首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leishmania major infection induces self‐healing cutaneous lesions in C57BL/6 mice. Both IL‐12 and IFN‐γ are essential for the control of infection. We infected Jun dimerization protein p21SNFT (Batf3 ?/? ) mice (C57BL/6 background) that lack the major IL‐12 producing and cross‐presenting CD8α+ and CD103+ DC subsets. Batf3?/? mice displayed enhanced susceptibility with larger lesions and higher parasite burden. Additionally, cells from draining lymph nodes of infected Batf3?/? mice secreted less IFN‐γ, but more Th2‐ and Th17‐type cytokines, mirrored by increased serum IgE and Leishmania‐specific immunoglobulin 1 (Th2 indicating). Importantly, CD8α+ DCs isolated from lymph nodes of L. major‐infected mice induced significantly more IFN‐γ secretion by L. major‐stimulated immune T cells than CD103+ DCs. We next developed CD11c‐diptheria toxin receptor: Batf3?/? mixed bone marrow chimeras to determine when the DCs are important for the control of infection. Mice depleted of Batf‐3‐dependent DCs from day 17 or wild‐type mice depleted of cross‐presenting DCs from 17–19 days after infection maintained significantly larger lesions similar to mice whose Batf‐3‐dependent DCs were depleted from the onset of infection. Thus, we have identified a crucial role for Batf‐3‐dependent DCs in protection against L. major.  相似文献   

2.
In mouse models of infection with the gastrointestinal parasite Trichuris muris, appropriate dendritic‐cell (DC) Ag sampling, migration, and presentation to T cells are necessary to mount a protective Th2‐polarized adaptive immune response, which is needed to clear infection. SH2‐containing inositol 5′‐phosphatase 1 (SHIP‐1) has been shown to be an important regulator of DC function in vitro through the negative regulation of the phosphoinositide 3‐kinase (PI3K) pathway, but its role in vivo is relatively unexplored. In the current work, mice with a specific deletion of SHIP‐1 in DCs (Ship1ΔDC) were infected with the parasite T. muris. Ship1ΔDC mice were susceptible to infection due to ineffective priming of Th2‐polarized responses. This is likely due to an increased production of interleukin (IL) 12p40 by SHIP‐1‐deficient DCs, as in vivo antibody blockade of IL‐12p40 was able to facilitate the clearing of infection in Ship1ΔDC mice. Our results describe a critical role for SHIP‐1 in regulating the ability of DCs to efficiently prime Th2‐type responses.  相似文献   

3.
Recent studies demonstrated the crucial role of c‐Rel in directing Treg lineage commitment and its involvement in T helper 1 (Th1) cell‐mediated autoimmune inflammation. We thus wondered whether these opposite functions of c‐Rel influence the course of antiparasitic immune responses against Leishmania major, an accepted model for the impact of T‐cell subsets on disease outcome. Here we show that c‐Rel‐deficient (rel?/?) mice infected with L. major displayed dramatically exacerbated leishmaniasis and enhanced parasite burdens. In contrast to WT mice, IFN‐γ and IL‐17 production in response to L. major antigens was severely impaired in rel?/? mice. Reconstitution of Rag1?/? T‐cell deficient mice with rel?/? CD4+ T cells followed by L. major infection demonstrated that c‐Rel‐deficient T cells mount normal Th1 responses and are able to contain the infection. Similarly, Th1 differentiation of naïve CD4+ cells in vitro was normal. Notably, a selective defect in IL‐12 and IL‐23 production was observed in rel?/? DCs compared with their WT counterparts. In conclusion, our data suggest that the expression of c‐Rel in myeloid cells is essential for clearance of L. major and that this c‐Rel‐mediated effect is dominant over the lack of Tregs.  相似文献   

