首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
BACKGROUND: Oropharynx cancers treated with intensity-modulated radiation (IMRT) are often treated with a monoisocentric or half-beam technique (HB). IMRT is delivered to the primary tumor and upper neck alone, while the lower neck is treated with a matching anterior beam. Because IMRT can treat the entire volume or whole field (WF), the primary aim of the study was to test the ability to plan cases using WF-IMRT while obtaining an optimal plan and acceptable dose distribution and also respecting normal critical structures. METHODS AND MATERIALS: Thirteen patients with early-stage oropharynx cancers had treatment plans created with HB-IMRT and WF-IMRT techniques. Plans were deemed acceptable if they met the planning guidelines (as defined or with minor violations) of the Radiation Therapy Oncology Group protocol H0022. Comparisons included coverage to the planning target volume (PTV) of the primary (PTV66) and subclinical disease (PTV54). We also compared the ability of both techniques to respect the tolerance of critical structures. RESULTS: The volume of PTV66 treated to >110% was less in 9 of the 13 patients in the WF-IMRT plan as compared to the HB-IMRT plan. The calculated mean volume receiving >110% for all patients planned with WF-IMRT was 9.3% (0.8%-25%) compared to 13.7% (2.7%-23.7%) with HB-IMRT (p = 0.09). The PTV54 volume receiving >110% of dose was less in 10 of the 13 patients planned with WF-IMRT compared to HB-IMRT. The mean doses to all critical structures except the larynx were comparable with each plan. The mean dose to the larynx was significantly less (p = 0.001), 18.7 Gy, with HB-IMRT compared to 47 Gy with WF-IMRT. CONCLUSIONS: Regarding target volumes, acceptable plans can be generated with either WF-IMRT or HB-IMRT. WF-IMRT has an advantage if uncertainty at the match line is a concern, whereas HB-IMRT, particularly in cases not involving the base of tongue, can achieve much lower doses to the larynx.  相似文献   

2.
PURPOSE: The aim of this study was to quantify the dose delivered to the pharyngo-esophageal axis using different intensity-modulated radiation therapy (IMRT) techniques for treatment of nasopharyngeal carcinoma and to correlate this with acute swallowing toxicity. METHODS AND MATERIALS: The study population consisted of 28 patients treated with IMRT between February 2002 and August 2005: 20 with whole field IMRT (WF-IMRT) and 8 with IMRT fields junctioned with an anterior neck field with central shielding (j-IMRT). Dose to the pharyngo-esophageal axis was measured using dose-volume histograms. Acute swallowing toxicity was assessed by review of dysphagia grade during treatment and enteral feeding requirements. RESULTS: The mean pharyngo-esophageal dose was 55.2 Gy in the WF-IMRT group and 27.2 Gy in the j-IMRT group, p < 0.001. Ninety-five percent (19/20) of the WF-IMRT group developed Grade 3 dysphagia compared with 62.5% (5/8) of the j-IMRT group, p = 0.06. Feeding tube duration was a median of 38 days for the WF-IMRT group compared with 6 days for the j-IMRT group, p = 0.04. CONCLUSIONS: Clinical vigilance must be maintained when introducing new technology to ensure that unanticipated adverse effects do not result. Although newer planning systems can reduce the dose to the pharyngo-esophageal axis with WF-IMRT, the j-IMRT technique is preferred at least in patients with no gross disease in the lower neck.  相似文献   

3.
4.
PURPOSE: To retrospectively evaluate which dose-volumetric parameters are associated with the risk of > or = Grade 3 acute esophageal toxicity (AET) in lung cancer patients treated with three-dimensional conformal radiotherapy (3D-CRT). METHODS AND MATERIALS: One hundred twenty-four lung cancer patients treated curatively with 3D-CRT were retrospectively analyzed. All patients received conventionally fractionated radiotherapy (RT) with median dose of 60 Gy (range, 54-66 Gy) delivered in 30 fractions (range, 27-33 fractions). Thirty-one patients underwent curative surgery before RT. Ninety-two patients received chemotherapy (induction, 18; concurrent +/- induction, 74). Acute esophageal toxicity was scored by Radiation Therapy Oncology Group criteria. The parameters analyzed included sex; age; Karnofsky performance score; weight loss; surgery; concurrent chemotherapy; the percentages of organ volume receiving > or =20 Gy (V20), > or =30 Gy (V30), > or =40 Gy (V40), > or =50 Gy (V50), > or =55 Gy (V55), > or = 58 Gy (V58), > or =60 Gy (V60), and > or =63 Gy (V63); the percent and absolute length of the esophagus irradiated; the maximum and mean dose to the esophagus; and normal tissue complication probability. RESULTS: Of the 124 patients, 15 patients (12.1%) had Grade 3 AET, and 1 (0.8%) patient had Grade 4 AET. There was no fatal Grade 5 AET. In univariate and multivariate logistic regression analyses, concurrent chemotherapy and V60 were significantly associated with the development of severe (> or = Grade 3) AET (p < 0.05). Severe AET was observed in 15 of 74 patients (20.3%) who received concurrent chemotherapy, and in 1 of 50 patients (2.0%) who did not (p = 0.002). Severe AET was observed in 5 of 87 patients (5.7%) with V60 < or = 30% and in 11 of 37 patients (29.7%) with V60 > 30% (p < 0.001). Among 50 patients who did not receive concurrent chemotherapy, severe AET was observed in 0 of 43 patients (0%) with V60 < or = 30% and in 1 of 7 patients (14.2%) with V60 > 30% (p = 0.140). Among 74 patients who received concurrent chemotherapy, severe AET was observed in 5 of 44 patients (11.4%) with V60 < or = 30% and in 10 of 30 patients (33.3%) with V60 > 30% (p = 0.037). CONCLUSIONS: Concurrent chemotherapy and V60 were associated with the development of severe AET > or = Grade 3. For patients being treated with concurrent chemotherapy, V60 is considered to be a useful parameter predicting the risk of severe AET after conventionally fractionated 3D-CRT for lung cancer.  相似文献   

