首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crocidolite asbestos elicits oxidative stress and cell proliferation, but the signaling cascades linked to these outcomes are unclear. To determine the role of mitogen-activated protein kinases (MAPK) in asbestos-induced cell signaling, we evaluated the effects of crocidolite asbestos, EGF and H2O2, on MAPK activation in murine lung epithelial cells (C10 line). In contrast to rapid and transient activation of extracellular signal-regulated kinase 5 (ERK5) by EGF or H2O2, asbestos caused protracted oxidant-dependent ERK5 activation that was inhibited by an Src kinase inhibitor (PP2), but not by an inhibitor of epidermal growth factor receptor (EGFR) phosphorylation (AG1478). ERK1/2 activation by asbestos was inhibited by either PP2 or AG1478. To confirm the involvement of Src in ERK1/2 and ERK5 activation, a dominant-negative Src construct was used. These experiments showed that Src was essential for ERK1/2 and also ERK5 phosphorylation by asbestos. Time frame studies indicated immediate activation of Src by asbestos fibers, whereas EGFR phosphorylation occurred subsequently. Data suggest that asbestos causes activation of ERK5 through an EGFR-independent pathway, whereas ERK1/2 activation is dependent on Src through a mechanism involving phosphorylation of the EGFR. Furthermore, Src, ERK1/2 and ERK5 activation are essential for cell proliferation by asbestos. The use of a dominant-negative ERK5 construct caused selective downregulation of c-jun expression, whereas inhibition of Src by PP2 or MEK1 by PD98059 caused decreases in c-fos, fra-1 and c-jun expression in asbestos-exposed C10 cells. These observations may have broad relevance to cell proliferation by carcinogenic mineral fibers and oxidants.  相似文献   

2.
Gamma-aminobutyric acid (GABA) was first discovered as an inhibitory neurotransmitter in the central nervous system (CNS) and has been reported to have a variety of functions, including regulation of cell division, cell differentiation and maturation, and to be involved in the development of certain cancers outside the CNS. In the present study, using the human renal cell carcinoma cell line Caki-2, we demonstrated that GABA stimulation significantly increased the expression of MMP-2 and -9 and subsequently increased the invasive activity of the cancer cells. Because MAPK signaling is one of the key regulators of MMP expression, we further evaluated MAPK signaling after stimulation with GABA. It was found that GABA stimulation promoted the phosphorylation of MAPKs, including ERK1/2, JNK, and p38. ERK1/2 phosphorylation was sustained for up to 12 h, while phosphorylation of JNK and p38 returned to the endogenous level by 30 min. It was noteworthy that the ras/raf/MEK/ERK pathway inhibitor PD98059 attenuated GABA-induced MMP-9 expression and that both PD98059 and MMP inhibitors attenuated the GABA-induced invasive activity of Caki-2 cells. Moreover, data obtained by depletion of the MEK/ERK pathway using interfering RNA transfection of Caki-2 cells clearly corroborated the above results, as both MMP-9 expression and GABA-induced invasive ability were decreased significantly. We also demonstrated that the GABA-induced increase in invasive ability via ERK1/2 up-regulation was mediated mainly through the GABA-B receptor. These results indicate that GABA stimulation promotes cancer cell invasion and that the effect is partly due to ERK1/2-dependent up-regulation of MMPs.  相似文献   

3.
The recently identified subfamily of WNK protein kinases is characterized by a unique sequence variation in the catalytic domain and four related human WNK genes were identified. Here, we describe the cloning and functional analysis of the human family member WNK2. We show that the depletion of endogenous WNK2 expression by RNA interference in human cervical HeLa cancer cells led to the activation of the extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein kinases but, in contrast to the depletion of WNK1, had no effect on ERK5. Furthermore, expression of a kinase-dead WNK2-K207M mutant also activated ERK1/2 suggesting that WNK2 catalytic activity is required. Depletion of WNK2 expression increased G1/S progression and potentiated the cellular response to low epidermal growth factor concentrations. The molecular mechanism of ERK1/2 activation in WNK2-depleted cells lies downstream of the Raf kinases and involves MEK1 phosphorylation at serine 298 in both HeLa and HT29 colon cancer cells. This modification is linked to the upregulation of MEK1 activity toward ERK1/2. Together, these results provide evidence that WNK2 is involved in the modulation of growth factor-induced cancer cell proliferation through the MEK1/ERK1/2 pathway. The data identify WNK2 as a candidate tumor suppressor gene and suggest a coordinated activity of WNK kinases in the regulation of cell proliferation.  相似文献   

