首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Nanoparticles are widely used as drug carriers for controlled, tumor-targeted delivery of various anticancer agents that have biopharmaceutical limitations such as water solubility and tissue permeability. Growing evidence suggests that nanoparticles not only reduce toxic side effects of anticancer drugs but also improve the therapeutic efficacy as a function of their drug-release profile. The purpose of this study is to confirm such hypothetical effects of tunable drug release on improving antitumor activity of nanoparticles in vitro and in vivo, using block copolymer micelles as drug carriers. Micelles were prepared from poly(ethylene glycol)-poly(aspartate) block copolymers modified with hydrazide (HYD), aminobenzoate hydrazide (ABZ) and glycine hydrazide (GLY) linkers to achieve a pH-dependent, tunable release of doxorubicin (DOX), a model anticancer drug. Regardless of the drug-release profile, all three micelles showed similar properties in vitro, such as pH-dependent drug release, intracellular drug delivery and cancer cell growth inhibition. However, micelles releasing DOX slowly in vitro showed that the most effective antitumor activity in vivo, compared to the micelles releasing drugs faster. These results demonstrate that tumor-preferential sustained drug release can enhance the antitumor activity of the micelles.  相似文献   

2.
We reported a simple polydopamine (PDA)-based surface modification method to prepare novel targeted doxorubicin-loaded mesoporous silica nanoparticles and peptide CSNRDARRC conjugation (DOX-loaded MSNs@PDA-PEP) for enhancing the therapeutic effects on bladder cancer. Drug-loaded NPs were characterized in terms of size, size distribution, zeta potential, transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) surface area and drug loading content. In vitro drug release indicated that DOX-loaded MSNs@PDA and MSNs@PDA-PEP had similar release kinetic profiles of DOX. The PDA coating well controlled DOX release and was highly sensitive to pH value. Confocal laser scanning microscopy (CLSM) showed that drug-loaded MSNs could be internalized by human bladder cancer cell line HT-1376, and DOX-loaded MSNs@PDA-PEP had the highest cellular uptake efficiency due to ligand–receptor recognition. The antitumor effects of DOX-loaded nanoparticles were evaluated by the MTT assay in vitro and by a xenograft tumor model in vivo, demonstrating that targeted nanocarriers DOX-loaded MSNs@PDA-PEP were significantly superior to free DOX and DOX-loaded MSNs@PDA. The novel DOX-loaded MSNs@PDA-PEP, which specifically recognized HT-1376 cells, can be used as a potential targeted drug delivery system for bladder cancer therapy.  相似文献   

3.
A series of novel reduction-responsive micelles with tailored size were designed and prepared to release doxorubicin (DOX) for treating glioma, which were developed based on amphiphilic block copolymer poly (2-ethyl-2-oxazoline)-b-poly (ε-caprolactone) (PEtOz-SS-PCL) and the micelle size could be regulated by designing the polymer structure. The DOX-loaded PEtOz-SS-PCL micelles had small size and rapid drug release in reductive intracellular environments. Biodistribution and in vivo imaging studies in C6 glioma mice tumor model showed that DOX loaded PEtOz-SS-PCL43 micelles with the smallest size had superior accumulation and fast drug release in tumor sites. In vivo antitumor activity demonstrated that DOX-loaded PEtOz-SS-PCL43 micelles improved antitumor efficacy in contrast to PEtOz-SS-PCL micelles with larger size toward the orthotopic C6-Luci cells-bearing mice. This study shows great potential in tailoring the micelle size and introducing the responsive bonds or compartment for intracellular drug delivery and release in glioma treatment by designing the architecture of the polymer.  相似文献   

4.
Context: Polymeric nanoparticles (NPs) have been used frequently as drug delivery vehicles. Surface modification of polymeric NPs with specific ligands defines a new biological identity, which assists in targeting of the nanocarriers to specific cancers cells.

Objective: The aim of this study is to develop a kind of modified vector which could target the cancer cells through receptor-mediated pathways to increase the uptake of doxorubicin (DOX).

Methods: Folate (FA)-conjugated PEG–PE (FA–PEG–PE) ligands were used to modify the polymeric NPs. The modification rate was optimized and the physical–chemical characteristics, in vitro release, and cytotoxicity of the vehicle were evaluated. The in vivo therapeutic effect of the vectors was evaluated in human nasopharyngeal carcinoma KB cells baring mice by giving each mouse 100?µl of 10?mg/kg different solutions.