5.
目的通过比较调强放射治疗(IMRT)与三维适形放射治疗(3DCRT)两种不同照射技术,探讨宫颈癌根治性放射治疗采用调强放射治疗技术对危及器官的保护。方法10例常规体外和腔内放射治疗的Ⅱ_b~Ⅲ_b宫颈癌患者,放疗前行CT扫描并勾画靶区。临床靶区(CTV)包括子宫、宫颈、阴道等原发肿瘤区域及髂总、髂外、髂内、闭孔、骶前淋巴结等区域和其周围组织,计划靶区(PTV)以CTV为基础外放前向10 mm/余各向5 mm形成PTV,处方剂量分别为95%PTV 45Gy、54Gy和63Gy/1.8Gy×25、30和35次,通过DVH图比较两种治疗技术危及器官受照体积与剂量的变化。结果相同处方剂量不同照射技术比较,膀胱和小肠受照体积与剂量IMRT均小于3DCRT照射(P〈0.05);而直肠处方剂量分别为45GY、54GY及63GY时,直肠接受剂量分别高于30Gy、40Gy及50Gy(P〈0.05)的体积,IMRT明显小于3DCRT。不同处方剂量相同照射技术比较,在3DCRT照射技术方面:当处方剂量为63Gy时,膀胱接受40Gy和50Gy剂量的体积分别为93.10±8.77%和81.00±12.81%,明显高于处方剂量为45Gy和54Gy的体积(P=0.000);对于直肠,随着处方剂量的提高,其受照体积轻微增大(P〉0.05);相对小肠而言,处方剂量为54Gy和63Gy时,受照体积变化不大(P〉0.05),但处方剂量为45Gy时,小肠受照剂量高于30Gy的体积小于处方剂量为54Gy或63Gy时的照射体积(P〈0.05)。在IMRT照射技术方面:随着处方剂量的提高,膀胱和小肠受照体积及剂量随之增加(处方剂量为54Gy与63Gy时的V_(20)比较P〉0.05,其余均P〈0.05);对于直肠接受剂量高于30Gy的体积随处方剂量的提高而增加(处方剂量为54Gy与63Gy时的V_(30)比较P=0.376,其余均P〈0.05)。结论随着计划靶区内照射剂量的提高,膀胱、直肠及小肠接受的剂量和体积均随之增高,对危及器官的保护IMRT均优于3DCRT。  相似文献   

6.
PURPOSE: To establish dosimetric predictors of radiation esophagitis (RE) in patients treated with a combination of carboplatin, paclitaxel, and radiotherapy. METHODS AND MATERIALS: Three-dimensional radiotherapy plans of 26 patients with non-small-cell lung cancer who received 50-60 Gy of radiotherapy concurrently with weekly administration of carboplatin (AUC 2) and paclitaxel (40-45 mg/m(2)) were reviewed in conjunction with RE. The factors analyzed included the following: percentages of organ volumes receiving >40 Gy (V40), >45 Gy (V45), >50 Gy (V50), and >55 Gy (V55); the length of esophagus (total circumference) treated with >40 Gy (LETT40), >45 Gy (LETT45), >50 Gy (LETT50), and >55 Gy (LETT55); the maximum dose in the esophagus (Dmax); and the mean dose in the esophagus (Dmean). Data were obtained on the basis of superposition algorithm. RESULTS: All factors except Dmax showed statistical correlation with RE. Good correlations were shown between RE and LETT45 (rho = 0.714) and V45 (rho = 0.686). CONCLUSIONS: LETT45 and V45 appear to be useful dosimetric predictors of RE. It is also suggested that Dmax does not predict RE.  相似文献   

