首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
《Drug delivery》2013,20(6):795-802
Abstract

5-fluorouracil (5-Fu) is an antineoplastic drug, topically used for the treatment of actinic keratosis and nonmelanoma skin cancer. It shows poor percutaneous permeation through the conventionally applicable creams and thus inefficient for the treatment of deep-seated skin cancer. In the present article, transfersomal gel containing 5-Fu was investigated for the treatment of skin cancer. Different formulation of tranfersomes was prepared using Tween-80 and Span-80 as edge activators. The vesicles were characterized for particle size, shape, entrapment efficiency, deformability and in vitro skin permeation. Optimized formulation was incorporated into 1% carbopol 940 gel and evaluated for efficacy in the treatment of skin cancer. 5-Fu-loaded transfersomes (TT-2) has the size of 266.9?±?2.04?nm with 69.2?±?0.98% entrapment efficiency and highest deformability index of 27.8?±?1.08. Formulation TT-2 showed maximum skin deposition (81.3%) and comparable transdermal flux of 21.46?µg/cm2?h. The TT-2-loaded gel showed better skin penetration and skin deposition of the drug than the marketed formulation. Composition of the transfersomal gel has been proved nonirritant to the skin. We concluded that the developed 5-Fu-loaded transfersomal gel improves the skin absorption of 5-Fu and provide a better treatment for skin cancer.  相似文献   

2.
The aim of the present study was to investigate transfersomes as a transdermal delivery system for the poorly soluble drug, sertraline, in order to overcome the troubles associated with its oral delivery. Different transfersomal formulations were prepared with non-ionic surfactant (span 80), soya lecithin, and carbopol 940 by the rotary evaporation sonication method. The prepared formulations were characterized for light microscopy, particle size analysis, drug entrapment, turbidity, drug content, rheological studies, in vitro release, ex vivo permeation, and stability studies. The optimized formulation was evaluated for in vivo studies using the modified forced swim model test. FTIR studies showed compatibility of the drug with excipients. The result revealed that sertraline in all of the formulations was successfully entrapped with uniform drug content. Transfersomal gel containing 1.6% of the drug and 20% of span 80 was concluded to be the optimized formulation (EL-SP4), as it showed maximum drug entrapment (90.4±0.15%) and cumulative percent drug release(73.8%). The ex vivo permeation profile of EL-SP4 was compared with the transfersomal suspension, control gel, and drug solution. The transfersomal gel showed a significantly higher (p<0.05) cumulative amount of drug permeation and flux along with lower lag time than the drug solution and drug gel. It also owed to better applicability due to the higher viscosity imparted by the gel rather than the transfersomal suspension, and no skin irritation was observed. The modified forced swim test in mice revealed that the transfersomal gel had better antidepressant activity as compared to the control gel. Thus, the study substantiated that the transfersomal gel can be used as a feasible alternative to the conventional formulations of sertraline with advanced permeation characteristics for transdermal application.  相似文献   

3.
The objective of the current study was to formulate the eprosartan mesylate loaded transfersomes using different proportions of Phospholipon® 90?G and Tween® 80 (95–75:5–25% w/w). The prepared transfersomes were characterized for their vesicles size, shape, polydispersity index, zeta potential, entrapment efficiency, in vitro skin permeation, confocal laser scanning microscopy, and in vivo skin irritation. Results revealed that the formulated transfersomes were negatively charged, spherical unilamellar structure of 71.18–85.66?nm with entrapment efficiency of 83.00–88.19%, and presented transdermal flux of 1.78–5.02?μg/cm2/h across rat skin. Confocal laser scanning microscopy confirmed that the formulated rhodamine 6?G loaded transfersomes could penetrate deeply and uniformly into rat skin. Additionally, in vivo skin irritation studies revealed that the prepared transfersomes were devoid of any skin irritation potential (erythema and edema). Results of this study revealed that the transfersomes prepared with Tween® 80 could be used to enhance the transdermal delivery of eprosartan mesylate. In conclusion, transdermal transfersomes formulation may prove to be an encouraging drug carrier for eprosartan mesylate and other actives, particularly owing to their simple formulation and unsophisticated scale-up methods.  相似文献   

