首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Th17 cells are a heterogeneous population of pro‐inflammatory T cells that have been shown to mediate immune responses against intestinal bacteria. Th17 cells are highly plastic and can transdifferentiate to Th1/17 cells or unconventional Th1 cells, which are highly pathogenic in animal models of immune‐mediated diseases such as inflammatory bowel diseases. A recent European Journal of Immunology article by Liu et al. (Eur. J. Immunol. 2015. 45:1010–1018) showed, surprisingly, that Th1 cells have a similar plasticity, and could transdifferentiate to Th17 cells. Thus, IFN‐γ‐producing Th1 effector cells specific for an intestinal microbial antigen were shown to acquire IL‐17‐producing capacities in the gut in a mouse model of colitis, and in response to TGF‐β and IL‐6 in vitro. TGF‐β induced Runx1, and together with IL‐6 was shown to render the ROR‐γt and IL‐17 promoters in Th1 cells accessible for Runx1 binding. In this commentary, we discuss how this unexpected plasticity of Th1 cells challenges our view on the generation of Th1/17 cells with the capacity to co‐produce IL‐17 and IFN‐γ, and consider possible implications of this Th1‐to‐Th17‐cell conversion for therapies of inflammatory bowel diseases and protective immune responses against intracellular pathogens.  相似文献   

2.
It has been shown that while commensal bacteria promote Th1, Th17 and Treg cells in lamina propria (LP) in steady‐state conditions, they suppress mucosal Th2 cells. However, it is still unclear whether there are specific commensal organisms down‐regulating Th2 responses, and the mechanism involved. Here we demonstrate that commensal A4 bacteria, a member of the Lachnospiraceae family, which produce an immunodominant microbiota CBir1 antigen, inhibits LP Th2‐cell development. When transferred into the intestines of RAG?/? mice, CBir1‐specific T cells developed predominately towards Th1 cells and Th17 cells, but to a lesser extent into Th2 cells. The addition of A4 bacterial lysates to CD4+ T‐cell cultures inhibited production of IL‐4. A4 bacteria stimulated dendritic cell production of TGF‐β, and blockade of TGF‐β abrogated A4 bacteria inhibition of Th2‐cell development in vitro and in vivo. Collectively, our data show that A4 bacteria inhibit Th2‐cell differentiation by inducing dendritic cell production of TGF‐β.  相似文献   

3.
T cells that produce both IL‐17 and IFN‐γ, and co‐express ROR‐γt and T‐bet, are often found at sites of autoimmune inflammation. However, it is unknown whether this co‐expression of T‐bet with ROR‐γt is a prerequisite for immunopathology. We show here that T‐bet is not required for the development of Th17‐driven experimental autoimmune encephalomyelitis (EAE). The disease was not impaired in T‐bet?/? mice and was associated with low IFN‐γ production and elevated IL‐17 production among central nervous system (CNS) infiltrating CD4+ T cells. T‐bet?/? Th17 cells generated in the presence of IL‐6/TGF‐β/IL‐1 and IL‐23 produced GM‐CSF and high levels of IL‐17 and induced disease upon transfer to naïve mice. Unlike their WT counterparts, these T‐bet?/– Th17 cells did not exhibit an IL‐17→IFN‐γ switch upon reencounter with antigen in the CNS, indicating that this functional change is not critical to disease development. In contrast, T‐bet was absolutely required for the pathogenicity of myelin‐responsive Th1 cells. T‐bet‐deficient Th1 cells failed to accumulate in the CNS upon transfer, despite being able to produce GM‐CSF. Therefore, T‐bet is essential for establishing Th1‐mediated inflammation but is not required to drive IL‐23‐induced GM‐CSF production, or Th17‐mediated autoimmune inflammation.  相似文献   