7.
目的 探讨调强放疗同步化疗治疗宫颈癌的过程中出现严重血液学毒性的相关因素。方法 回顾性分析126例调强放疗同步化疗的宫颈癌患者资料,对同步放化疗期间可能与严重血液学毒性相关的因素进行单因素和多因素分析。结果 单因素分析显示严重血液学毒性的发生与治疗前肌酐水平、放疗前是否接受化疗及是否有骨髓抑制、骨盆骨髓平均剂量、V20、V40及V50有关(P<0.05)。多因素分析显示骨盆骨髓平均剂量(OR: 1.004, 95%CI: 1.002~1.007)、V40(<41% vs. ≥41%, OR: 0.040, 95%CI: 0.007~0.235)、V50 (<9% vs. ≥ 9%, OR: 0.040, 95%CI: 0.011~0.152)和治疗前肌酐水平(<65 μmol/L vs.≥65 μmol/L, OR: 0.116, 95%CI: 0.030~0.441)与3~4级血液学毒性相关。结论 治疗前肌酐<65 μmol/L、V40<41%和V50<9%是宫颈癌患者同步放化疗期间3~4级血液学毒性发生率降低的相关因素。骨盆骨髓平均剂量越高,血液学毒性发生率增高。治疗前评估肾功能水平,严格控制骨盆骨髓的放疗照射体积及剂量,能减少宫颈癌患者血液学毒性发生,是顺利完成调强放疗同步化疗的保障。  相似文献   

8.
PURPOSE: The aim of this study was to quantify gains in lymph node coverage and critical structure dose reduction for whole-pelvis (WP) and extended-field (EF) radiotherapy in prostate cancer using intensity-modulated radiotherapy (IMRT) compared with three-dimensional conformal radiotherapy (3DCRT) for the first treatment phase of 45 Gy in the concurrent treatment of lymph nodes and prostate. METHODS AND MATERIALS: From January to August 2005, 35 patients with localized prostate cancer were treated with pelvic IMRT; 7 had nodes defined up to L5-S1 (Group 1), and 28 had nodes defined above L5-S1 (Group 2). Each patient had 2 plans retrospectively generated: 1 WP 3DCRT plan using bony landmarks, and 1 EF 3DCRT plan to cover the vascular defined volumes. Dose-volume histograms for the lymph nodes, rectum, bladder, small bowel, and penile bulb were compared by group. RESULTS: For Group 1, WP 3DCRT missed 25% of pelvic nodes with the prescribed dose 45 Gy and missed 18% with the 95% prescribed dose 42.75 Gy, whereas WP IMRT achieved V(45 Gy) = 98% and V(42.75 Gy) = 100%. Compared with WP 3DCRT, IMRT reduced bladder V(45 Gy) by 78%, rectum V(45 Gy) by 48%, and small bowel V(45 Gy) by 232 cm3. EF 3DCRT achieved 95% coverage of nodes for all patients at high cost to critical structures. For Group 2, IMRT decreased bladder V(45 Gy) by 90%, rectum V(45 Gy) by 54% and small bowel V(45 Gy) by 455 cm3 compared with EF 3DCRT. CONCLUSION: In this study WP 3DCRT missed a significant percentage of pelvic nodes. Although EF 3DCRT achieved 95% pelvic nodal coverage, it increased critical structure doses. IMRT improved pelvic nodal coverage while decreasing dose to bladder, rectum, small bowel, and penile bulb. For patients with extended node involvement, IMRT especially decreases small bowel dose.  相似文献   