4.
CpG oligodeoxynucleotide (ODN) is one of promising nucleic acid‐based adjuvants. We recently improved its ability to enhance CD8+ T‐cell responses to coadministered protein antigen without conjugation or emulsion, by forming a nanoparticulate complex between CpG ODN (K3) and mushroom‐derived β‐glucan schizophyllan (SPG), namely K3‐SPG. Here, we sought to elucidate the cellular immunological mechanisms by which K3‐SPG induce such potent CD8+ T‐cell responses to coadministered antigen. By focusing on two DC subsets, plasmacytoid DCs and CD8α+ DCs, as well as the secreted cytokines, IFN‐α and IL‐12, we found that K3‐SPG strongly activates mouse plasmacytoid DCs to secrete IFN‐α and CD8α+ DCs to secrete IL‐12, respectively. Although a single cytokine deficiency had no impact on adjuvant effects, the lack of both type I IFN and IL‐12 in mice resulted in a significant reduction of Th1 type immune responses and CD8+ T‐cell responses elicited by protein vaccine model. By sharp contrast, type I IFN, but not IL‐12, was required for the production of IFN‐γ by human PBMCs as well as antigen‐specific CD8+ T‐cell proliferation. Taken together, K3‐SPG may overcome the species barrier for CpG ODN to enhance antigen‐specific CD8+ T‐cell responses despite the differential role of IL‐12 between human and mice.  相似文献   

5.
C5a is a proinflammatory mediator that has recently been shown to regulate adaptive immune responses. Here we demonstrate that C5a receptor (C5aR) signaling in DC affects the development of Treg and Th17 cells. Genetic ablation or pharmacological targeting of the C5aR in spleen‐derived DC results in increased production of TGF‐β leading to de novo differentiation of Foxp3+ Treg within 12 h after co‐incubation with CD4+ T cells from DO11.10/RAG2?/? mice. Stimulation of C5aR?/? DC with OVA and TLR2 ligand Pam3CSK4 increased TGF‐β production and induced high levels of IL‐6 and IL‐23 but only minor amounts of IL‐12 leading to differentiation of Th cells producing IL‐17A and IL‐21. Th17 differentiation was also found in vivo after adoptive transfer of CD4+ Th cell into C5aR?/? mice immunized with OVA and Pam3CSK4. The altered cytokine production of C5aR?/? DC was associated with low steady state MHC class II expression and an impaired ability to upregulate CD86 and CD40 in response to TLR2. Our data suggest critical roles for C5aR in Treg and Th17‐cell differentiation through regulation of DC function.  相似文献   

6.
Galectin‐3, an endogenous glycan‐binding protein, plays essential roles during microbial infection by modulating innate and adaptive immunity. However, the role of galectin‐3 within the CD4+CD25+Foxp3+ T regulatory (TREG) cell compartment has not yet been explored. Here, we found, in a model of Leishmania major infection, that galectin‐3 deficiency increases the frequency of peripheral TREG cells both in draining lymph nodes (LNs) and sites of infection. These observations correlated with an increased severity of the disease, as shown by increased footpad swelling and parasite burden. Galectin‐3‐deficient (Lgals3?/?) TREG cells displayed higher CD103 expression, showed greater suppressive capacity, and synthesized higher amounts of IL‐10 compared with their wild‐type (WT) counterpart. Furthermore, both TREG cells and T effector (TEFF) cells from Lgals3?/? mice showed higher expression of Notch1 and the Notch target gene Hes‐1. Interestingly, Notch signaling components were also altered in both TREG and TEFF cells from uninfected Lgals3?/? mice. Thus, endogenous galectin‐3 regulates the frequency and function of CD4+CD25+Foxp3+ TREG cells and alters the course of L. major infection.  相似文献   

7.
Novel approaches of dendritic cell (DC) based cancer immunotherapy aim at harnessing the unique attributes of different DC subsets. Classical monocyte‐derived DC vaccines are currently being replaced by either applying primary DCs or specifically targeting antigens and adjuvants to these subsets in vivo. Appropriate DC activation in both strategies is essential for optimal effect. For this purpose TLR agonists are favorable adjuvant choices, with TLR7 triggering being essential for inducing strong Th1 responses. However, mouse CD8α+ DCs, considered to be the major cross‐presenting subset, lack TLR7 expression. Interestingly, this DC subset can respond to TLR7 ligand upon concurrent TLR3 triggering. Nevertheless, the mechanism underlying this synergy remains obscure. We now show that TLR3 ligation results in the production of IFN‐α, which rapidly induces the expression of TLR7, resulting in synergistic activation. Moreover, we demonstrate that this mechanism conversely holds for plasmacytoid DCs that respond to TLR3 ligation when TLR7 pathway is mobilized. We further demonstrate that this mechanism of sharpening DC senses is also conserved in human BDCA1+ DCs and plasmacytoid DCs. These findings have important implications for future clinical trials as it suggests that combinations of TLR ligands should be applied irrespective of initial TLR expression profiles on natural DC subsets for optimal stimulation.  相似文献   