4.
5.
The ability of different CD4+ T cell subsets to help CD8+ T‐cell response is not fully understood. Here, we found using the murine system that Th17 cells induced by IL‐1β, unlike Th1, were not effective helpers for antiviral CD8 responses as measured by IFNγ‐producing cells or protection against virus infection. However, they skewed CD8 responses to a Tc17 phenotype. Thus, the apparent lack of help was actually immune deviation. This skewing depended on both IL‐21 and IL‐23. To overcome this effect, we inhibited Th17 induction by blocking TGF‐β. Anti‐TGF‐β allowed the IL‐1β adjuvant to enhance CD8+ T‐cell responses without skewing the phenotype to Tc17, thereby providing an approach to harness the benefit of common IL‐1‐inducing adjuvants like alum without immune deviation.  相似文献   

6.
Recently, IL‐17 produced by Th17 cells was described as pro‐inflammatory cytokine with an eminent role in autoimmune diseases, e.g. rheumatoid arthritis. A lack of IL‐17 leads to amelioration of collagen‐induced arthritis. IL‐17 induction in naïve CD4+ T cells depends on IL‐6 and TGF‐β and is enhanced by IL‐23. The in vivo inflammatory potential of in vitro‐primed Th17 cells however, remains unclear. Here, we show that, although IL‐17 neutralisation results in amelioration of murine OVA‐induced arthritis, in vitro‐primed Th17 cells cannot exacerbate arthritic symptoms after adoptive transfer. Furthermore, Th17 cells cannot induce an inflammatory delayed type hypersensitivity reaction because they fail to migrate into inflamed sites, possibly due to the lack of CXCR3 expression. Also, re‐isolated Th17 cells acquired IFN‐γ expression, indicating instability of the Th17 phenotype. Taken together, the data show that IL‐6, TGF‐β and IL‐23 might not provide sufficient signals to induce “fully qualified” Th17 cells.  相似文献   

7.
Human Th17 clones and circulating Th17 cells showed lower susceptibility to the anti‐proliferative effect of TGF‐β than Th1 and Th2 clones or circulating Th1‐oriented T cells, respectively. Accordingly, human Th17 cells exhibited lower expression of clusterin, and higher Bcl‐2 expression and reduced apoptosis in the presence of TGF‐β, in comparison with Th1 cells. Umbilical cord blood naïve CD161+CD4+ T cells, which contain the precursors of human Th17 cells, differentiated into IL‐17A‐producing cells only in response to IL‐1β plus IL‐23, even in serum‐free cultures. TGF‐β had no effect on constitutive RORγt expression by umbilical cord blood CD161+ T cells but it increased the relative proportions of CD161+ T cells differentiating into Th17 cells in response to IL‐1β plus IL‐23, whereas under the same conditions it inhibited both T‐bet expression and Th1 development. These data suggest that TGF‐β is not critical for the differentiation of human Th17 cells, but indirectly favors their expansion because Th17 cells are poorly susceptible to its suppressive effects.  相似文献   

8.
Th1 and Th2 cell fates are traditionally viewed as mutually exclusive, but recent work suggests that these lineages may be more plastic than previously thought. When isolating splenic CD4+ T cells from mice infected with the parasitic helminth Schistosoma mansoni, we observed a defined population of IFN‐γ/IL‐4 double‐positive cells. These IFN‐γ+IL‐4+ cells showed differences in DNA methylation at the Ifng and Il4 loci when compared with IFN‐γ+IL‐4? (Th1) and IFN‐γ?IL‐4+ (Th2) cells, demonstrating that they represent a distinct effector cell population. IFN‐γ+IL‐4+ cells also displayed a discrete DNA methylation pattern at a CpG island within the body of the Gata3 gene, which encodes the master regulator of Th2 identity. DNA methylation at this region correlated with decreased Gata3 levels, suggesting a possible role in controlling Gata3 expression. These data provide important insight into the molecular mechanisms behind the co‐existence of Th1 and Th2 characteristics.  相似文献   