9.
PURPOSE: To evaluate retrospectively the utility of intensity-modulated radiotherapy (IMRT) in reducing the volume of normal tissues receiving radiation at varying dose levels when the female pelvis after hysterectomy is treated to doses of 50.4 Gy and 54 Gy. METHODS AND MATERIALS: Computed tomography scans from 10 patients who had previously undergone conventional postoperative RT were selected. The clinical tumor volume (vaginal apex and iliac nodes) and organs at risk were contoured. Margins were added to generate the planning tumor volume. The Pinnacle and Corvus planning systems were used to develop conventional and IMRT plans, respectively. Conventional four-field plans were prescribed to deliver 45 Gy (4F(45 Gy)) or 50.4 Gy; eight-field IMRT plans were prescribed to deliver 50.4 Gy (IMRT(50.4 Gy)) or 54 Gy (IMRT(54 Gy)) to the planning tumor volume. All plans were normalized so that > or =97% of the planning tumor volume received the prescribed dose. Student's t test was used to compare the volumes of organs at risk receiving the same doses with different plans. RESULTS: The mean volume of bowel receiving > or =45 Gy was lower with the IMRT(50.4 Gy) (33% lower) and IMRT(54 Gy) (18% lower) plans than with the 4F(45 Gy) plan. The mean volume of rectum receiving > or =45 Gy or > or =50 Gy was also significantly reduced with the IMRT plans despite an escalation of the prescribed dose from 45 Gy with the conventional plans to 54 Gy with IMRT. The mean volume of bladder treated to 45 Gy was the same or slightly lower with the IMRT(50.4 Gy) and IMRT(54 Gy) plans compared with the 4F(45 Gy) plan. Compared with the 4F(45 Gy) plan, the IMRT(50.4 Gy) plan resulted in a smaller volume of bowel receiving 35-45 Gy and a larger volume of bowel receiving 50-55 Gy. Compared with the 4F(45 Gy) plan, the IMRT(54 Gy) plan resulted in smaller volumes of bowel receiving 45-50 Gy; however, small volumes of bowel received 55-60 Gy with the IMRT plan. CONCLUSION: Intensity-modulated RT may permit an increase in the radiation dose that can safely be delivered to the central pelvis and pelvic lymph nodes after hysterectomy. However, dose-volume calculations using individual CT scans do not account for internal organ motion. Detailed data concerning the relationships among radiation dose, treatment volume, and treatment effects are lacking, and prospective studies of pelvic IMRT are needed to determine the safety and efficacy of this treatment.  相似文献   

10.
PURPOSE: To systematically evaluate four different techniques of radiation therapy (RT) used to treat non-small-cell lung cancer and to determine their efficacy in meeting multiple normal-tissue constraints while maximizing tumor coverage and achieving dose escalation. METHODS AND MATERIALS: Treatment planning was performed for 18 patients with Stage I to IIIB inoperable non-small-cell lung cancer using four different RT techniques to treat the primary lung tumor +/- the hilar/mediastinal lymph nodes: (1) Intensity-modulated radiation therapy (IMRT), (2) Optimized three-dimensional conformal RT (3D-CRT) using multiple beam angles, (3) Limited 3D-CRT using only 2 to 3 beams, and (4) Traditional RT using elective nodal irradiation (ENI) to treat the mediastinum. All patients underwent virtual simulation, including a CT scan and (18)fluorodeoxyglucose positron emission tomography scan, fused to the CT to create a composite tumor volume. For IMRT and 3D-CRT, the target included the primary tumor and regional nodes either > or =1.0 cm in short-axis dimension on CT or with increased uptake on PET. For ENI, the target included the primary tumor plus the ipsilateral hilum and mediastinum from the inferior head of the clavicle to at least 5.0 cm below the carina. The goal was to deliver 70 Gy to > or =99% of the planning target volume (PTV) in 35 daily fractions (46 Gy to electively treated mediastinum) while meeting multiple normal-tissue dose constraints. Heterogeneity correction was applied to all dose calculations (maximum allowable heterogeneity within PTV 30%). Pulmonary and esophageal constraints were as follows: lung V(20) < or =25%, mean lung dose < or =15 Gy, esophagus V(50) < or =25%, mean esophageal dose < or =25 Gy. At the completion of all planning, the four techniques were contrasted for their ability to achieve the set dose constraints and deliver tumoricidal RT doses. RESULTS: Requiring a minimum dose of 70 Gy within the PTV, we found that IMRT was associated with a greater degree of heterogeneity within the target and, correspondingly, higher mean doses and tumor control probabilities (TCPs), 7%-8% greater than 3D-CRT and 14%-16% greater than ENI. Comparing the treatment techniques in this manner, we found only minor differences between 3D-CRT and IMRT, but clearly greater risks of pulmonary and esophageal toxicity with ENI. The mean lung V(20) was 36% with ENI vs. 23%-25% with the three other techniques, whereas the average mean lung dose was approximately 21.5 Gy (ENI) vs. 15.5 Gy (others). Similarly, the mean esophagus V(50) was doubled with ENI, to 34% rather than 15%-18%. To account for differences in heterogeneity, we also compared the techniques giving each plan a tumor control probability equivalent to that of the optimized 3D-CRT plan delivering 70 Gy. Using this method, IMRT and 3D-CRT offered similar results in node-negative cases (mean lung and esophageal normal-tissue complication probability [NTCP] of approximately 10% and 2%-7%, respectively), but ENI was distinctly worse (mean NTCPs of 29% and 20%). In node-positive cases, however, IMRT reduced the lung V(20) and mean dose by approximately 15% and lung NTCP by 30%, compared to 3D-CRT. Compared to ENI, the reductions were 50% and >100%. Again, for node-positive cases, especially where the gross tumor volume was close to the esophagus, IMRT reduced the mean esophagus V(50) by 40% (vs. 3D-CRT) to 145% (vs. ENI). The esophageal NTCP was at least doubled converting from IMRT to 3D-CRT and tripled converting from IMRT to ENI. Finally, the total number of fractions for each plan was increased or decreased until all outlined normal-tissue constraints were reached/satisfied. While meeting all constraints, IMRT or 3D-CRT increased the deliverable dose in node-negative patients by >200% over ENI. In node-positive patients, IMRT increased the deliverable dose 25%-30% over 3D-CRT and 130%-140% over ENI. The use of 3D-CRT without IMRT increased the deliverable RT dose >80% over ENI. Using a limited number of 3D-CRT beams decreased the lung V(20), mean dose, and NTCP in node-positive patients. CONCLUSION: The use of 3D-CRT, particul mean dose, and NTCP in node-positive patients.The use of 3D-CRT, particularly with only 3 to 4 beam angles, has the ability to reduce normal-tissue toxicity, but has limited potential for dose escalation beyond the current standard in node-positive patients. IMRT is of limited additional value (compared to 3D-CRT) in node-negative cases, but is beneficial in node-positive cases and in cases with target volumes close to the esophagus. When meeting all normal-tissue constraints in node-positive patients, IMRT can deliver RT doses 25%-30% greater than 3D-CRT and 130%-140% greater than ENI. Whereas the possibility of dose escalation is severely limited with ENI, the potential for pulmonary and esophageal toxicity is clearly increased.  相似文献   