8.
Type 2 diabetes mellitus (DM) is a risk factor for the development of active tuberculosis (TB), although its role in the TB‐induced responses in latent TB (LTB) is not well understood. Since Th1, Th2, and Th17 responses are important in immunity to LTB, we postulated that coincident DM could alter the function of these CD4+ T‐cell subsets. To this end, we examined mycobacteria‐induced immune responses in the whole blood of individuals with LTB‐DM and compared them with responses of individuals without DM (LTB‐NDM). T‐cell responses from LTB‐DM are characterized by diminished frequencies of mono‐ and dual‐functional CD4+ Th1, Th2, and Th17 cells at baseline and following stimulation with mycobacterial antigens‐purified protein derivative, early secreted antigen‐6, and culture filtrate protein‐10. This modulation was at least partially dependent on IL‐10 and TGF‐β, since neutralization of either cytokine resulted in significantly increased frequencies of Th1 and Th2 cells but not Th17 cells in LTB‐DM but not LTB individuals. LTB‐DM is therefore characterized by diminished frequencies of Th1, Th2, and Th17 cells, indicating that DM alters the immune response in latent TB leading to a suboptimal induction of protective CD4+ T‐cell responses, thereby providing a potential mechanism for increased susceptibility to active disease.  相似文献   

9.
Primary Leishmania major infection typically produces cutaneous lesions that not only heal but also harbor persistent parasites. While the opposing roles of CD4+ T‐cell‐derived IFN‐γ and IL‐10 in promoting parasite killing and persistence have been well established, how these responses develop from naïve precursors has not been directly monitored throughout the course of infection. We used peptide:Major Histocompatibility Complex class II (pMHCII) tetramers to investigate the endogenous, parasite‐specific primary CD4+ T‐cell response to L. major in mice resistant to infection. Maximal frequencies of IFN‐γ+ CD4+ T cells were observed in the spleen and infected ears within a month after infection and were maintained into the chronic phase. In contrast, peak frequencies of IL‐10+ CD4+ T cells emerged within 2 weeks of infection, persisted into the chronic phase, and accumulated in the infected ears but not the spleen, via a process that depended on local antigen presentation. T helper type‐1 (Th1) cells, not Foxp3+ regulatory T cells, were the chief producers of IL‐10 and were not exhausted. Therefore, tracking antigenspecific CD4+ T cells revealed that IL‐10 production by Th1 cells is not due to persistent T‐cell antigen receptor stimulation, but rather driven by early antigen encounter at the site of infection.  相似文献   

10.
Interleukin‐12 family cytokines have emerged as critical regulators of immunity with some members (IL‐12, IL‐23) associated with disease pathogenesis while others (IL‐27, IL‐35) mitigate autoimmune diseases. Each IL‐12 family member is comprised of an α and a β chain, and chain‐sharing is a key feature. Although four bona fide members have thus far been described, promiscuous chain‐pairing between alpha (IL‐23p19, IL‐27p28, IL‐12/IL‐35p35) and beta (IL‐12/IL‐23p40, IL‐27/IL‐35Ebi3) subunits, predicts six possible heterodimeric IL‐12 family cytokines. Here, we describe a new IL‐12 member composed of IL‐23p19 and Ebi3 heterodimer (IL‐39) that is secreted by LPS‐stimulated B cells and GL7+ activated B cells of lupus‐like mice. We further show that IL‐39 mediates inflammatory responses through activation of STAT1/STAT3 in lupus‐like mice. Taken together, our results show that IL‐39 might contribute to immunopathogenic mechanisms of systemic lupus erythematosus, and could be used as a possible target for its treatment.  相似文献   