4.
In the present study, rosuvastatin calcium-loaded nanostructured lipid carriers were developed and optimized for improved efficacy. The ROS-Ca-loaded NLC was prepared using melt emulsification ultrasonication technique and optimized by Box–Behnken statistical design. The optimized NLC composed of glyceryl monostearate (solid lipid) and capmul MCM EP (liquid lipid) as lipid phase (3% w/v), poloxamer 188 (1%) and tween 80 (1%) as surfactant. The mean particle size, polydispersity index (PDI), zeta potential (ζ) and entrapment efficiency (%) of optimized NLC formulation was observed to be 150.3?±?4.67?nm, 0.175?±?0.022, ?32.9?±?1.36?mV and 84.95?±?5.63%, respectively. NLC formulation showed better in vitro release in simulated intestinal fluid (pH 6.8) than API suspension. Confocal laser scanning showed deeper permeation of formulation across rat intestine compared to rhodamine B dye solution. Pharmacokinetic study on female albino Wistar rats showed 5.4-fold increase in relative bioavailability with NLC compared to API suspension. Optimized NLC formulation also showed significant (p?<?0.01) lipid lowering effect in hyperlipidemic rats. Therefore, NLC represents a great potential for improved efficacy of ROS-Ca after oral administration.  相似文献   

5.
The study was designed to fabricate the moxifloxacin nanostructured lipid carriers (MOX-NLCs) loaded in situ gel for opthalmic application to improve the corneal permeation and retention and also subside the toxic effect associated with intracameral injection of moxifloxacin in endophthalmitis treatment. Initially, Box-Behnken design was used to optimize the various factors significantly affecting the final formulation attributes. MOX-NLCs with particle size 232.1 ± 9.2 nm, polydispersity index 0.247 ± 0.031, zeta potential ?16.3 ± 1.6 mV, entrapment efficiency 63.1 ± 2.4%, and spherical shape was achieved. The optimized MOX-NLCs demonstrated the Higuchi release kinetics with highest regression coefficient. Besides this, FTIR, differential scanning calorimetry, and X-ray diffraction results suggested that MOX had excellent compatibility with excipients. Furthermore, the results of ex-vivo permeation study demonstrated 2-fold higher permeation (208.7 ± 17.6 μg), retention (37.26 ± 2.83 μg), and flux (9.57 ± 0.73 μg/cm2 h) compared with free MOX in situ gel. In addition, MOX-NLCs exhibited normal corneal hydration and did not show any sign of structural damage to the corneal tissue as confirmed by histology. Therefore, the findings strongly suggest that MOX-NLCs in situ gel with higher permeation and retention can be a better alternative strategy to prevent and treat the endophthalmitis infection.  相似文献   

6.
The purpose of this research was the fabrication, statistical optimization, and in vitro characterization of insulin-loaded poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) nanoparticles (INS-PHBV-NPs). Nanopar-ticles were successfully developed by double emulsification solvent evaporation method. The NPs were characterized for particle size, entrapment efficiency (EE%), and polydispersity index (PDI). The NPs also were characterized by scanning electron microscopy (SEM), Fourier transformed infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and circular dichroism (CD). The optimum conditions were found to be 1.6% polyvinyl alcohol (PVA), 0.9% of PHBV, and 15?mg/ml of insulin with the aid of the Box–Behnken experimental design results. The optimized NPs showed spherical shape with particle size of 250.21?±?11.37?nm, PDI of 0.12?±?0.01, and with EE% of 90.12?±?2.10%. In vitro drug release pattern followed Korsmeyer–Peppas model and exhibited an initial burst release of 19% with extended drug release of 63.2% from optimized NPs within 27?d. In conclusion, these results suggest that INS-PHBV-NPs could be a promising candidate for designing an injectable sustained release formulation for insulin.  相似文献   