Results: FA–PEG–PE-modified NPs/DOX (FA-NPs/DOX) have a particle size of 229?nm, and 86% of drug loading quantity. FA-NPs/DOX displayed remarkably higher cytotoxicity (812?mm3 tumor volume after 13?d of injection) than non-modified NPs/DOX (1290?mm3) and free DOX solution (1832?mm3) in vivo.

Conclusion: The results demonstrate that the modified drug delivery system (DDS) could function comprehensively to improve the efficacy of cancer therapy. Consequently, the system was shown to be a promising carrier for delivery of DOX, leading to the efficiency of antitumor therapy.  相似文献   

5.
Introduction: The field of nanoparticle-based therapeutic systems is rapidly expanding encompassing a wide variety of practices ranging from detection to diagnosis to treatment. Recently a great potential of nanodiamond (ND) particles as a multimodal imaging/therapy platform has been demonstrated.

Areas covered: This review describes a unique set of properties of ND particles attractive for drug delivery and imaging applications and highlights the most recent ND-based multimodal imaging/therapy approaches and related biocompatibility studies. The spectrum of major advancements includes marked improvements in tumor treatment efficacy and safety based on integration of ND with doxorubicin (DOX). Recent progress of ND-mediated drug delivery in orthopedic, dental and ophthalmic applications is also discussed.

Expert opinion: ND particles possess a unique set of properties attractive for drug delivery applications, including exceptional biocompatibility, large carrier capacity and versatile surface chemistry properties, which enhance drug binding and provide sustainable drug release. Other unique attributes of NDs embrace bright stable fluorescence based on crystallographic defects. A roadmap toward a clinical translation comprises identification of ND-therapeutic compounds that display marked improvements over clinical standards with respects to efficacy, safety and cost.  相似文献   

6.
To specifically deliver cytotoxic drug to tumor cells and enhance cellular uptake is the key for effective cancer therapy. In this paper, we described a novel drug targeting system, which is designed to combine features of biological (cell-penetrating peptides, CPPs) and physical (magnetic) drug targeting for use in the magnetic hyperthermia-triggered release. A doxorubicin–CPPs conjugate (DOX-CPPs) was loaded into thermosensitive magnetic liposomes (TSMLs) (DOX-CPPs/TSMLs), and in vitro DOX-CPPs thermosensitive release activity, anti-proliferation effect, in vivo targeted delivery as well as in vivo antitumor activity were determined. The results demonstrated that the DOX-CPPs/TSMLs showed good physicochemical properties, effective anti-proliferation effect in MCF-7 cells in vitro. Additionally, in vivo study, DOX-CPPs/TSMLs under AC magnetic field displayed superior in vivo targeted delivery efficacy, antitumor efficacy in an MCF-7 xenograft murine model. In conclusion, the application of DOX-CPPs/TSMLs under AC magnetic field may provide a strategy for the selective and efficient delivery of drug.  相似文献   

7.
Immunoliposomes (ILs) can be constructed to target the epidermal growth factor receptor (EGFR) to provide efficient intracellular drug delivery in tumor cells. We hypothesized that this approach might be able to overcome drug resistance mechanisms, which remain an important obstacle to better outcomes in cancer therapy. ILs were evaluated in vitro and in vivo against EGFR-overexpressing pairs of human cancer cells (HT-29 and MDA-MB-231) that either lack or feature the multidrug resistance (mdr) phenotype. In multidrug-resistant cell lines, ILs loaded with doxorubicin (DOX) produced 19–216-fold greater cytotoxicity than free DOX, whereas in nonresistant cells, immunoliposomal cytotoxicity of DOX was comparable with that of the free drug. In intracellular distribution studies, free DOX was efficiently pumped out of the multidrug-resistant tumor cells, whereas immunoliposomal DOX leads to 3.5–8 times higher accumulation of DOX in the cytoplasm and 3.5–4.9 times in the nuclei compared with the free drug. Finally, in vivo studies in the MDA-MB-231 Vb100 xenograft model confirmed the ability of anti-EGFR ILs-DOX to efficiently target multidrug-resistant cells and showed impressive antitumor effects, clearly superior to all other treatments. In conclusion, ILs provide efficient and targeted drug delivery to EGFR-overexpressing tumor cells and are capable of completely reversing the multidrug-resistant phenotype of human cancer cells.  相似文献   

