首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
5′‐Nucleotidase/CD73 is a key enzyme in the regulation of purinergic signaling, hydrolyzing extracellular AMP to produce adenosine, which is critical in the blood vascular system and in immunosuppression. CD73 is expressed by both blood endothelial cells and lymphatic endothelial cells. Although the role of CD73 on blood endothelial cells in controlling vascular permeability and leukocyte trafficking has been studied, the role of lymphatic CD73 has thus far remained unknown. In this issue of European Journal of Immunology, Yegutkin et al. [Eur. J. Immunol. 2015. 45: 562–573] compare CD73 activity in the endothelia of lymphatics and blood vessels and investigate the CD73+ lymphocyte subpopulations possibly involved in immunoregulation. This Commentary will discuss how the authors′ work sheds light on the differential use of CD73 by these two cell populations to control endothelial permeability and sprouting.  相似文献   

2.
Purinergic signaling through adenosine plays a key role in immune regulation. Hypoxia-driven accumulation of extracellular adenosine results in the generation of an immunosuppressive niche that fuels tumor development. Such immunometabolic modulation has shown to be a promising therapeutic target through blockade of adenosine receptors which mediate adenosine’s immunosuppressive function, or cancer-associated ectonucleotidases CD39 and CD73 that catalyze the synthesis of adenosine. Adenosinergic signaling heavily implicates natural killer cells through both direct and indirect effects on their cytolytic activity, expression of cytotoxic granules, interferon-γ, and activating receptors. Continuing work has uncovered multiple checkpoints linked to adenosine within the purinergic signaling cascade as contributing to immune evasion from NK cell effector function. Here, we discuss these checkpoints and the recent body of work that focuses on adenosinergic signaling as a target for natural killer cell of cancer.  相似文献   

3.
Neovascularization frequently accompanies chronic immune responses characterized by T cell infiltration and activation. Angiogenesis requires endothelial cells (ECs) to penetrate extracellular matrix, a process that involves matrix metalloproteinases (MMPs). We report here that activated human T cells mediate contact-dependent expression of MMPs in ECs through CD40/CD40 ligand signaling. Ligation of CD40 on ECs induced de novo expression of gelatinase B (MMP-9), increased interstitial collagenase (MMP-1) and stromelysin (MMP-3), and activated gelatinase A (MMP-2). Recombinant human CD40L induced expression of MMPs by human vascular ECs to a greater extent than did maximally effective concentrations of interleukin-1β or tumor necrosis factor-α. Moreover, activation of human vascular ECs through CD40 induced tube formation in a three-dimensional fibrin matrix gel assay, an effect antagonized by a MMP inhibitor. These results demonstrated that activation of ECs by interaction with T cells induced synthesis and release of MMPs and promoted an angiogenic function of ECs via CD40L-CD40 signaling. As vascular cells at the sites of chronic inflammation, such as atherosclerotic plaques, express CD40 and its ligand, our findings suggest that ligation of CD40 on ECs can mediate aspects of vascular remodeling and neovessel formation during atherogenesis and other chronic immune reactions.  相似文献   

4.
IFN-beta protects from vascular leakage via up-regulation of CD73   总被引:1,自引:0,他引:1  
Changes in endothelial permeability are crucial in the pathogenesis of many diseases. Adenosine is one of the endogenous mediators controlling endothelial permeability under normal conditions, and an endothelial cell surface enzyme CD73 is a key regulator of adenosine production. Here we report that IFN-beta is a novel inducer of CD73. We found that pretreatment with IFN-beta dramatically improved the vascular barrier function in lungs after intestinal ischemia-reperfusion injury in wild-type animals in vivo. IFN-beta had absolutely no protective effects in CD73-deficient mice, which suffered from more severe lung damage than wild-type mice, showing that IFN-beta functions strictly in a CD73-dependent manner. Most importantly, IFN-beta treatment initiated after the ischemic period almost completely inhibited vascular leakage during the reperfusion. IFN-beta also induced the expression and activity of CD73 and concurrently decreased vascular permeability in cultured human pulmonary endothelial cells. These data show that induction of CD73 and improvement of vascular barrier are new mechanisms for the anti-inflammatory action of IFN-beta. Moreover, IFN-beta treatment may be useful in alleviating vascular leakage induced by ischemia-reperfusion injury.  相似文献   