4.
5.
BRCA1-mediated G2/M cell cycle arrest requires ERK1/2 kinase activation   总被引:3,自引:0,他引:3  
Yan Y  Spieker RS  Kim M  Stoeger SM  Cowan KH 《Oncogene》2005,24(20):3285-3296
Germline mutations in the BRCA1 gene are associated with an increased susceptibility to the development of breast and ovarian cancers. Evidence suggests that BRCA1 protein plays a key role in mediating DNA damage-induced checkpoint responses. Several studies have shown that ectopic expression of BRCA1 in human cells can trigger cellular responses similar to those induced by DNA damage, including G2/M cell cycle arrest and apoptosis. While the effects of ectopic BRCA1 expression on the G2/M transition and apoptosis have been extensively studied, the factors that dictate the balance between these two responses remain poorly understood. We have recently shown that ectopic expression of BRCA1 in MCF-7 human breast cancer cells resulted in activation of extracellular signal-regulated protein kinase 1 and 2 (ERK1/2) and G2/M cell cycle arrest. Furthermore, inhibition of BRCA1-induced ERK1/2 activation using mitogen-activated protein kinase kinase 1 and 2 (MEK1/2)-specific inhibitors resulted in increased apoptosis, suggesting a potential role of ERK1/2 kinases in BRCA1-mediated G2/M checkpoint response. In this study, we assessed the role of ERK1/2 kinases in the regulation of BRCA1-mediated G2/M cell cycle arrest. Results indicate that BRCA1-induced G2/M cell cycle arrest and ERK1/2 activation correlate with changes in the level and/or activity of several key regulators of the G2/M checkpoint, including activation of Chk1 and Wee1 kinases, induction of 14-3-3, and down-regulation of Cdc25C. Furthermore, inhibition of ERK1/2 kinases using MEK1/2-specific inhibitors results in a marked attenuation of the BRCA1-induced G2/M arrest. Biochemical studies established that ERK1/2 inhibition abolished the effects of BRCA1 on components of the G2/M checkpoint, including regulation of Cdc25C expression and activation of Wee1 and Chk1 kinases. These results implicate a critical role of ERK1/2 signaling in the regulation of BRCA1 function on controlling the G2/M checkpoint responses.  相似文献   

6.
Berken A  Abel J  Unfried K 《Oncogene》2003,22(52):8524-8528
Integrin-mediated signalling has been implicated in asbestos-induced carcinogenesis. In studies here, we examined signal transduction events associated with integrin-directed cell reactions triggered by crocidolite asbestos in the pleural mesothelial cell line 4/4 RM-4. Crocidolite fibres induced a significant time- and dose-dependent activation of the extracellular-signal-regulated kinases ERK1 and ERK2. ERK activation was specifically inhibited by integrin-blocking agents, that are integrin-binding peptides containing the sequence arginine-glycine-aspartic acid (RGD), and monoclonal antibodies against the integrin beta1-chain. Integrin-dependent activation of ERK1/2 in response to asbestos appeared to be independent of focal adhesion kinase pp125FAK (FAK) since FAK autophosphorylation remained unaffected in crocidolite-exposed mesothelial cells. Instead, we observed striking similarities in the kinetics of asbestos-induced ERK1/2 responses and phosphorylation of protein kinase B (AKT) at serine 473, a possible target residue for integrin-linked kinase. As with ERK activation, asbestos-induced AKT stimulation was significantly blocked by both the RGD-peptide and the beta1-integrin antibodies. These studies are the first to establish that in mesothelial cells ERK1/2 and AKT are simultaneously phosphorylated upon asbestos exposure in a beta1-integrin-dependent manner.  相似文献   