7.
目的 探究五味子提取物对人皮肤细胞氧化损伤的保护作用,开发其在皮肤抗氧化方面的应用。方法 分别采用热水蒸煮和水蒸气蒸馏的方法进行脱色和除味;另外,采用叔丁基过氧化氢(tBHP)诱导的HaCaT细胞氧化应激模型评价五味子提取物对人皮肤细胞氧化损伤的保护作用,采用CCK-8试剂盒检测细胞存活率,AnnexinV-FITC/PI双标记流式细胞仪检测细胞凋亡率,2,7-二氯荧光黄双乙酸盐法检测细胞内活性氧的水平。结果 采用优化后的提取工艺得到了气味变淡且颜色明显变浅的五味子提取物;用北五味子提取物预处理HaCaT细胞6 h后,可有效降低tBHP引起的细胞凋亡,提高细胞存活率,降低细胞内ROS水平。结论 优化后的乙醇提取工艺显著改善了五味子提取物的颜色和气味,并保持了提取物的抗氧化活性,因而有望成为一种应对皮肤氧化损伤的外用保护剂。  相似文献   

8.
The aim of this work is development of a nontoxic, long-term stable solid lipid nanoparticles (SLN) formulation for the loading of Nimesulide (NiM) by a 22 factorial design. The optimized formulation was composed of 10?wt% of glyceryl behenate and 2.5?wt% of poloxamer 188. Immediately after production, Z-Ave of NiM-SLN was 166.1?±?0.114?nm, with a polydispersity index (PI) of 0.171?±?0051 and zeta potential nearly neutral (?3.10?±?0.166?mV). A slight increase of Z-Ave was recorded for NiM-SLN stored at 25?°C for a period of 15?days, whereas at 4?°C particles kept size within similar range. Long-term stability was monitored using TurbiscanLab®, showing a high stability of the nanoparticles with variations in the backscattering profiles below 10%. The release profile of NiM-SLN followed a sustained pattern with ca. 30% of drug released up to 24?h. Empty-SLN and NiM-SLN were nontoxic after exposing Caco-2 cells to the highest concentration (100?μg/mL) up to 48?hours (cell viability higher than 80%). NiM-SLN were lyophilized using different cryoprotectants, producing particles of 463.1?±?36.63?nm (PI 0.491?±?0.027) with 5% trehalose. Solid character of NiM-SLN was confirmed by DSC, recording a recrystallization index of 83% for NiM-SLN and of 74% for lyophilized SLN.  相似文献   

9.
Context: Glioma is a malignant brain tumor with rapid proliferation, infiltrative growth, poor prognosis and it is chemoresistent. Pomegranate seed oil (PSO) has antioxidant, anti-inflammatory and antitumor properties. This study showed the optimization of PSO nanoemulsions (NEs) as an alternative for glioma treatment.

Objective: The study aimed to evaluate PSO NEs cytotoxicity on human blood cells and antiglioma effects against C6 cells.

Materials and methods: NEs were prepared by the spontaneous emulsification method, using PSO at 1.5 and 3.0%, and were evaluated regarding their physical stability and antioxidant activity. Toxicity evaluations in human blood cells were performed in terms of cell viability, genotoxicity, lipid peroxidation, protein carbonylation, catalase activity and hemolysis at 0.1, 0.25 and 0.5?mg/mL PSO, after a 72-h incubation period. In vitro antitumor effect was determined against glioma cells after 24 and 48?h, and astrocytes were used as a non-transformed cell model.

Results: Formulations presented droplet size below 250?nm, low polydispersity index, negative zeta potential and pH in the acid range. NEs and PSO had scavenging capacity around 30% and promoted a proliferative effect in mononuclear cells, increasing about 50% cell viability. No genotoxic and oxidative damage was observed in lipid peroxidation, protein carbonylation and catalase activity evaluations for NEs. Hemolysis study showed a hemolytic effect at high concentrations. Moreover, formulations reduced only tumor cell viability to 47%, approximately.