5.
CD73 is an important ectoenzyme responsible for the production of extracellular adenosine. It is involved in regulating inflammatory responses and cell migration and is overexpressed in various cancers. The functions of CD73 in blood endothelial cells are understood in detail, but its role on afferent lymphatics remains unknown. Moreover, anti-CD73 antibodies are now used in multiple clinical cancer trials, but their effects on different endothelial cell types have not been studied. This study reveals that a previously unknown role of CD73 on afferent lymphatics is to dampen immune responses. Knocking it out or suppressing it by siRNA leads to the upregulation of inflammation-associated genes on lymphatic endothelial cells and a more pro-inflammatory phenotype of interacting dendritic cells in vitro and in vivo. In striking contrast, anti-CD73 antibodies had only negligible effects on the gene expression of lymphatic- and blood-endothelial cells. Our data thus reveal new functions of lymphatic CD73 and indicate a low likelihood of endothelial cell–related adverse effects by CD73 targeting therapeutic antibodies.  相似文献   

6.
7.
CD39/ecto-nucleoside triphosphate diphosphohydrolase-type-1 (ENTPD1) is the dominant vascular ecto-nucleotidase that catalyzes the phosphohydrolysis of extracellular nucleotides in the blood and extracellular space. This ecto-enzymatic process modulates endothelial cell, leukocyte, and platelet purinergic receptor-mediated responses to extracellular nucleotides in the setting of thrombosis and vascular inflammation. We show here that deletion of Cd39/Entpd1 results in abrogation of angiogenesis, causing decreased growth of implanted tumors and inhibiting development of pulmonary metastases. Qualitative abnormalities of Cd39-null endothelial cell adhesion and integrin dysfunction were demonstrated in vitro. These changes were associated with decreased activation of focal adhesion kinase and extracellular signaling-regulated kinase-1 and -2 in endothelial cells. Our data indicate novel links between CD39/ENTPD1, extracellular nucleotide-mediated signaling, and vascular endothelial cell integrin function that impact on angiogenesis and tumor growth.  相似文献   