9.
Pneumoconiosis is caused by the accumulation of airborne dust in the lung, which stimulates a progressive inflammatory response that ultimately results in lung fibrosis and respiratory failure. It is possible that regulatory cells in the immune system could function to suppress inflammation and possibly slow or reverse disease progression. However, results in this study suggest that in pneumoconiosis patients, the regulatory T cells (Tregs) and B cells are functionally impaired. First, we found that pneumoconiosis patients presented an upregulation of CD4+CD25+ T cells compared to controls, whereas the CD4+CD25+ and CD4+CD25hi T cells were enriched with Th1‐ and Th17‐like cells but not Foxp3‐expressing Treg cells and evidenced by significantly higher T‐bet, interferon (IFN)‐γ, and interleukin (IL)‐17 expression but lower Foxp3 and transforming growth factor (TGF)‐β expression. Regarding the CD4+CD25hi T‐cell subset, the frequency of this cell type in pneumoconiosis patients was significantly reduced compared to controls, together with a reduction in Foxp3 and TGF‐β and an enrichment in T‐bet, RORγt, IFN‐γ, and IL‐17. This skewing toward Th1 and Th17 types of inflammation could be driven by monocytes and B cells, since after depleting CD14+ monocytes and CD19+ B cells, the levels of IFN‐γ and IL‐17 were significantly decreased. Whole peripheral blood mononuclear cells and isolated monocytes and B cells in pneumoconiosis patients also presented reduced capacity of TGF‐β secretion. Furthermore, monocytes and B cells from pneumoconiosis patients presented reduced capacity in inducing Foxp3 upregulation, a function that could be rescued by exogenous TGF‐β. Together, these data indicated a potential pathway for the progression of pneumoconiosis through a loss of Foxp3+ Treg cells associated with impaired TGF‐β secretion.  相似文献   

10.
Th type 17 (Th17) cells have been identified as a proinflammatory T‐cell subset. Here, we investigated the regulation of human Th17 cells by fetal BM‐derived mesenchymal stem cells (FBM‐MSC). We cocultured FBM‐MSC with human PBMC or CD4+ T cells from healthy donors. FBM‐MSC significantly suppressed the proliferation of CD4+ T cells stimulated by PHA and recombinant IL‐2. Significantly higher levels of IL‐17 were observed in FBM‐MSC cocultured with either PBMC or CD4+ T cells than that in PBMC cultured alone or CD4+ T cells cultured alone. Flow cytometry analysis showed that the percentage of Th17 cells in coculture of FBM‐MSC and CD4+ T cells was significantly higher than that in CD4+ T‐cell cultured alone. FBM‐MSC did not express IL‐17 protein. Consistent with the augmentation of Th17 cells, significantly higher levels of IL‐6 and IL‐1 were observed in coculture of FBM‐MSC and CD4+ T cells than that in CD4+ T‐cell culture, while the levels of IL‐23 were similar between FBM‐MSC + PBMC coculture and PBMC alone, or FBM‐MSC + CD4+ T‐cell and CD4+ T‐cell alone. The presence of FBM‐MSC decreased the percentage of Th1 cells, but minimally affected the expansion of CD4+CD25+ T cells. In conclusion, our data demonstrate for the first time that FBM‐MSC promote the expansion of Th17 cells and decrease IFN‐γ‐producing Th1 cells. These data suggest that IL‐6 and IL‐1, instead of IL‐23, may be partly involved in the expansion of Th17 cells.  相似文献   

11.
Wnt/β‐catenin signaling plays a crucial role during embryogenesis and tumorigenesis, and in T cells, promotes the differentiation of Th2 cells. However, the role of Wnt signals in the differentiation and maintenance of human Th17 cells remains poorly understood. We found that the higher levels of IL‐17 in the synovial fluid of rheumatoid arthritis (RA) patients compared with that of osteoarthritis (OA) patients were associated with a higher concentration of sFRP1 (secreted Frizzled‐Related Protein 1), an inhibitor of the Wnt/β‐catenin pathway. The addition of sFRP1 during TCR‐mediated stimulation induced a significant increase in IL‐17 production by both naïve and memory CD4+ T cells. Moreover, under Th17‐differentiation conditions, the addition of sFRP1 significantly reduced the requirement for TGF‐β. Mechanistically, we observed that sFRP1 significantly enhanced the phosphorylation of Smad2/3 in CD4+ T cells upon TGF‐β stimulation and that blocking TGF‐β signaling abolished the Th17‐promoting activity of sFRP1. Our findings reveal a novel function for sFRP1 as a potent inducer of human Th17‐cell differentiation. Consequently, sFRP1 may represent a promising target for the treatment of Th17‐mediated disease in humans.  相似文献   