8.
Systemic drug delivery systems (SDDSs) for thyroid cancer treatment are associated with serious side effects including nausea, anorexia, and hair loss as a result of damage to normal tissues. In this study, we investigated the feasibility of a local DDS (LDDS) based on visible light-cured glycol chitosan (GC) hydrogel and doxorubicin?hydrochloride (DOX?HCl), called GC10/DOX, on thyroid cancer treatment in vivo. Visible light irradiation increased the storage modulus and swelling ratio of the GC10/DOX hydrogel precursor. The release of DOX?HCl from GC10/DOX exhibited two unique patterns comprising an initial burst within 18?hours, followed by a controlled and sustained release thereafter. In vitro cell viability testing showed that GC10/DOX had a greater antitumor effect than free DOX?HCl and GC10 hydrogel controls. In vivo, local injection of GC10/DOX near tumor tissue led to a superior antitumor effect compared with controls consisting of free DOX?HCl intravenously injected to the tail vein of thyroid cancer-bearing mouse and GC10 hydrogel subcutaneously injected near the tumor. Altogether, our results suggest that GC10/DOX may have clinical potential for thyroid cancer treatment.  相似文献   

9.
Abstract

Context: Doxorubicin (DOX)-loaded folate-targeted poly(3-hydroxybutyrate-co-3-hydroxyoctanoate) [P(HB-HO)] nanoparticles [DOX/FA-PEG-P(HB-HO) NPs] have potential application in clinical treatments for cervical cancer due to specific affinity of folate and folate receptor in HeLa cells.

Objective: The aim of this study was to develop an optimized formulation for DOX/FA-PEG-P(HB-HO) NPs, and investigate the targeting and efficacies of the nanoparticles.

Materials and methods: DOX/FA-PEG-P(HB-HO) NPs were prepared by W1/O/W2 solvent extraction/evaporation method, and an orthogonal experimental design [L9 (34)] was applied to establish the optimum conditions. The physico–chemical characteristics, microscopic observation and in vivo antitumor study of the nanoparticles were evaluated.

Results: The optimum formulation was obtained with DOX 10% (w/v), FA-PEG-P(HB-HO) 6.5% (w/v), PVA 3%(w/v) and oil phase/internal water phase volume ratio of 3/1. The size distribution, drug loading and encapsulation efficiency of the optimized nanoparticles were 150–350?nm, 29.6?±?2.9% and 83.5?±?5.7%, respectively. In vitro release study demonstrated that 80% of the drug could release from the nanoparticles within 11 days. Furthermore, in vitro microscopic observation and in vivo antitumor study showed that DOX/FA-PEG-P(HB-HO) NPs could inhibit HeLa cells effectively, and the tumor inhibition rate (TIR) in vivo was 76.91%.

Discussion and conclusions: DOX/FA-PEG-P(HB-HO) NPs have been successfully developed and optimized. In vitro drug release study suggested a sustained release profile. Moreover, DOX/FA-PEG-P(HB-HO) NPs could effectively inhibit HeLa cells with satisfying targeting, and reduce side effects and toxicity to normal tissues. DOX/FA-PEG-P(HB-HO) NPs were superior in terms of inhibiting HeLa tumor over non-targeted formulations therapy.  相似文献   

10.
Drug resistance is the major challenge facing cancer chemotherapy and nanoscale delivery systems based on natural materials, such as sericin, are a promising means of overcoming drug resistance. Yet, no attempt of introducing synthetic poly(γ-benzyl-L-glutamate) (PBLG) onto sericin polypeptide to fabricate a facile biocompatible and biodegradable micelle has been tried. Here, we prepared a polypeptide-based amphiphilic polymer containing hydrophilic sericin polypeptide backbone and PBLG side chains via ring-opening polymerization (ROP) strategy. The introduction of PBLG side chains remarkably enhances the stability of sericin micelles in water. Meanwhile, the micelles exhibited a high loading capacity and pH-responsive release ability for antitumor drug doxorubicin (DOX), called sericin-PBLG-DOX. Owing to the excellent cell membrane penetration of sericin-PBLG, the cellular uptake of DOX when loaded into micelles was improved. Subsequently, sericin-PBLG-DOX was transferred into perinuclear lysosomes, where the release rate of DOX was accelerated. Compared to the same dose of DOX, sericin-PBLG-DOX could induce a more efficient anti-tumor effect both in vitro and in vivo, and these micelles have promise for future clinical applications in overcoming cancer drug resistance with good biosafety, enhanced cellular uptake, pH-triggered drug release, efficient anti-tumor effects, and minimized systemic toxicity.  相似文献   