11.
Reciprocal induction of the Th1 and Th17 immune responses is essential for optimal protection against Mycobacterium tuberculosis (Mtb); however, only a few Mtb antigens are known to fulfill this task. A functional role for resuscitation‐promoting factor (Rpf) E, a latency‐associated member of the Rpf family, in promoting naïve CD4+ T‐cell differentiation toward both Th1 and Th17 cell fates through interaction with dendritic cells (DCs) was identified in this study. RpfE induces DC maturation by increasing expression of surface molecules and the production of IL‐6, IL‐1β, IL‐23p19, IL‐12p70, and TNF‐α but not IL‐10. This induction is mediated through TLR4 binding and subsequent activation of ERK, p38 MAPKs, and NF‐κB signaling. RpfE‐treated DCs effectively caused naïve CD4+ T cells to secrete IFN‐γ, IL‐2, and IL‐17A, which resulted in reciprocal expansions of the Th1 and Th17 cell response along with activation of T‐bet and RORγt but not GATA‐3. Furthermore, lung and spleen cells from Mtb‐infected WT mice but not from TLR4?/? mice exhibited Th1 and Th17 polarization upon RpfE stimulation. Taken together, our data suggest that RpfE has the potential to be an effective Mtb vaccine because of its ability to activate DCs that simultaneously induce both Th1‐ and Th17‐polarized T‐cell expansion.  相似文献   

12.
《Immunology》2017,151(2):177-190
Mycobacterium tuberculosis inhibits optimal T helper type 1 (Th1) responses during infection. However, the precise mechanisms by which virulent M. tuberculosis limits Th1 responses remain unclear. Here, we infected dendritic cells (DCs) with the virulent M. tuberculosis strain H37Rv or the attenuated strain H37Ra to investigate the phenotypic and functional alterations in DCs and resultant T‐cell responses. H37Rv‐infected DCs suppressed Th1 responses more strongly than H37Ra‐infected DCs. Interestingly, H37Rv, but not H37Ra, impaired DC surface molecule expression (CD80, CD86 and MHC class II) due to prominent interleukin‐10 (IL‐10) production while augmenting the expression of tolerogenic molecules including PD‐L1, CD103, Tim‐3 and indoleamine 2,3‐dioxygenase on DCs in a multiplicity‐of‐infection (MOI) ‐dependent manner. These results indicate that virulent M. tuberculosis drives immature DCs toward a tolerogenic phenotype. Notably, the tolerogenic phenotype of H37Rv‐infected DCs was blocked in DCs generated from IL‐10−/− mice or DCs treated with an IL‐10‐neutralizing monoclonal antibody, leading to restoration of Th1 polarization. These findings suggest that IL‐10 induces a tolerogenic DC phenotype. Interestingly, p38 mitogen‐activated protein kinase (MAPK) activation predominantly mediates IL‐10 production; hence, H37Rv tends to induce a tolerogenic DC phenotype through expression of tolerogenic molecules in the p38 MAPK–IL‐10 axis. Therefore, suppressing the tolerogenic cascade in DCs is a novel strategy for stimulating optimal protective T‐cell responses against M. tuberculosis infection.  相似文献   

13.
Host protection to helminth infection requires IL‐4 receptor α chain (IL‐4Rα) signalling and the establishment of finely regulated Th2 responses. In the current study, the role of IL‐4Rα‐responsive T cells in Schistosoma mansoni egg‐induced inflammation was investigated. Egg‐induced inflammation in IL‐4Rα‐responsive BALB/c mice was accompanied with Th2‐biased responses, whereas T‐cell‐specific IL‐4Rα‐deficient BALB/c mice (iLckcreIl4ra?/lox) developed Th1‐biased responses with heightened inflammation. The proportion of Foxp3+ Treg in the draining LN of control mice did not correlate with the control of inflammation and was reduced in comparison to T‐cell‐specific IL‐4Rα‐deficient mice. This was due to IL‐4‐mediated inhibition of CD4+Foxp3+ Treg conversion, demonstrated in adoptively transferred Rag2?/? mice. Interestingly, reduced footpad swelling in Il4ra?/lox mice was associated with the induction of IL‐4 and IL‐10‐secreting CD4+CD25?CD103+Foxp3? cells, confirmed in S. mansoni infection studies. Transfer of IL‐4Rα‐responsive CD4+CD25?CD103+ cells, but not CD4+CD25high or CD4+CD25?CD103? cells, controlled inflammation in iLckcreIl4ra?/lox mice. The control of inflammation depended on IL‐10, as transferred CD4+CD25?CD103+ cells from IL‐10‐deficient mice were not able to effectively downregulate inflammation. Together, these results demonstrate that IL‐4 signalling in T cells inhibits Foxp3+ Treg in vivo and promotes CD4+CD25?CD103+Foxp3? cells that control S. mansoni egg‐induced inflammation via IL‐10.  相似文献   