11.
PURPOSE: To investigate dosimetric improvements with respect to tumor-dose conformity and normal tissue sparing using intensity-modulated radiotherapy (IMRT) compared with three-dimensional conformal radiotherapy (3D-CRT) for advanced-stage non-small-cell lung cancer (NSCLC). METHODS AND MATERIALS: Forty-one patients with Stage III-IV and recurrent NSCLC who previously underwent 3D-CRT were included. IMRT plans were designed to deliver 63 Gy to 95% of the planning target volume using nine equidistant coplanar 6-MV beams. Inverse planning was performed to minimize the volumes of normal lung, heart, esophagus, and spinal cord irradiated above their tolerance doses. Dose distributions and dosimetric indexes for the tumors and critical structures in both plans were computed and compared. RESULTS: Using IMRT, the median absolute reduction in the percentage of lung volume irradiated to >10 and >20 Gy was 7% and 10%, respectively. This corresponded to a decrease of >2 Gy in the total lung mean dose and of 10% in the risk of radiation pneumonitis. The volumes of the heart and esophagus irradiated to >40-50 Gy and normal thoracic tissue volume irradiated to >10-40 Gy were reduced using the IMRT plans. A marginal increase occurred in the spinal cord maximal dose and lung volume >5 Gy in the IMRT plans, which could be have resulted from the significant increase in monitor units and thus leakage dose in IMRT. CONCLUSION: IMRT planning significantly improved target coverage and reduced the volume of normal lung irradiated above low doses. The spread of low doses to normal tissues can be controlled in IMRT with appropriately selected planning parameters. The dosimetric benefits of IMRT for advanced-stage non-small-cell lung cancer must be evaluated further in clinical trials.  相似文献   

12.
BACKGROUND AND PURPOSE: To evaluate the feasibility whether intensity-modulated radiotherapy (IMRT) can be used to reduce doses to normal lung than three-dimensional conformal radiotherapy (3 DCRT) in treating distal esophageal malignancies. PATIENTS AND METHODS: Ten patient cases with cancer of the distal esophagus were selected for a retrospective treatment-planning study. IMRT plans using four, seven, and nine beams (4B, 7B, and 9B) were developed for each patient and compared with the 3 DCRT plan used clinically. IMRT and 3 DCRT plans were evaluated with respect to PTV coverage and dose-volumes to irradiated normal structures, with statistical comparison made between the two types of plans using the Wilcoxon matched-pair signed-rank test. RESULTS: IMRT plans (4B, 7B, 9B) reduced total lung volume treated above 10 Gy (V(10)), 20 Gy (V(20)), mean lung dose (MLD), biological effective volume (V(eff)), and lung integral dose (P<0.05). The median absolute improvement with IMRT over 3DCRT was approximately 10% for V(10), 5% for V(20), and 2.5 Gy for MLD. IMRT improved the PTV heterogeneity (P<0.05), yet conformity was better with 7B-9B IMRT plans. No clinically meaningful differences were observed with respect to the irradiated volumes of spinal cord, heart, liver, or total body integral doses. CONCLUSIONS: Dose-volume of exposed normal lung can be reduced with IMRT, though clinical investigations are warranted to assess IMRT treatment outcome of esophagus cancers.  相似文献   