11.
One of the new strategies to improve cancer chemotherapy is based on new drug delivery systems, like the polyethylene glycol-coated superparamagnetic iron oxide nanoparticles (PEG-SPION, thereafter called PS). In this study, PS are loaded with doxorubicin (DOX) anticancer drug, using a pre-formed DOX-Fe2+ complex reversible at lower pH of tumour tissues and cancer cells. The DOX loaded PS (DLPS, 3% w/w DOX/iron oxide) present a hydrodynamic size around 60 nm and a zeta potential near zero at physiological pH, both parameters being favourable for increased colloidal stability in biological media and decreased elimination by the immune system. At physiological pH of 7.4, 60% of the loaded drug is gradually released from the DLPS in ∼2 h. The intracellular release and distribution of DOX is followed by means of confocal spectral imaging (CSI) of the drug fluorescence. The in vitro cytotoxicity of the DLPS on MCF-7 breast cancer cells is equivalent to that of a DOX solution. The reversible association of DOX to the SPION surface and the role of polymer coating on the drug loading/release are discussed, both being critical for the design of novel stealth magnetic nanovectors for chemotherapy.  相似文献   

12.
Galactose-modified selenium nanoparticles (GA-SeNPs) loading with doxorubicin (DOX) for hepatocellular carcinoma (HCC) therapy was investigated in this paper. Selenium nanoparticles (SeNPs) were modified with galactose as tumor targeting moiety to fabricate tumor-targeted delivery carrier GA-SeNPs, then doxorubicin was loaded onto the surface of GA-SeNPs for improving antitumor efficacy of DOX in HCC therapy. Chemical structure characterization of GA-Se@DOX showed that DOX was successfully loaded to the surface of GA-SeNPs to prepare functionalized antitumor drug delivery system GA-Se@DOX. GA-Se@DOX exhibited effective cellular uptake in HepG2 cells and entered HepG2 cells mainly by clathrin-mediated endocytosis pathway. GA-Se@DOX showed significant activity to induce the apoptosis of HepG2 cells in vitro. The western blotting result indicated that GA-Se@DOX induced HepG2 cells apoptosis via activating caspase signaling and Bcl-2 family proteins. Moreover, active targeting delivery system GA-Se@DOX exhibited excellent antitumor efficacy in vivo in comparison with passive targeting delivery system Se@DOX. Histology analysis showed that GA-Se@DOX exhibited no obvious damage to major organs including heart, liver, spleen, lung, and kidney under the experimental condition. Taken together, GA-Se@DOX may be one novel promising nanoscale drug candidate for HCC therapy.  相似文献   

13.
A liver-targeting drug delivery system for doxorubicin (DOX), that is, DOX-loaded self-assembled nanoparticles based on galactosylated O-carboxymethyl chitosan-graft-stearic acid conjugates (Gal-OS/DOX), has been prepared. The objective of the present study was to investigate the preparation, in vitro release, in vivo pharmacokinetics, and tissue distribution of Gal-OS/DOX nanoparticles. The drug-loaded nanoparticles were spherical in shape with mean size of 181.9 nm. In vitro release profiles indicated that the release of DOX from Gal-OS/DOX nanoparticles behaved with a sustained and pH-dependent drug release. Pharmacokinetics study revealed Gal-OS/DOX nanoparticles exhibited a higher AUC value and a prolonged residence time of drug in the blood circulation than those of DOX solution. Furthermore, Gal-OS/DOX nanoparticles increased the uptake of DOX in liver and spleen, but decreased uptake in heart, lung, and kidney in the tissue distribution study. These results suggested that the Gal-OS/DOX nanoparticles could prolong blood circulation time, enhance the liver accumulation, and reduce the side effect especially the cardiotoxicity of DOX. In conclusion, Gal-OS/DOX nanoparticles could be a promising drug delivery system for liver cancer therapy.  相似文献   

14.
The objective of this study was to describe the magnetic nanoparticle–drug conjugates for improved control of drug delivery and drug release. The widely used anticancer agent Doxorubicin (DOX) was successfully conjugated via amine groups to the carboxylic functional groups coating magnetic nanoparticles (fluidMAG-CMX). Following purification of the nanoparticles, the conjugation of DOX on fluidMAG-CMX was confirmed using FTIR spectroscopy and confocal microscopy. The observed drug loading capacity of DOX was 22.3%. Studies of magnetically triggered release were performed under an oscillating magnetic field (OMF). DOX exhibited a significant release percentage of 70% under an OMF, as compared with the release in enzyme. A magnetic field turn-on and turn-off experiment was also conducted to confirm the control of drug release using this triggered system. In vivo experiments indicated that the tumor-inhibitory rate of CMX–DOX NPs under a magnetic field was higher than the other control groups. According to the toxicity assessments, CMX–DOX NPs were not noticeably toxic to mice at our tested dose.  相似文献   