14.
15.
C57BL/6 mice infected with Schistosoma mansoni naturally develop mild CD4+ T‐cell‐mediated immunopathology characterized by small hepatic granulomas around parasite eggs. However, immunization with soluble egg Ag in CFA markedly exacerbates the lesions by inducing a potent proinflammatory environment with high levels of IFN‐γ and IL‐17, which are signature cytokines of distinct Th1‐ versus Th17‐cell lineages. To determine the relative role of these subsets in disease exacerbation, we examined mice deficient in T‐bet (T‐bet?/?), which is required for Th1 differentiation and IFN‐γ production. We now report that immunization with soluble egg Ag in CFA caused a significantly greater enhancement of egg‐induced hepatic immunopathology in T‐bet?/? mice compared with WT controls, and analysis of their granulomas disclosed a higher proportion of activated DC and CD4+ T cells, as well as a marked influx of neutrophils. The absence of IFN‐γ in the T‐bet?/? mice correlated with a marked increase in IL‐23p19, IL‐17 and TNF‐α in granulomas and MLN. In contrast, T‐bet?/? mice had lower levels of IL‐4, IL‐5 and IL‐10 and a reduction in FIZZ1 and FoxP3 expression, suggesting diminished regulatory activity, respectively, by alternatively activated macrophages and Treg. These findings demonstrate that T‐bet‐dependent signaling negatively regulates Th17‐mediated immunopathology in severe schistosomiasis.  相似文献   

16.
Although the strategic production of prolactin‐inducible protein (PIP) at several ports of pathogen entry into the body suggests it might play a role in host defense, no study has directly implicated it in immunity against any infectious agent. Here, we show for the first time that PIP deficiency is associated with reduced numbers of CD4+ T cells in peripheral lymphoid tissues and impaired CD4+ Th1‐cell differentiation in vitro. In vivo, CD4+ T cells from OVA‐immunized, PIP‐deficient mice showed significantly impaired proliferation and IFN‐γ production following in vitro restimulation. Furthermore, PIP‐deficient mice were highly susceptible to Leishmani major infection and failed to control lesion progression and parasite proliferation. This susceptibility was associated with impaired NO production and leishmanicidal activity of PIP KO macrophages following IFN‐γ and LPS stimulation. Collectively, our findings implicate PIP as an important regulator of CD4+ Th1‐cell‐mediated immunity.  相似文献   

17.
Th17 cells are often associated with autoimmunity and been shown to be increased in CD11b?/? mice. Here, we examined the role of CD11b in murine collagen‐induced arthritis (CIA). C57BL/6 and CD11b?/? resistant mice were immunized with type II collagen. CD11b?/? mice developed arthritis with early onset, high incidence, and sustained severity compared with C57BL/6 mice. We observed a marked leukocyte infiltration, and histological examinations of the arthritic paws from CD11b?/? mice revealed that the cartilage was destroyed in association with strong lymphocytic infiltration. The CD11b deficiency led to enhanced Th17‐cell differentiation. CD11b?/? dendritic cells (DCs) induced much stronger IL‐6 production and hence Th17‐cell differentiation than wild‐type DCs. Treatment of CD11b?/? mice after establishment of the Treg/Th17 balance with an anti‐IL‐6 receptor mAb significantly suppressed the induction of Th17 cells and reduced arthritis severity. Finally, the severe phenotype of arthritis in CD11b?/? mice was rescued by adoptive transfer of CD11b+ DCs. Taken together, our results indicate that the resistance to CIA in C57BL/6 mice is regulated by CD11b via suppression of IL‐6 production leading to reduced Th17‐cell differentiation. Therefore, CD11b may represent a susceptibility factor for autoimmunity and could be a target for future therapy.  相似文献   