13.
PURPOSE: To evaluate salivary gland function after inversely planned stereotactic intensity-modulated radiotherapy (IMRT) for tumors of the head-and-neck region using quantitative pertechnetate scintigraphy. METHODS AND MATERIALS: Since January 2000, 18 patients undergoing IMRT for cancer of the head and neck underwent pre- and posttherapeutic scintigraphy to examine salivary gland function. The mean dose to the primary planning target volume was 61.5 Gy (range 50.4-73.2), and the median follow-up was 23 months. In all cases, the parotid glands were directly adjacent to the planning target volume. The treatment planning goal was for at least one parotid gland to receive a mean dose of <26 Gy. Two quantitative parameters (change in maximal uptake and change in the relative excretion rate before and after IMRT) characterizing the change in salivary gland function after radiotherapy were determined. These parameters were compared with respect to the dose thresholds of 26 and 30 Gy for the mean dose. In addition, dose-response curves were calculated. RESULTS: Using IMRT, it was possible in 16 patients to reduce the dose for at least one parotid gland to < or =26 Gy. In 7 patients, protection of both parotid glands was possible. No recurrent disease adjacent to the protected parotid glands was observed. Using the Radiation Therapy Oncology Group/European Organization for the Research and Treatment of Cancer scoring system, only 3 patients had Grade 2 xerostomia. No greater toxicity was seen for the salivary glands. The change in the relative excretion rate was significantly greater, if the parotid glands received a mean dose of > or =26 Gy or > or =30 Gy. For the change in maximal uptake, a statistically significant difference was seen only for the parotid glands and a dose threshold of 30 Gy. For the end point of a reduction in the parotid excretion rate of >50% and 75%, the dose-response curves yielded a dose at 50% complication probability of 34.8 +/- 3.6 and 40.8 +/- 5.3 Gy, respectively. CONCLUSION: Using IMRT, it is possible to protect the parotid glands and reduce the incidence and severity of xerostomia in patients. Doses <26-30 Gy significantly preserve salivary gland function. The results support the hypothesis that application of IMRT does not lead to increased local failure rates.  相似文献   

14.
李巧巧  张瑞  张黎  刘孟忠 《中国肿瘤临床》2012,39(16):1211-1215
  目的  在食管多原发癌中比较三维适型、静态调强、容积调强放疗计划的剂量分布。  方法  中山大学肿瘤防治中心放疗科收治的7例食管多原发癌患者, 利用CT模拟定位勾画靶区, 临床靶区包括全食管及全纵隔淋巴结引流区, 计划靶区为临床靶区外扩5 mm, 同时设计3DCRT、7野IMRT和单弧VMAT计划, 比较各个放疗计划靶区及危及器官受照射剂量体积。  结果  靶区内最低剂量IMRT与VMAT明显高于3DCRT[D99:(49.4±0.8)Gy, (49.2±0.7)Gy, (43.9±2.8)Gy, P < 0.001];IMRT、VMAT与3DCRT计划比较, 双肺V30稍低、V5明显升高(V30:11.8%±2.5%, 10.5%±2.1%, 13.2%±2.1%, P=0.096;V5:92.5%±3.2%, 93.6%±5.6%, 68.5%±2.1%, P < 0.001);心脏V30明显减少, 脊髓最高剂量明显降低。VMAT与IMRT计划在靶区均匀性、危及器官照射剂量体积无明显差异, VMAT较IMRT治疗时间明显缩短[(3.0±0.6)min, (6.2±0.2)min, P < 0.001]。  结论  调强设计明显改善处方剂量95%以上剂量覆盖的靶区体积, 降低心脏的V30及脊髓最高剂量, 但同时明显增加全肺V5体积。由于V5体积高于目前的推荐限制剂量, 调强设计全食管/全纵隔放射治疗需要谨慎。另外单弧VMAT与IMRT计划剂量分布无明显区别, 可使治疗时间缩短52%。   相似文献   

15.
Objective To investigate the dosimetric differences in volumetric-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT) in patients receiving adjuvant radiotherapy and internal lymph node irradiation after left-sided modified radical mastectomy. Methods VMAT and IMRT radiotherapy plans were established for 20 patients undergoing left-sided modified radical mastectomy. The dosimetric parameters of the target area and organs at risk were calculated by the dose volume histogram. The categorical variables were tested by χ2 or Fisher′s exact probability test. The continuous variables with normal distribution were analyzed by paired-t test or rank-sum test. Results Among the two radiotherapy techniques, the homogeneity index of IMRT was significantly higher than that of VMAT (P<0.05). The time of VMAT treatment was significantly shorter than that of IMRT (P<0.01). VMAT was superior to IMRT in V20Gy and V30Gy of the affected lung (both P<0.05). VMAT was superior to IMRT in the left anterior descending coronary artery Dmean, Dmax, and heart V30Gy, V40Gy, Dmean and Dmax(all P<0.01). The esophageal Dmean in the VMAT group was superior to that in the IMRT group (P<0.05). The V5Gy and V10Gy of the contralateral lung and the Dmax of the esophagus in the IMRT group were significantly better compared with those in the VMAT group (all P<0.05). Conclusions VMAT can significantly reduce the dose of the heart, contralateral lung, spinal cord, esophagus and other vital organs, and shorten the treatment time. For patients who need adjuvant radiotherapy and internal mammary lymph node irradiation after left-sided modified radical mastectomy, VMAT technology can better protect normal tissues than IMRT.  相似文献   