15.
Chemotherapy is currently an irreplaceable strategy for cancer treatment. Doxorubicin hydrochloride (DOX) is a clinical first-line drug for cancer chemotherapy. While its efficacy for cancer treatment is greatly compromised due to invalid enrichment or serious side effects. To increase the content of intracellular targets and boost the antitumor effect of DOX, a novel biotinylated hyaluronic acid-guided dual-functionalized CaCO3-based drug delivery system (DOX@BHNP) with target specificity and acid-triggered drug-releasing capability was synthesized. The ability of the drug delivery system on enriching DOX in mitochondria and nucleus, which further cause significant tumor inhibition, were investigated to provide a more comprehensive understanding of this CaCO3-based drug delivery system. After targeted endocytosis by tumor cells, DOX could release faster in the weakly acidic lysosome, and further enrich in mitochondria and nucleus, which cause mitochondrial destruction and nuclear DNA leakage, and result in cell cycle arrest and cell apoptosis. Virtually, an effective tumor inhibition was observed in vitro and in vivo. More importantly, the batch-to-batch variation of DOX loading level in the DOX@BHNP system is negligible, and no obvious histological changes in the main organs were observed, indicating the promising application of this functionalized drug delivery system in cancer treatment.  相似文献   

16.
Multi-drug delivery systems, which may be promising solution to overcome obstacles, have limited the clinical success of multi-drug combination therapies to treat cancer. To this end, we used three different anticancer agents, Cu(BpT)Br, NAMI-A, and doxorubicin (DOX), to build human serum albumin (HSA)-based multi-drug delivery systems in a breast cancer model to investigate the therapeutic efficacy of overcoming single drug (DOX) resistance to cancer cells in vivo, and to regulate the drugs’ release from HSA. The HSA complex structure revealed that NAMI-A and Cu(BpT)Br bind to the IB and IIA sub-domain of HSA by N-donor residue replacing a leaving group and coordinating to their metal centers, respectively. The MALDI-TOF mass spectra demonstrated that one DOX molecule is conjugated with lysine of HSA by a pH-sensitive linker. Furthermore, the release behavior of three agents form HSA can be regulated at different pH levels. Importantly, in vivo results revealed that the HSA–NAMI-A–Cu(BpT)Br–DOX complex not only increases the targeting ability compared with a combination of the three agents (the NAMI-A/Cu(BpT)Br/DOX mixture), but it also overcomes DOX resistance to drug-resistant breast cancer cell lines.  相似文献   

17.
《Drug delivery》2013,20(3):389-399
Abstract

Context: The sustained release implants can be directly implanted in tumor site by surgery and are promising for cancer treatment.

Objective: RGD-modified PEGylated polyamidoamine (PAMAM) dendrimer with doxorubicin (DOX) conjugated by acid-sensitive linkage (RGD-PPCD) was a potential conjugate for tumor-targeted therapy. In order to enhance tumor retention ability and long-term effect of drug, we developed the DOX and its conjugate implants using poly(dl-lactic-co-glycolic acid) (PLGA), poly(dl-lactic acid) (PLA) and polyethylene glycol (PEG) as carrier materials.

Methods: The implants were prepared by a simple solvent evaporation method. Different formulations with varying ratios of three polymers were designed, prepared and evaluated on the basis of viscosity, in vitro release and drying time. Furthermore, in vivo biodistribution and antitumor activity of the implants were studied in mice with subcutaneous C6 xenografts.

Results: The optimized formulation was obtained with the 3:1 ratio of PLGA/PLA (w/w) and 1% PEG (wt.%). The drug release behavior of DOX, PPCD and RGD-PPCD implants prepared by the optimized formulation was similar according to the assessment of similarity factor f2, and the release curves were fell into three phases, including a lag-period, then the second phase which was consistent with zero-order model followed by a plateau. Data of total DOX remained in implants indicated the release were faster in vivo than in vitro. Moreover, intratumoral drug amount of RGD-PPCD implants was the highest 45 days after implantation. Correspondingly, the RGD-PPCD implants exhibited the strongest antitumor activity compared with PPCD and free DOX implants.