Discussion and conclusion: Formulations are adequate and safe for intravenous administration. Besides, in vitro antitumor activity indicates that NEs are promising for glioma treatment.  相似文献   

10.
Topical 5-fluorouracil (5-FU) is used for the treatment of actinic keratosis and nonmelanoma skin cancer. Unfortunately, 5-FU per se shows a poor percutaneous permeation, thus reducing its anticancer effectiveness after topical administration. Therefore, we have constructed transfersomes, liposomes, and niosomes of 5-FU for topical applications in this investigation. Transfersomes were prepared by the solvent evaporation method, whereas liposomes and niosomes were constructed by reverse-phase evaporation method. The nanovesicles were characterized for particle size, shape, zeta potential, viscosity, entrapment efficiency, deformability, in-vitro permeation release, and kinetics and retention. Cytotoxicity study was carried out on HaCaT cells. Transfersomes (153.2 ± 10.3 nm), liposomes (120.3 ± 9.8 nm), and niosomes (250.4 ± 8.6 nm) were produced with a maximum entrapment efficiency of 82.4 ± 4.8, 45.4 ± 3.3, and 43.4 ± 3.2%, respectively. Moreover, transmission electron microscopy and atomic force microscopy assure the smooth and spherical shape of nanovesicles. Skin permeation and retention showed better permeability and retention than the nonvesiculized dosage form. The IC50 value of transfersomes (1.02 μmol/l), liposomes (6.83 μmol/l), and niosomes (9.91 μmol/l) was found to be far less than 5-FU (15.89 μmol/l) at 72 h. 5-FU-loaded transfersomes were found to be most cytotoxic on the HaCaT cell line in comparison with liposomes and niosomes. We concluded that vesiculization of 5-FU not only improves the topical delivery, but also enhances the cytotoxic effect of 5-FU. We have presented here a viable formulation of 5-FU for the management of actinic keratosis and nonmelanoma skin carcinoma.  相似文献   

11.
The trans-resveratrol (t-res), a non-flavonoid polyphenol extracted from different plants, has recently earned interest for application on the skin for different applications. In this work, the potential of nanocarriers, namely transfersomes and ethanol-containing vesicles, to deliver t-res into/through the skin was investigated. Thus, transfersomes with different surfactants, namely polysorbate 80 (Tw80), sodium cholate (SC) and sodium deossicholate (SDC) and ethanol-containing vesicles with different lipid composition, namely soy phosphatidylcholine (SPC) and cholesterol (chol), encapsulating t-res were prepared and characterized. The nanocarriers had a mean diameter ranging between 83 and 116 nm with a high t-res encapsulation efficiency (≥70%). Moreover, cytotoxicity as well as the inhibition of production of reactive oxygen species (ROS) and lipid peroxidation, following incubation of H2O2-stimulated human keratinocyte (HaCaT) with t-res, as free or encapsulated into the nanocarriers, were investigated. Only blank nanocarriers containing Tw80 or ethanol were cytotoxic and led to increase of ROS, but this effect was not observed when using nanocarriers encapsulating t-res. Finally, permeation studies on porcine skin carried out on Franz diffusion cells, showed that only ethanol-containing vesicles based SPC were able to promote t-res permeation through the skin.  相似文献   

12.
In the present study, we aimed to formulate, optimize and characterize nanoemulsion-based gel of imiquimod for its topical administration and to improve the drug permeation. Nanoemulsions were prepared by the aqueous phase titration method and spontaneously formed by mixing specific fractions of oil phase:Smix:water. The nanoemulsion formulations were optimized by response surface methodology (RSM) using mixture design, Scheffe model. The formulated nanoemulsion was incorporated into 0.5% Carbopol 934 (w/v) to enhance convenience in superficial application of the drug. The nanoemulsions were characterizedin terms of droplet size, zeta potential, TEM, DSC and in vitro drug permeation. The vesicle size was 113.6 nm with polydispersity index of 0.251. The zeta potential was 34 mV. The spherical droplet shape was confirmed by TEM analysis. The drug permeation from the diffusion membrane was 73.67% in 6 h for the optimized formulation. An optimized nanoemulsion gel formulation of imiquimod was successfully developed with improved permeation using experimental design technique. The developed formulation could be further explored as a potential alternate to currently available topical formulations for the treatment of genital warts.  相似文献   