7.
Yan Y  Black CP  Cowan KH 《Oncogene》2007,26(32):4689-4698
Following DNA damage, cells undergo G2/M cell cycle arrest, allowing time for DNA repair. G2/M checkpoint activation involves activation of Wee1 and Chk1 kinases and inhibition of Cdc25A and Cdc25C phosphatases, which results in inhibition of Cdc2 kinase. Results presented in this report indicate that gamma-irradiation (IR) exposure of MCF-7 cells resulted in extracellular signal regulated protein kinase 1 and 2 (ERK1/2) activation and induction of G2/M arrest. Furthermore, inhibition of ERK1/2 signaling resulted in >or=85% attenuation in IR-induced G2/M arrest and concomitant diminution of IR-induced activation of ataxia telangiectasia mutated- and rad3-related (ATR), Chk1 and Wee1 kinases as well as phosphorylation of Cdc25A-Thr506, Cdc25C-Ser216 and Cdc2-Tyr15. Moreover, incubation of cells with caffeine, which inhibits ataxia telangiectasia mutated (ATM)/ATR, or transfection of cells with short interfering RNA targeting ATR abrogated IR-induced Chk1 phosphorylation and G2/M arrest but had no effect on IR-induced ERK1/2 activation. In contrast, inhibition of ERK1/2 signaling resulted in marked attenuation in IR-induced ATR activity with little, if any, effect on IR-induced ATM activation. These results implicate IR-induced ERK1/2 activation as an important regulator of G2/M checkpoint response to IR in MCF-7 cells.  相似文献   

8.
9.
MEK kinase 1 (MEKK1) induces apoptosis through the activation of caspases. The mechanism for MEKK1-induced apoptosis involves caspase-mediated cleavage of MEKK1, releasing a pro-apoptotic 91 kDa kinase fragment that serves to further amplify caspase activation in a feedback loop. Both cleavage of MEKK1 and increased expression of death receptor 4 (DR4, TRAILR1) and death receptor 5 (DR5, TRAILR2) occur following exposure of cells to genotoxins. Overexpression of kinase inactive MEKK1 inhibits MEKK1-mediated apoptosis and effectively blocks death receptor upregulation following etoposide treatment. Herein, we investigate the role of death receptor activation and the ability of AKT/PKB (AKT) to inhibit cell death in MEKK1-induced apoptosis. We show that by preventing DR4 and DR5 activation through expression of decoy receptor 1 (DcR1) and dominant negative FADD, we inhibit MEKK1-induced apoptosis. Furthermore, expression of 91 kDa MEKK1 increased DR4 and FAS mRNA and protein levels. MEKK1-induced apoptosis is amplified by blocking PI-3 kinase activation and overexpression of AKT blocked both MEKK1-induced apoptosis and caspase activation. AKT overexpression also prevented the cleavage of endogenous MEKK1 by genotoxins. AKT did not, however, block MEKK1-induced JNK activation, showing that regulation of the JNK pathway by MEKK1 is independent of its role in regulation of apoptosis. Thus, MEKK1-induced apoptosis requires TRAIL death receptor activation and is blocked by AKT through inhibition of MEKK1 cleavage.  相似文献   

10.
Tissue inhibitors of metalloproteinases (TIMPs) control extracellular matrix (ECM) homeostasis by inhibiting the activity of matrix metalloproteinases (MMPs), which are associated with ECM turnover. Recent studies have revealed that TIMPs are implicated in tumorigenesis in both MMP-dependent and MMP-independent manners. We examined a mechanism by which TIMP-2 stimulated lung adenocarcinoma cell proliferation, independent of MMP inhibition. The stimulation of growth by TIMP-2 in A549 cells required c-Src kinase activation. c-Src kinase activity, induced by TIMP-2, concomitantly increased FAK, phosphoinositide 3-kinase (PI3-kinase)/AKT, and ERK1/2 activation. Selective knockdown of integrin α3β1, known as a TIMP-2 receptor, did not significantly change TIMP-2 growth promoting activity. Furthermore, we showed that high TIMP-2 expression in lung adenocarcinomas is associated with a worse prognosis from multiple cohorts, especially for stage I lung adenocarcinoma. Through integrated analysis of The Cancer Genome Atlas data, TIMP-2 expression was significantly associated with the alteration of driving genes, c-Src activation, and PI3-kinase/AKT pathway activation. Taken together, our results demonstrate that TIMP-2 stimulates lung adenocarcinoma cell proliferation through c-Src, FAK, PI3-kinase/AKT, and ERK1/2 pathway activation in an MMP-independent manner.  相似文献   