16.
目的 探讨容积调强弧形治疗(VMAT)和固定野动态调强放疗(IMRT)在左侧乳腺癌改良根治术后需辅助放疗并内乳淋巴结照射患者的剂量学差异。方法 对20例左侧乳腺癌患者制定VMAT和IMRT两种放疗计划。通过剂量体积直方图计算靶区和危及器官剂量学参数。对分类变量行χ2Fisher′s精确概率法检验,连续变量根据正态性采用配对t检验或秩和检验。结果 IMRT靶区均匀性指数比VMAT高(P<0.05)。VMAT治疗时间较IMRT更短(P<0.01)。VMAT患侧肺V20Gy、V30Gy优于IMRT (P<0.05)。VMAT在冠脉左前降支Dmean、Dmax和心脏V30Gy、V40Gy、Dmean、Dmax优于IMRT (P<0.01)。食管DmeanVMAT优于IMRT (P<0.05),但健侧肺V5Gy、V10Gy和食管DmaxIMRT优于VMAT (P<0.05)。结论 VMAT可以显著减少心脏、健侧肺、脊髓、食管照射剂量,缩短治疗时间。对于左侧乳腺癌根治术后需辅助放疗并照射内乳淋巴结的患者,VMAT技术比IMRT技术可以更好保护正常组织。  相似文献   

17.
BACKGROUND AND PURPOSE: To define the potential advantages of intensity-modulated radiotherapy (IMRT) applied using a non-coplanar dynamic arc technique for the treatment of head and neck cancer. MATERIALS AND METHODS: External beam radiotherapy (EBRT) was planned in ten patients with head and neck cancer using coplanar IMRT and non-coplanar arc techniques, termed intensity modulated non-coplanar arc EBRT (INCA). Planning target volumes (PTV1) of first order covered the gross tumor volume and surrounding clinical target volume treated with 68-70 Gy, whereas PTV2 covered the elective lymph nodes with 54-55 Gy using a simultaneous internal boost. Treatment plan comparison between IMRT and INCA was carried out using dose-volume histogram and "equivalent uniform dose" (EUD). RESULTS: INCA resulted in better dose coverage and homogeneity of the PTV1, PTV2, and reduced dose delivered to most of the organs at risk (OAR). For the parotid glands, a reduction of the mean dose of 2.9 (+/- 2.0) Gy was observed (p = 0.002), the mean dose to the larynx was reduced by 6.9 (+/- 2.9) Gy (p = 0.003), the oral mucosa by 2.4 (+/- 1.1) Gy (p < 0.001), and the maximal dose to the spinal cord by 3.2 (+/- 1.7) Gy (p = 0.004). The mean dose to the brain was increased by 3.0 (+/- 1.4) Gy (p = 0.002) and the mean lung dose increased by 0.2 (+/- 0.4) Gy (p = 0.87). The EUD suggested better avoidance of the OAR, except for the lung, and better coverage and dose uniformity were achieved with INCA compared to IMRT. CONCLUSION: Dose delivery accuracy with IMRT using a non-coplanar dynamic arc beam geometry potentially improves treatment of head and neck cancer.  相似文献   

18.
We review our recent experience with intensity-modulated radiation therapy (IMRT) and conventional three-dimensional radiation therapy (C3DRT) in advanced head and neck cancer. Sixty-nine patients with Stage IV head and neck cancer (and stage III base of tongue and hypopharynx) enrolled in a Phase II study of definitive chemoradiation; 20 received all or part of their radiation with IMRT. Image-guided set-up, using video subtraction techniques, was used in all patients. Six weekly doses of induction carboplatin (AUC=2) and paclitaxel (135 mg/m2) were followed by alternating weekly chemoradiation to 75 Gy with 1.5 Gy BID fractions, concurrent with paclitaxel (100 mg/m2/week), 5-fluorouracil (600 mg/m2/d) and hydroxyurea (500 mg PO BID). Two consecutive cohorts enrolled, differing in radiation scheme: 75 Gy to gross disease in both, 60 or 54 Gy to first echelon lymphatics and 45 or 39 Gy to second echelon lymphatics. With a median follow-up of 47 months, 3-year overall survival is 68.5% and 3-year locoregional control is 94.0%, with no significant differences between those treated with C3DRT versus IMRT, nor between the two radiation dosing schemes. Actuarial overall survival without tracheostomy or laryngectomy, or without a gastrostomy tube was also similar. Acute mucositis, dermatitis and pain were similar with C3DRT and IMRT. Preliminary data suggests IMRT is well tolerated, and does not compromise locoregional control, indicating that IMRT adequately covers the clinical volume at risk. Building on the present clinical experience, future directions include more directed efforts at reducing toxicity, with better planning software and planning techniques.  相似文献   

19.