13.
The aim of this study was to develop a potential novel formulation of carbopol-based nanoemulsion gel containing apigenin using tamarind gum emulsifier which was having the smallest droplet size, the highest drug content, and a good physical stability for Skin delivery. Apigenin loaded nanoemulsion was prepared by high speed homogenization method and they were characterized with respect to morphology, zeta potential, differential scanning calorimeter study, and penetration studies. In-vitro release studies and skin permeation of apigenin loaded nanoemulsion by goat abdominal skin was determined using Franz diffusion cell and confocal laser scanning microscope (CLSM). The cytotoxicity of the reported formulation was evaluated in HaCaT Cells (A) and A431 cells (B) by MTT assay. The nanoemulsion formulation showed droplet size, polydispersity index, and zeta potential of 183.31?nm, 0.532, and 31.9?mV, respectively. The nanoemulsions were characterized by TEM demonstrated spherical droplets and FTIR to ensure the compatibility among its ingredients. CLSM showed uniform fluorescence intensity across the entire depth of skin in nanocarriers treatment, indicating high penetrability of nanoemulsion gel through goatskin. The nanoemulsion gel showed toxicity on melanoma (A341) in a concentration range of 0.4–2.0?mg/ml, but less toxicity toward HaCaT cells. The carbopol-based nanoemulsion gel formulation of apigenin possesses better penetrability across goatskin as compared to marketed formulation. Hence, the study postulates that the novel nanoemulsion gel of apigenin can be proved fruitful for the treatment of skin cancer in near future.  相似文献   

14.
The neurotoxicity of acrylamide (ACR) monomer occurs through different mechanisms such as oxidative stress. Epigallocatechin gallate (EGCG) and epicatechin gallate (ECG) are green tea catechins which are known as powerful antioxidants. In this study, we examined the possible protective effects of ECG and EGCG on ACR neurotoxicity in both in-vitro and in-vivo models. PC12 cells were exposed to different concentrations of ECG and EGCG. After 24 and 48?hours, ACR was added to the cells (IC50?=?4.85?mM) and cell viability was measured through MTT assay after 24?hours. Male Wistar rats were pretreated with ECG, EGCG (10, 20 and 40?mg/kg, i.p) and vitamin E (200?IU/kg i.p.) for 3?days. Afterwards they were treated with ACR (50?mg/kg, i.p.) for 11?days. After the treatment period, gait score examination was performed and molondialdehyde (MDA) and reduced glutathione (GSH) were measured in cerebral cortex. ACR reduced the cell viability in a concentration-dependent manner. Both ECG and EGCG (20?μM) showed inhibitory effects on ACR cytotoxicity. ACR significantly induced gait abnormalities, decreased GSH level and increased lipid peroxidation in cerebral cortex. ECG and EGCG (20?mg/kg) improved all ACR toxic effects. Although the food intake was increased in pretreated groups compared to the ACR-treated group, intensive weight loss was observed due to the green tea’s different weight loss mechanisms. ECG and EGCG inhibited the cytotoxicity of ACR in PC12 cells and increased GSH level and decreased lipid peroxidation in rat cerebral cortex.  相似文献   

15.
The objective of the study was to develop, optimize and evaluate a nanoemulsion (NE) of Amphotericin B (AmB) using excipients with inherent antifungal activities (Candida albicans and Aspergillus niger) for topical delivery. AmB-loaded NE was prepared using Capmul PG8 (CPG8), labrasol and polyethylene glycol-400 by spontaneous titration method and evaluated for mean particle size, polydispersity index, zeta potential and zone of inhibition (ZOI). NE6 composed of CPG8 (15%w/w), Smix (24%w/w) and water (61%w/w) was finally selected as optimized NE. AmB-NE6 was studied for improved in vitro release, ex vivo skin permeation and deposition using the Franz diffusion cell across the rat skin followed with drug penetration using confocal laser scanning microscopy (CLSM) as compared to drug solution (DS) and commercial Fungisome®. The results of in vitro studies exhibited the maximum ZOI value of NE6 as 19.1?±?1.4 and 22.8?±?2.0?mm against A. niger and C. albicans, respectively, along with desired globular size (49.5?±?1.5?nm), zeta potential (?24.59?mV) and spherical morphology. AmB-NE6 revealed slow and sustained release of AmB as compared to DS in buffer solution (pH 7.4). Furthermore, AmB-NE6 elicited the highest flux rate (22.88?±?1.7?μg/cm2/h) as compared to DS (2.7?±?0.02?μg/cm2/h) and Fungisome® (11.5?±?1.0?μg/cm2/h). Moreover, the enhancement ratio and drug deposition were found to be highest in AmB-NE6 than DS across the stratum corneum barrier. Finally, CLSM results corroborated enhanced penetration of the AmB-NE6 across the skin as compared to Fungisome® and DS suggesting an efficient, stable and sustained topical delivery.  相似文献   