11.
Yeh PY  Chuang SE  Yeh KH  Song YC  Chang LL  Cheng AL 《Oncogene》2004,23(20):3580-3588
We recently reported that exposure of human cervical carcinoma cells to doxorubicin results in extracellular signal-regulated kinase (ERK)2 activation, which in turn phosphorylates p53 on a previously uncharacterized site, Thr55. This study sought to clarify the biological significance of doxorubicin-induced Thr55 phosphorylation. In breast carcinoma MCF7 cells, doxorubicin (300 nM) activated ERK2 and induced phosphorylation of p53 on Thr55 residues. Pretreatment of MCF7 cells with an ERK2 chemical inhibitor, PD98059 or U0126, blocked doxorubicin-induced p53 activation and suppressed phosphorylation of p53Thr55. MCF55a cells were established by transfection of full-length p53 carrying Thr55 mutation (Thr to Ala) into MCF7 cells. Doxorubicin (500 nM) could not induce p53 activation in MCF55a cells, which showed significantly increased drug resistance toward doxorubicin. While the expression of the apoptotic protein, Bax, showed no difference between MCF7 and MCF55a cells, Bcl-2, an antiapoptotic protein, was constitutively expressed in MCF55a cells. The increase of Bcl-2 protein and/or Bcl-2/Bax ratio might at least partly contribute to the drug resistance of MCF55a cells. In summary, our results suggest that phosphorylation of p53Thr55 by ERK2 is important for doxorubicin-induced p53 activation and cell death.  相似文献   

12.
Activation of the mitogen-activated protein kinases ERK1/2 by the chemotherapeutic agent cisplatin has been shown to result in either survival or cell death. The downstream mediators of these opposing effects are unknown, as are the upstream signaling molecules. Activation of ERK is required for accumulation and phosphorylation of p53 following cisplatin treatment. We studied the role of ERK activation after cisplatin treatment under p53-negative and p53-positive conditions using a tetracycline-dependent expression vector in Saos-2 osteosarcoma cells. Dose-dependent activation of ERK first occurred 3-6 h after a 2-h cisplatin incubation and declined after 12-24 h in several tumor cell lines. Incubation of cell lines with the MEK1 inhibitors PD98059 or UO126 after, but not during, cisplatin treatment completely inhibited cisplatin-induced activation of ERK. The activation of ERK by cisplatin was inhibited by transient transfection with dominant-negative Ras-N17 in Saos-2 cells. Treatment of cells with PD98059 or UO126 after cisplatin incubation or inhibition of signaling through ERK by tetracycline-regulated expression of dominant-inhibitory ERK enhanced resistance to cisplatin in p53-negative osteosarcoma cells and reduced cisplatin-induced apoptosis. P53 was stabilized and phosphorylated in a MEK1-dependent manner after cisplatin incubation in Kelly neuroblastoma cells. Inhibition of signaling through ERK increased cell survival after cisplatin treatment in these cells as well. Expression of functional p53 did not change the proapoptotic effects of ERK activation in response to cisplatin in Saos-2 cells. Our results suggest that cisplatin-induced activation of ERK is mediated by Ras. ERK activation increased cisplatin-induced cell death independently of p53 in osteosarcoma and neuroblastoma cell lines.  相似文献   

13.
The role of death receptor 5 (DR5), a well-known cell surface pro-apoptotic protein, in the negative regulation of invasion and metastasis of human cancer cells and the underlying mechanisms are largely unknown and were hence the focus of this study. In this report, we have demonstrated that DR5 functions to suppress invasion and metastasis of human cancer cells, as evidenced by enhanced cancer cell invasion and metastasis upon genetic suppression of DR5 either by gene knockdown or knockout. When DR5 is suppressed, FADD and caspase-8 may recruit and stabilize TRAF2 to form a metastasis and invasion signaling complex, resulting in activation of ERK and JNK/AP-1 signaling that mediate the elevation and activation of matrix metalloproteinase-1 (MMP1) and eventual promotion of cancer invasion and metastasis. Our findings thus highlight a novel non-apoptotic function of DR5 as a suppressor of human cancer cell invasion and metastasis and suggest a basic working model elucidating the underlying biology.  相似文献   