BACKGROUND:

The current study was performed to compare the clinical outcomes and toxicity in patients treated with postoperative chemoradiotherapy for gastric cancer using intensity‐modulated radiotherapy (IMRT) versus 3‐dimensional conformal radiotherapy (3D CRT).

METHODS:

Fifty‐seven patients with gastric or gastroesophageal junction cancer were treated postoperatively: 26 with 3D CRT and 31 with IMRT. Concurrent chemotherapy was capecitabine (n = 31), 5‐fluorouracil (5‐FU) (n = 25), or none (n = 1). The median radiation dose was 45 Gy. Dose volume histogram parameters for kidney and liver were compared between treatment groups.

RESULTS:

The 2‐year overall survival rates for 3D CRT versus IMRT were 51% and 65%, respectively (P = .5). Four locoregional failures occurred each in the 3D CRT (15%) and the IMRT (13%) patients. Grade ≥2 acute gastrointestinal toxicity was found to be similar between the 3D CRT and IMRT patients (61.5% vs 61.2%, respectively) but more treatment breaks were needed (3 vs 0, respectively). The median serum creatinine from before radiotherapy to most recent creatinine was unchanged in the IMRT group (0.80 mg/dL) but increased in the 3D CRT group from 0.80 mg/dL to 1.0 mg/dL (P = .02). The median kidney mean dose was higher in the IMRT versus the 3D CRT group (13.9 Gy vs 11.1 Gy; P = .05). The median kidney V20 was lower for the IMRT versus the 3D CRT group (17.5% vs 22%; P = .17). The median liver mean dose for IMRT and 3D CRT was 13.6 Gy and 18.6 Gy, respectively (P = .19). The median liver V30 was 16.1% and 28%, respectively (P < .001).

CONCLUSIONS:

Adjuvant chemoradiotherapy was well tolerated. IMRT was found to provide sparing to the liver and possibly renal function. Cancer 2010. © 2010 American Cancer Society.  相似文献   

20.
目的 近年来放射治疗设备不断更新,放疗技术持续发展,肿瘤放疗方式有了更多的选择.本研究通过评估食管癌的螺旋断层放疗(tomotherapy, TOMO)及三维适形调强放疗(intensity modulation radiation therapy, IMRT)的剂量学特性,为临床上食管癌放疗方式的选择提供依据.方法 选取2014-07-13-2015-02-25浙江省肿瘤医院胸部肿瘤放疗科10例食管癌患者,勾画靶区及正常器官后,分别传输至Raystation及TOMO计划系统,给予肿瘤原发灶(PGTV)61.6 Gy/28次,计划靶区(PTV)56.0 Gy/28次,根据RTOG 1106标准限制危及器官(organs at risk, OAR)剂量.分别对靶区的剂量体积直方图(dose volume histogram, DVH)、均匀性指数(homogeneity index, HI)、适形性指数(conformal index CI)和OAR(肺、心脏、脊髓)受照最大剂量及平均剂量进行评估.结果 两种计划都能满足处方剂量要求和危及器官受量限制.TOMO计划中PGTV的中位均匀性指数(HI)为0.057 5,优于IMRT计划的0.073 5, P=0.047.TOMO计划中PTV的中位适形性指数(CI)为0.785,优于IMRT计划的0.682 5, P=0.009.TOMO计划中PGTV的中位最大剂量Dmax为64.9 Gy,明显低于IMRT计划的66.5 Gy, P=0.005;TOMO计划中PTV的中位最大剂量Dmax为64.1 Gy,明显低于IMRT计划的64.9 Gy, P=0.028. TOMO计划的中位总的肺剂量为10.8 Gy,低于IMRT计划的11.9 Gy, P=0.005.TOMO计划的中位总的心脏剂量为22.6 Gy,明显低于IMRT计划的24.3 Gy, P=0.028. TOMO计划的中位脊髓最大剂量为40.2 Gy,明显低于IMRT计划的41.7 Gy, P=0.007.结论 食管癌放疗中TOMO放疗计划对比IMRT放疗计划,具有更好的靶区覆盖适形性及剂量分布均匀性,同时明显减少双肺、心脏及脊髓的受照剂量.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号