12.
In helper T cells, IL‐13 is traditionally considered a Th2‐type cytokine that is coexpressed with IL‐4. Using mouse models of immunization and autoimmunity, we demonstrate that IL‐13 is frequently uncoupled from IL‐4, and that it can be produced by both IFN‐γ+ Th1 cells and IL‐17+ Th17 cells. We report that these IL‐13‐producing Th1 and Th17 cells are distinct from classical IL‐4+ Th2 cells and that they are relatively common, appearing in the context of both protective and pathogenic T‐cell responses. We also demonstrate that IL‐13 and Th2‐type cytokines can have important consequences in Th1‐ and Th17‐dominated settings, such as lymphopenia‐induced autoimmune disease, where they can be either pro‐ or anti‐inflammatory, depending on whether they act on innate or adaptive immune cells. Taken together, our studies indicate that IL‐13 production is more widespread than previously appreciated and that blocking this cytokine may have therapeutic benefits even in settings where traditional IL‐4‐driven Th2‐type responses are not evident.  相似文献   

13.
IDDM is characterized by leukocyte invasion to the pancreatic tissues followed by immune destruction of the islets. Despite the important function of Th17 cells in other autoimmune disease models, their function in IDDM is relatively unclear. In this study, we found association of elevated Th17 cytokine expression with diabetes in NOD mice. To understand the function of Th17 cells in IDDM, we differentiated islet‐reactive BDC2.5 TcR transgenic CD4+ cells in vitro into Th17 cells and transferred them into NOD.scid and neonate NOD mice. NOD.scid recipient mice developed rapid onset of diabetes with extensive insulitic lesions, whereas in newborn NOD mice, despite extensive insulitis, most recipient mice did not develop diabetes. Surprisingly, BDC2.5+ cells recovered from diabetic NOD.scid mice, in comparison with those from neonate NOD mice, showed predominant IFN‐γ over IL‐17 expression, indicating conversion of donor cells into Th1 cells. Moreover, diabetes progression in NOD.scid recipients was dependent on IFN‐γ while anti‐IL‐17 treatment reduced insulitic inflammation. These results indicate that islet‐reactive Th17 cells promote pancreatic inflammation, but only induce IDDM upon conversion into IFN‐γ producers.  相似文献   

14.
The cytokines IL‐6, IL‐1β, TGF‐β, and IL‐23 are considered to promote Th17 commitment. Langerhans cells (LC) represent DC in the outer skin layers of the epidermis, an environment extensively exposed to pathogenic attack. The question whether organ‐resident DC like LC can evoke Th17 immune response is still open. Our results show that upon stimulation by bacterial agonists, epidermal LC and LC‐like cells TLR2‐dependently acquire the capacity to polarize Th17 cells. In Th17 cells, expression of retinoid orphan receptor γβ was detected. To clarify if IL‐17+cells could arise per se by stimulated LC we did not repress Th1/Th2 driving pathways by antibodies inhibiting differentiation. In CD1c+/langerin+ monocyte‐derived LC‐like cells (MoLC), macrophage‐activating lipopeptide 2, and peptidoglycan (PGN) induced the release of the cytokines IL‐6, IL‐1β, and IL‐23. TGF‐β, a cytokine required for LC differentiation and survival, was found to be secreted constitutively. Anti‐TLR2 inhibited secretion of IL‐6, IL‐1β, and IL‐23 by MoLC, while TGF‐β was unaffected. The amount of IL‐17 and the ratio of IL‐17 to IFN‐γ expression was higher in MoLC‐ than in monocyte‐derived DC‐cocultured Th cells. Anti‐IL‐1β, ‐TGF‐β and ‐IL‐23 decreased the induction of Th17 cells. Interestingly, blockage of TLR2 on PGN‐stimulated MoLC prevented polarization of Th cells into Th17 cells. Thus, our findings indicate a role of TLR2 in eliciting Th17 immune responses in inflamed skin.  相似文献   