16.
This study aims at developing an optimised nanostructured lipid carrier (NLC) of lycopene for efficient absorption following oral administration. The optimised formulation showed an average particle size of 121.9?±?3.66?nm, polydispersity index (PDI) 0.370?±?0.97 and zeta potential ?29.0?±?0.83?mV. Encapsulation Efficiency (% EE) and drug loading (% DL) was found to be 84.50%?±?4.38 and 9.54%?±?2.65, respectively. In vitro release studies demonstrated the burst release within 4–9?h followed by sustained release over 48?h. The IC50 value of lycopene extract and optimised NLC for ABTS+? were found to be 172.37?μg Trolox equivalent and 184.17?μg Trolox equivalent whereas, for DPPH?, 117.76?μg Trolox equivalent and 143.08?μg Trolox equivalent respectively. Ex vivo studies and MTT assay revealed that the NLC had better permeation and cause sufficiently more cytotoxicity as compared to drug extract due to higher bioavailability and greater penetration.  相似文献   

17.
The objective of the current study was to prepare microspheres of salmeterol (SM) using poly (lactide-co-glycolide) (PLGA) and assess its viability to enhance the oral bioavailability. Microspheres of SM were prepared by oil-in-water emulsion-solvent evaporation method. The formulations were characterized in encapsulation efficiency, particle size, zeta potential, and in vitro release. The prepared microspheres were found to be spherical in shape with smooth surface. The size of microspheres ranged from 14.7 to 16.5?µm. The polydispersity index (PDI) was 0.12?±?0.05 and the zeta potential was ?33.2?±?1.4?mV. In vitro release profile, SM was graduated released from the microspheres as time lapsed, suggesting that SM was well entrapped in SM-loaded PLGA microspheres. The model that fitted best for SM released from the microspheres was Higuchi equation. In vivo study, SM-loaded PLGA microspheres are thought to have the potential to maintain SM concentration within target ranges for a long time, decreasing side effects caused by concentration fluctuation, ensuring the efficiency of treatment and improving patient compliance by reducing dosing frequency.  相似文献   

18.
Context and objective: Epigallocatechin-3-gallat (EGCG), the major catechin in green tea, shows a potential protective effect against heavy metal toxicity to humans. Apoptosis is one of the key events in cadmium (Cd2+)-induced cytotoxicity. Nevertheless, the study of EGCG on Cd2+-induced apoptosis is rarely reported. The objective of this study was to clarify the effect and detailed mechanism of EGCG on Cd2+-induced apoptosis.

Methods: Normal human liver cells (HL-7702) were treated with Cd2+ for 21?h, and then co-treated with EGCG for 3?h. Cell viability, apoptosis, intracellular reactive oxygen species (ROS), malondialdehyde (MDA), mitochondrial membrane potential (MMP) and caspase-3 activity were detected. On the other hand, the chelation of Cd2+ with EGCG was tested by UV-Vis spectroscopy analysis and Nuclear Magnetic Resonance (1H NMR) spectroscopy under neutral condition (pH 7.2).

Results and conclusion: Cd2+ significantly decreased the cell viability and induced apoptosis in HL-7702 cells. Conversely, EGCG co-treatment resulted in significant inhibition of Cd2+-induced reduction of cell viability and apoptosis, implying a rescue effect of EGCG against Cd2+ poisoning. The protective effect most likely arises from scavenging ROS and maintaining redox homeostasis, as the generation of intracellular ROS and MDA is significantly reduced by EGCG, which further prevents MMP collapse and suppresses caspase-3 activity. However, no evidence is observed for the chelation of EGCG with Cd2+ under neutral condition. Therefore, a clear conclusion from this work can be made that EGCG could inhibit Cd2+-induced apoptosis by acting as a ROS scavenger rather than a metal chelating agent.  相似文献   

19.
Context Phyllanthus emblica L. (Euphorbiaceae) (amla), Manilkara zapota L.P. Royen (Sapotaceae) (sapota) and silymarin are reported to contain antioxidant effects. However, information on other biological activities relating to the anti-aging properties is limited.