14.
It is historically well known that signaling by the PI3K-AKT and MEK1/2-ERK1/2 pathways in a cell type-dependent fashion can collaborate to maintain cell viability.1-3 Signaling pathways can also crosstalk with each other wherein one pathway can signal to either enhance or suppress signaling by another.4 Signaling by the ERK1/2 pathway can also stimulate release of growth factors which can feed back onto tumor cells to re-energize signaling pathways.5 The studies described by Toulany et al. add to this knowledge base by examining the relationship between PI3K-AKT and MEK1/2-ERK1/2 pathway signaling, EGF receptor signaling, K-RAS function, and tumor cell survival.6  相似文献   

15.
OBJECTIVE Overexpression of growth factors and their receptors such as PDGF, FGF, VEGF, IGF, EGF, TGFα etc. play a critical role in the development and progression of malignant gliomas. AKT, one of the most potent downstream signaling effectors of these growth factor receptors is usually overactivated in malignant gliomas. The present study was undertaken to investigate the effects of antisense and dominant negative AKT2 RNA on the survival of glioma cells with overexpression of AKT2. METHODS Antisense and dominant negative AKT2 constructs (AS-AKT2, DN-AKT2) were transfected into human glioblastoma cell line T J905 with overexpression of AKT2. Using Western blotting, MTT assay, Ki67 labeling index (Ki67 LI), flow cytometry and the TUNEL method, the expression of AKT2 and GFAP, the proliferation rate and apoptosis of glioma cells transfected with AS-AKT2 or DN-AKT2 were compared to those characteristics of parental and glioma cells transfected with an empty vector. RESULTS Cell proliferation was inhibited in glioma cells transfected with ASAKT2 and DN-AKT2 RNA, while GFAP expression and apoptosis were markedly increased in those cells. CONCLUSION AKT is an important mediator in the growth signaling pathway of malignant gliomas and is a potential promising therapeutic target for malignant gliomas.  相似文献   

16.
17.
18.
19.
CCR3 is a specific marker of anaplastic large cell lymphoma (ALCL) cells. ALCL cells also express CCL11, a ligand for CCR3, leading to the hypothesis that CCL11 may play an autocrine role in ALCL progression. In this study, we investigated a role of CCL11 in cell survival and growth of human Ki-JK cells, established from an ALCL patient, and murine EL-4 lymphoma cells. Both Ki-JK and EL-4 cells expressed cell surface CCR3. CCL11 increased cell survival rates of Ki-JK cells in a dose-dependent manner, whereas it promoted EL-4 cell proliferation. Furthermore, CCL11 induced phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 in both Ki-JK cells and EL-4 cells. Cell survival and tumor proliferation promoted by CCL11 was completely blocked by inhibition of ERK phosphorylation. CCL11 induced expression of antiapoptotic proteins, Bcl-xL and survivin, in Ki-JK cells. CCL11 also enhanced tumor growth of EL-4 and Ki-JK cells in vivo. Consistent with these results, tumor cells of cutaneous ALCL expressed CCR3 and increased levels of phosphorylated ERK1/2, Bcl-xL, and survivin in situ. Thus, our findings prompt a novel therapeutic approach to treat relapses of an aggressive form of lymphoma based on the discovery that a cell surface marker of disease functions as a critical autocrine growth receptor.  相似文献   

20.
Glioblastoma (GBM) is the most common malignant primary brain tumor of adults and one of the most lethal of all cancers. Epidermal growth factor receptor (EGFR) mutations (EGFRvIII) and phosphoinositide 3-kinase (PI3K) hyperactivation are common in GBM, promoting tumor growth and survival, including through sterol regulatory element-binding protein 1 (SREBP-1)-dependent lipogenesis. The role of cholesterol metabolism in GBM pathogenesis, its association with EGFR/PI3K signaling, and its potential therapeutic targetability are unknown. In our investigation, studies of GBM cell lines, xenograft models, and GBM clinical samples, including those from patients treated with the EGFR tyrosine kinase inhibitor lapatinib, uncovered an EGFRvIII-activated, PI3K/SREBP-1-dependent tumor survival pathway through the low-density lipoprotein receptor (LDLR). Targeting LDLR with the liver X receptor (LXR) agonist GW3965 caused inducible degrader of LDLR (IDOL)-mediated LDLR degradation and increased expression of the ABCA1 cholesterol efflux transporter, potently promoting tumor cell death in an in vivo GBM model. These results show that EGFRvIII can promote tumor survival through PI3K/SREBP-1-dependent upregulation of LDLR and suggest a role for LXR agonists in the treatment of GBM patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号