15.
16.
The impact of the interaction between NK cells and lung dendritic cells (LDCs) on the outcome of respiratory infections is poorly understood. In this study, we investigated the effect and mechanism of NK cells on the function of LDCs during intracellular bacterial lung infection of Chlamydia muridarum in mice. We found that the naive mice receiving LDCs from C. muridarum‐infected NK‐cell‐depleted mice (NK‐LDCs) showed more serious body weight loss, bacterial burden, and pathology upon chlamydial challenge when compared with the recipients of LDCs from infected sham‐treated mice (NK+LDCs). Cytokine analysis of the local tissues of the former compared with the latter exhibited lower levels of Th1 (IFN‐γ) and Th17 (IL‐17), but higher levels of Th2 (IL‐4), cytokines. Consistently, NK‐LDCs were less efficient in directing C. muridarum‐specific Th1 and Th17 responses than NK+LDCs when cocultured with CD4+ T cells. In NK cell/LDC coculture experiments, the blockade of NKG2D receptor reduced the production of IL‐12p70, IL‐6, and IL‐23 by LDCs. The neutralization of IFN‐γ in the culture decreased the production of IL‐12p70 by LDCs, whereas the blockade of TNF‐α resulted in diminished IL‐6 production. Our findings demonstrate that NK cells modulate LDC function to elicit Th1/Th17 immunity during intracellular bacterial infection.  相似文献   

17.
Reciprocal induction of the Th1 and Th17 immune responses is essential for optimal protection against Mycobacterium tuberculosis (Mtb); however, only a few Mtb antigens are known to fulfill this task. A functional role for resuscitation‐promoting factor (Rpf) E, a latency‐associated member of the Rpf family, in promoting naïve CD4+ T‐cell differentiation toward both Th1 and Th17 cell fates through interaction with dendritic cells (DCs) was identified in this study. RpfE induces DC maturation by increasing expression of surface molecules and the production of IL‐6, IL‐1β, IL‐23p19, IL‐12p70, and TNF‐α but not IL‐10. This induction is mediated through TLR4 binding and subsequent activation of ERK, p38 MAPKs, and NF‐κB signaling. RpfE‐treated DCs effectively caused naïve CD4+ T cells to secrete IFN‐γ, IL‐2, and IL‐17A, which resulted in reciprocal expansions of the Th1 and Th17 cell response along with activation of T‐bet and RORγt but not GATA‐3. Furthermore, lung and spleen cells from Mtb‐infected WT mice but not from TLR4?/? mice exhibited Th1 and Th17 polarization upon RpfE stimulation. Taken together, our data suggest that RpfE has the potential to be an effective Mtb vaccine because of its ability to activate DCs that simultaneously induce both Th1‐ and Th17‐polarized T‐cell expansion.  相似文献   

18.
19.
20.
The immunological mechanisms that modulate protection during Mycobacterium tuberculosis (Mtb) infection or vaccination are not fully understood. Secretion of IFN‐γ and, to a lesser extent, of IL‐17 by CD4+ T cells plays a major role both in protection and immunopathology. Few Mtb Ags interacting with DCs affect priming, activation, and regulation of Ag‐unrelated CD4+ T‐cell responses. Here we demonstrate that PstS1, a 38 kDa‐lipoprotein of Mtb, promotes Ag‐independent activation of memory T lymphocytes specific for Ag85B or Ag85A, two immunodominant protective Ags of Mtb. PstS1 expands CD4+ and CD8+ memory T cells, amplifies secretion of IFN‐γ and IL‐22 and induces IL‐17 production by effector memory cells in an Ag‐unrelated manner in vitro and in vivo. These effects were mediated through the stimulation of DCs, particularly of the CD8α? subtype, which respond to PstS1 by undergoing phenotypic maturation and by secreting IL‐6, IL‐1β and, to a lower extent, IL‐23. IL‐6 secretion by PstS1‐stimulated DCs was required for IFN‐γ, and to a lesser extent for IL‐22 responses by Ag85B‐specific memory T cells. These results may open new perspectives for immunotherapeutic strategies to control Th1/Th17 immune responses in Mtb infections and in vaccinations against tuberculosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号