18.
Mice with homologous disruption of the gene coding for either the p35 subunit or the p40 subunit of interleukin-12 (IL-12) and derived from a strain genetically resistant to infection with Leishmania major have been used to study further the role of this cytokine in resistance to infection and the differentiation of functional CD4+ T cell subsets in vivo. Wild-type 129/Sv/Ev mice are resistant to infection with L. major showing only small lesions which resolve spontaneously within a few weeks and develop a type 1 CD4+ T cell response. In contrast, mice lacking bioactive IL-12 (IL-12p35?/? and IL-12p40?/?) developed large, progressing lesions. Whereas resistant mice were able to mount a delayed-type hypersensitivity (DTH) response to Leishmania antigen, susceptible BALB/c mice as well as IL-12-deficient 129/Sv/Ev mice did not show any DTH reaction. To characterize the functional phenotype of CD4+ T cells triggered in infected wild-type mice and IL-12-deficient mice, the expression of mRNA for interferon-γ (IFN-γ) and interleukin-4 (IL-4) in purified CD4+ lymph node cells was analyzed. Wild-type 129/Sv/Ev mice showed high levels of mRNA for IFN-γ and low levels of mRNA for IL-4 which is indicative of a Th1 response. In contrast, IL-12- deficient mice and susceptible BALB/c mice developed a strong Th2 response with high levels of IL-4 mRNA and low levels of IFN-γ mRNA in CD4+ T cells. Similarly, lymph node cells from infected wild-type 129 mice produced predominantly IFN-γ in response to stimulation with Leishmania antigen in vitro whereas lymph node cells from IL-12-deficient mice and susceptible BALB/c mice produced preferentially IL-4. Taken together, these results confirm in vivo the importance of IL-12 in induction of Th1 responses and protective immunity against L. major.  相似文献   

19.
Osteopontin (OPN) is a secreted phosphoglycoprotein with a wide range of functions, and is involved in various pathophysiological conditions. However, the role of OPN in IgE and Th2‐associated allergic responses remains incompletely defined. The aim of this study was to elucidate the role of OPN in systemic allergen sensitization in mice. When compared with OPN+/+ mice, significantly increased levels of OVA‐induced IgE were found in OPN?/? mice. OPN?/? DC demonstrated an increased capacity to enhance Th2 cytokine production in CD4+ T cells from sensitized OPN+/+ mice. Furthermore, significantly reduced levels of IL‐12p70 expression were seen in LPS‐stimulated OPN?/? DC as compared with the WT DC, and the reduction was reversible by the addition of recombinant OPN (rOPN). rOPN was able to suppress OVA‐induced IL‐13 production in the cultures of CD4 and OPN?/? DC, but this inhibitory activity was neutralized by the addition of anti‐IL‐12 Ab. In addition, administration of rOPN in vivo suppressed OVA‐specific IgE production; however, this suppressive effect was abrogated in IL‐12‐deficient mice. These results indicate that DC‐derived OPN plays a regulatory role in the development of systemic allergen sensitization, which is mediated, at least in part, through the production of endogenous IL‐12.  相似文献   

20.
Cutaneous leishmaniasis produces open sores that lead to scarring and disfiguration. We have reported that vaccination of C57BL/6 mice with live Leishmania major plus CpG DNA (Lm/CpG) prevents lesion development and provides long‐term immunity. Our current study aims to characterize the components of the adaptive immune response that are unique to Lm/CpG. We find that this vaccine enhances the proliferation of CD4+ Th17 cells, which contrasts with the highly polarized Th1 response caused by L. major alone; the Th17 response is dependent upon release of vaccine‐induced IL‐6. Neutralization of IFN‐γ and, in particular, IL‐17 caused increased parasite burdens in Lm/CpG‐vaccinated mice. IL‐17R‐deficient Lm/CpG‐vaccinated mice develop lesions, and display decreased IL‐17 and IFN‐γ, despite normal IL‐12, production. Neutrophil accumulation is also decreased in the IL‐17R‐deficient Lm/CpG‐vaccinated mice but Treg numbers are augmented. Our data demonstrate that activation of immune cells through CpG DNA, in the presence of live L. major, causes the specific induction of Th17 cells, which enhances the development of a protective cellular immunity against the parasite. Our study also demonstrates that vaccines combining live pathogens with immunomodulatory molecules may strikingly modify the natural immune response to infection in an alternative manner to that induced by killed or subunit vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号