR and pursuit by presenting transient perturbations of target and/or head motion under different steady-state tracking conditions. Tracking conditions included fixation at straight-ahead gaze, in which both the head and the target were stationary; "times-zero (X0) tracking," in which the target and head moved in the same direction at the same speed; and "times-two (X2) tracking," in which the target and head moved in opposite directions at the same speed. 3. Comparison of the eye velocities evoked by changes in the direction of X0 versus X2 tracking revealed two components of the tracking response. The earliest component, which we attribute to the VOR, had a latency of 14 ms and a trajectory that did not depend on initial tracking conditions. The later component had a latency of 70 ms or less and a trajectory that did depend on tracking conditions. 4. To probe the latency of pursuit eye movements, we imposed perturbations of target velocity imposed during X0 and X2 tracking. The resulting changes in eye velocity had latencies of at least 100 ms. We conclude that the effects of initial tracking conditions on eye velocity at latencies of less than 70 ms cannot be caused by visual feedback through the smooth-pursuit system. Instead, there must be another mechanism for short-latency control over the VOR; we call this component of the response "short-latency tracking." 5. Perturbations of head velocity or head and target velocity during X0 and X2 tracking showed that short-latency tracking depended only on the tracking conditions at the time the perturbation was imposed. The VOR appeared to be suppressed when the initial conditions were X0 tracking. 6. The magnitude of short-latency tracking depended on the speed of initial head and target movement. During X0 tracking at 15 deg/s, short-latency tracking was modest. When the initial speed of head and target motion was 60 deg/s, the amplitude of short-latency tracking was quite large and its latency became as short as 36 ms.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
 It has been hypothesised that during natural vision, retinal image motion and eye motion information exert antagonistic effects on balance that cancel each other out. In a previous study, we found that pursuit movements of the eye unaccompanied by background slip on the retina induced strong, stereotyped anteroposterior sway in dynamic balance. In the present work, we investigated the influence of background retinal image slip alone on anteroposterior dynamic balance. We expected that retinal slip without ocular pursuit would induce large anteroposterior sway. Circular slip without rotation of the whole visual field image on the retina was obtained using a rotating prism. In this study, carried out on monocular vision, eye movement was prevented by fixating a stationary target seen through a small aperture in the prism. Anteroposterior dynamic balance conditions were elicited by a rocking platform. Strong, stereotyped anteroposterior sway accompanied by a visual illusion of target motion was observed. The induced sway was synchronised to the stimulus and led to a significant disturbance of balance. The similarity in magnitude of the effects of both retinal image motion studied here and eye motion information obtained previously, and their opposing phases, strongly support the initial hypothesis that the antagonistic effects of the two sources of information provided by normal ocular pursuit could interact in an additive algebraic mode. Received: 22 April 1998 / Accepted: 3 July 1998  相似文献   

18.
We usually move both our eyes and our head when pursuing a high-speed moving object. However, the vestibulo-ocular reflex (VOR), evoked by head motion, seems to disturb smooth pursuit eye movement because the VOR stabilizes the gaze against head motion. To determine whether head motion is advantageous for pursuing a high-speed moving object, we examined dynamic visual acuity (DVA) for a high-speed (80°/s) rightward moving object with and without active linear rightward head motion (HM) at a maximum of 50 cm/s in nine healthy subjects. Furthermore, we analyzed eye and head movements to investigate the contribution of linear VOR (LVOR) and smooth eye movement under these conditions. In most subjects, active linear head motion improved DVA for a high-speed moving object. Subjects with higher DVA scores under HM had robust rightward gaze (eye + head) velocities (>60 cm/s), i.e., rightward smooth eye movements (>10°/s). With the head stationary (HS), faster smooth eye movements (>40°/s) were generated when the subjects pursued a high-speed moving object. They also showed anticipatory smooth eye movements under conditions HM and HS. However, the level of suppression of their LVOR abilities was equal to that of the others. These results suggest that the ability to generate anticipatory smooth pursuit eye movements for following a high-speed moving object against the LVOR is a determining factor for improvement of DVA under HM.  相似文献   

19.
When a person tracks a small moving object, the visual images in the background of the visual scene move across his/her retina. It, however, is possible to estimate the actual motion of the images despite the eye-movement-induced motion. To understand the neural mechanism that reconstructs a stable visual world independent of eye movements, we explored areas MT (middle temporal) and MST (medial superior temporal) in the monkey cortex, both of which are known to be essential for visual motion analysis. We recorded the responses of neurons to a moving textured image that appeared briefly on the screen while the monkeys were performing smooth pursuit or stationary fixation tasks. Although neurons in both areas exhibited significant responses to the motion of the textured image with directional selectivity, the responses of MST neurons were mostly correlated with the motion of the image on the screen independent of pursuit eye movement, whereas the responses of MT neurons were mostly correlated with the motion of the image on the retina. Thus these MST neurons were more likely than MT neurons to distinguish between external and self-induced motion. The results are consistent with the idea that MST neurons code for visual motion in the external world while compensating for the counter-rotation of retinal images due to pursuit eye movements.  相似文献   

20.
A frequent goal of hand movement is to touch a moving target or to make contact with a stationary object that is in motion relative to the moving head and body. This process requires a prediction of the target's motion, since the initial direction of the hand movement anticipates target motion. This experiment was designed to define the visual motion parameters that are incorporated in this prediction of target motion. On seeing a go signal (a change in target color), human subjects slid the right index finger along a touch-sensitive computer monitor to intercept a target moving along an unseen circular or oval path. The analysis focused on the initial direction of the interception movement, which was found to be influenced by the time required to intercept the target and the target's distance from the finger's starting location. Initial direction also depended on the curvature of the target's trajectory in a manner that suggested that this parameter was underestimated during the process of extrapolation. The pattern of smooth pursuit eye movements suggests that the extrapolation of visual target motion was based on local motion cues around the time of the onset of hand movement, rather than on a cognitive synthesis of the target's pattern of motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号