Discussion and conclusion: This paper presents an exploratory research on macromolecule-drug conjugates, including RGD-PPCD and PPCD, which have the potential to be developed into long-term effect implants for tumor therapy with high efficiency and low systematic toxicity.  相似文献   

18.
Visualization of a drug delivery system could reveal the pharmacokinetic properties, which is essential for the design of a novel drug delivery system. In vivo optical imaging offers an advanced tool to monitor the drug release process and the therapeutic effect by the combination of fluorescence imaging and bioluminescence imaging. Multispectral fluorescence imaging can separate the drug and the carrier without interference. Herein, a dual fluorescent anti-tumor drug delivery system was monitored with the doxorubicin-loaded hydrogel to further explore the application of the porphyrin-incorporated hydrogel with four-arm PEG-PCL copolymer as a drug carrier, based on the beneficial fluorescence and good biocompatibility of the porphyrin incorporated hydrogel. Using nude mice bearing luciferase expressed hepatic tumor as models, the whole process from the drug delivery to the tumor therapeutic effects were real time visualized simultaneously after administration at interval from 0 to 18 d. The imaging results suggest that the fluorescence signals of the drug and the carrier can be separated and unmixed from the drug-loaded hydrogel successfully, avoiding the interference of the fluorescence signals. The tumor growth or inhibition can be real time tracked and analyzed quantitatively by bioluminescence imaging. Noninvasive continuous tracking the in vivo drug delivery process simultaneously is a potential trend for the precise drug delivery and treatment.  相似文献   

19.
Chondroitin sulfate A-deoxycholic acid (CSA-DOCA)-based nanoparticles (NPs) were produced for tumor-targeted delivery of doxorubicin (DOX). The hydrophobic deoxycholic acid (DOCA) derivative was conjugated to the hydrophilic chondroitin sulfate A (CSA) backbone via amide bond formation, and the structure was confirmed by 1H-nuclear magnetic resonance (NMR) analysis. Loading the DOX to the CSA-DOCA NPs resulted in NPs with an approximately 230 nm mean diameter, narrow size distribution, negative zeta potential, and relatively high drug encapsulation efficiency (up to 85%). The release of DOX from the NPs exhibited sustained and pH-dependent release profiles. The cellular uptake of DOX from the CSA-DOCA NPs in CD44 receptor-positive human breast adenocarcinoma MDA-MB-231 cells was reduced when co-treated with free CSA, indicating the interaction between CSA and the CD44 receptor. The lower IC50 value of DOX from the CSA-DOCA NPs compared to the DOX solution was also probably due to this interaction. Moreover, the ability of the developed NPs to target tumors could be inferred from the in vivo and ex vivo near-infrared fluorescence (NIRF) imaging results in the MDA-MB-231 tumor-xenografted mouse model. Both passive and active strategies appear to have contributed to the in vivo tumor targetability of the CSA-DOCA NPs. Therefore, these CSA-DOCA NPs could further be developed into a theranostic nanoplatform for CD44 receptor-positive cancers.  相似文献   

20.
The key for better antitumor efficacy is to improve the specificity of antitumor drugs for tumor cells and diminish their cytotoxicity to normal tissues. Targeted nanoparticles as antitumor drug delivery system can resolve this problem. In this study, we prepared folate and TAT (arginine-rich cell-penetrating peptide) modified N-PEG-N′-octyl-chitosan to form the folate/TAT-PEG-OC micelles. Then, the molecular structure, morphology, size distribution and bio-safety of the micelles were characterized. In order to investigate the drug-loading capacity of folate/TAT-PEG-OC micelles, doxorubicin (DOX) was used as model drug to prepare DOX-loaded chitosan micelles. Here, the confocal microscopy was used to evaluate the cellular uptake of DOX/folate/TAT-PEG-OC micelles, while the self-built NIR imaging system was used to evaluate the dynamic behavior of ICG-Der-01/folate/TAT-PEG-OC micelles in vivo. Our results demonstrate that the dual-modified PEG-OC micelles not only have good morphology, uniform size distribution and excellent drug loading capacity, but also show a strong capability for the efficient intracellular uptake and enhanced targeting behaviors in a folate receptor positive tumor model (Bel-7402 human hepatocellular cells). All these results suggest the potential application of folate/TAT-PEG-OC micelles in the targeted diagnosis and therapy to different kinds of folate receptor positive tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号