Objective To compare in vitro antioxidants, anti-collagenase (MMP-1 and MMP-2) and anti-elastase properties as well as the phenolic and flavonoid contents of amla, sapota and silymarin as potential anti-aging ingredients.

Materials and methods The ethanol amla and sapota fruit extracts were prepared by three cycles of maceration with 24 h duration each. The total phenolic (TPC) and flavonoid (TFC) contents were determined. The antioxidant capacity was evaluated by DPPH and ABTS assays. The effects of MMP-1, MMP-2 and elastase inhibitions were determined by using the EnzChek® assay kits (Molecular-Probes, Eugene, OR).

Results Amla exhibited the highest in TPC (362.43?±?11.2?mg GAE/g) while silymarin showed the highest in TFC (21.04?±?0.67?mg QE/g). Results of antioxidant activity by DPPH and ABTS methods showed that amla possessed the most potent capacity with IC50 values of 1.70?±?0.07 and 4.45?±?0.10?μg/mL, respectively. Highest inhibitions against MMP-1, MMP-2 and elastase were detected for sapota with IC50 values of 89.61?±?0.96, 86.47?±?3.04 and 35.73?±?0.61?μg/mL, respectively.

Discussion and conclusion Test extracts offered anti-aging properties in different mechanisms. Amla showed the highest phenolic content and antioxidant property with moderate anti-collagenase. Silymarin exhibited measurable flavonoid content with anti-elastase effect. Sapota showed the highest collagenase and elastase inhibitions with moderate antioxidant effect. Thus, extracts might be added as a mixture to gain the overall anti-aging effects.  相似文献   

20.
The aim of this study was to develop hydrogel loaded with capsicum extract nanoparticles and wax gourd extract for transdermal delivery of capsaicin. The addition of wax gourd extract was supposed to reduce cytotoxicity of capsaicin in capsicum extract against HaCaT keratinocyte cell line. Capsicum extract nanoparticles were prepared by solvent displacement method using hyaluronic acid as a stabilizer. The physical and chemical stability of capsicum extract nanoparticles were investigated by dynamic light scattering technique and UV–Visible spectrophotometry, respectively. Hydrogel loaded with capsicum extract nanoparticles and wax gourd fruit extract was then formulated by using Carbopol 940® as a gelling agent for transdermal delivery. The skin permeability of capsaicin from the hydrogel was evaluated by Franz diffusion cell approach. The cytotoxicity reduction of capsicum extract nanoparticles and capsicum extract nanoparticles by mixing with wax gourd extract was determined by MTT assay The results showed that capsicum extract nanoparticles exhibited an average diameter of 168.4 ± 5.3 nm with a polydispersity index and zeta potential value of 0.26 ± 0.01 and −45.7 ± 7.1 mV, respectively. After two month-storage, particle size, polydispersity index, and zeta potential values of capsicum extract nanoparticles stored at 4° C, 30° C, and 45 °C did not significantly change. The capsaicin content decreased to 78%, 71%, and 72% when stored at 4 °C, 30 °C, and 45 °C for three months, respectively. The pH values of hydrogel containing capsicum extract nanoparticles were found to be in the range of 5.58–6.05 indicating good stability. The hydrogel exhibited a pseudoplastic character. The rate of permeation flux of capsaicin from hydrogel was 7.96 µg/cm2/h. A significant increase in cell viability was observed when the cells were incubated with capsicum extract nanoparticles mixed with wax gourd, compared to capsicum extract nanoparticles alone. The wax gourd extract in the hydrogel protected HaCaT cells from capsaicin cytotoxicity, thus may provide a new approach for delivery of capsaicin to reduce cytotoxicity to skin cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号