8.
BACKGROUND: The transmembrane receptor Notch1 is a critical regulator of arterial differentiation and blood vessel sprouting. Recent evidence shows that functional blockade of Notch1 and its ligand, Dll4, leads to postnatal lymphatic defects in mice. However, the precise role of the Notch signaling pathway in lymphatic vessel development has yet to be defined. Here we show the developmental role of Notch1 in lymphatic vascular morphogenesis by analyzing lymphatic endothelial cell (LEC)‐specific conditional Notch1 knockout mice crossed with an inducible Prox1CreERT2 driver. RESULTS: LEC‐specific Notch1 mutant embryos exhibited enlarged lymphatic vessels. The phenotype of lymphatic overgrowth accords with increased LEC sprouting from the lymph sacs and increased filopodia formation. Furthermore, cell death was significantly reduced in Notch1‐mutant LECs, whereas proliferation was increased. RNA‐seq analysis revealed that expression of cytokine/chemokine signaling molecules was upregulated in Notch1‐mutant LECs isolated from E15.5 dorsal skin, whereas VEGFR3, VEGFR2, VEGFC, and Gja4 (Connexin 37) were downregulated. CONCLUSIONS: The lymphatic phenotype of LEC‐specific conditional Notch1 mouse mutants indicates that Notch activity in LECs controls lymphatic sprouting and growth during development. These results provide evidence that similar to postnatal and pathological lymphatic vessel formation, the Notch signaling pathway plays a role in inhibiting developmental lymphangiogenesis. Developmental Dynamics 243:957–964, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
10.
Adenosine is known to exert multiple functions within the eye. The aim of this report was to find out if adenosine can be produced locally in the choroid and ciliary body. Therefore, I investigated the distribution of ecto‐5′‐nucleotidase (5′‐NT), the key enzyme for the production of extracellular adenosine. This report provides evidence that 5′‐NT is expressed in the choroid and in the ciliary body (and its processes) of the rat eye, predominantly in endothelial cells. These locations of 5′‐NT indicate strategically important production sites of adenosine regulating choroid and ciliary body functions (e.g., blood flow, aqueous fluid production, and immune response). Anat Rec, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
The phosphoinositide 3‐kinase (PI3K) family has multiple vascular functions, but the specific regulatory isoform supporting lymphangiogenesis remains unidentified. Here, we report that deletion of the Pik3r1 gene, encoding the regulatory subunits p85α, p55α, and p50α impairs lymphatic sprouting and maturation, and causes abnormal lymphatic morphology, without major impact on blood vessels. Pik3r1 deletion had the most severe consequences among gut and diaphragm lymphatics, which share the retroperitoneal anlage, initially suggesting that the Pik3r1 role in this vasculature is anlage‐dependent. However, whereas lymphatic sprouting toward the diaphragm was arrested, lymphatics invaded the gut, where remodeling and valve formation were impaired. Thus, cell‐origin fails to explain the phenotype. Only the gut showed lymphangiectasia, lymphatic up‐regulation of the transforming growth factor‐β co‐receptor endoglin, and reduced levels of mature vascular endothelial growth factor‐C protein. Our data suggest that Pik3r1 isoforms are required for distinct steps of embryonic lymphangiogenesis in different organ microenvironments, whereas they are largely dispensable for hemangiogenesis. Developmental Dynamics 238:2670–2679, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Intravascular ATP and ADP are important regulators of vascular tone, thrombosis, inflammation, and angiogenesis. This study was undertaken to evaluate the contribution of purinergic signaling to disturbed vasodilation and vascular remodeling during atherosclerosis progression. We used apolipoprotein E-deficient (Apoe(-/-)) mice as an appropriate experimental model for atherosclerosis. Noninvasive transthoracic Doppler echocardiography imaging with adenosine, ATP, and other nucleotides and nonhydrolyzable P2 receptor agonists and antagonists suggests that ATP regulates coronary blood flow in mice through activation of P2Y (most likely, endothelial ATP/UTP-selective P2Y(2)) receptors, rather than via its dephosphorylation to adenosine. Strikingly, compared to age-matched wild-type controls, young (10- to 15-week-old) Apoe(-/-) mice displayed diminished coronary reactivity in response to ATP but not adenosine. The impaired hyperemic response to ATP persisted in older (20- to 30-week-old) Apoe(-/-) mice, which were additionally characterized by mild atherosclerosis (as ascertained by aortic Oil Red O staining) and a systemic increase in plasma ATP and ADP levels. Concurrent thin-layer chromatographic analysis of nucleoside triphosphate diphosphohydrolase (NTPDase) and ecto-5'-nucleotidase/CD73 activities in thoracic aortas, lymph nodes, spleen, and serum revealed that aortic NTPDase was decreased by 40% to 50% in a tissue-specific manner both in young and mature Apoe(-/-) mice. Collectively, disordered purinergic signaling in Apoe(-/-) mice may serve as important prerequisite for impaired blood flow, local accumulation of ATP and ADP at sites of atherogenesis, and eventually, the exacerbation of atherosclerosis.  相似文献   

13.
Etv2 is a critical determinant for the commitment of endothelial (EC) and hematopoietic (HPC) cells from mesoderm. Etv2 is assumed to be transiently required for EC commitment but dispensable after most ECs differentiate around E9.5. To confirm the time window of Etv2 requirement, Etv2 was ablated at different time points using ROSA26CreER mice. Unexpectedly, Etv2 ablation at E9.5 caused vascular remodeling defects in cranial and yolk sac vasculature. Immunostaining showed that Etv2+/VE‐cadherin (VECAD)− cells were present around forming vasculature, mostly co‐expressing Flk‐1 with a small number of Etv2+/VECAD+ cells, indicating that Etv2+/Flk‐1+/VECAD− cells are the major Etv2+ population promoting vascular remodeling around E9.5. Gene expression analysis showed up‐regulation of Fgf proteins, Il‐6, Glypican‐3 and matrix metalloproteases in Etv2+/VEDAC− cells over Etv2−/VECAD+ mature ECs. Blockade of those factors caused reduced EC sprouting in ex vivo explant culture from E9.5 embryos, suggesting the functional significance of environmental factors derived from Etv2+ cells. Altogether, we propose that Etv2+/VEDAC− cells around E9.5‐E10.5 provide extracellular factors to complete vascular morphogenesis in addition to becoming differentiated ECs incorporated into vessels. This insight for the new role of Ets protein in perivascular Flk‐1+/VECAD−/(Etv2+) cells to induce expression of angiogenic factors may provide another strategy to control angiogenesis.  相似文献   

14.
CD4+CD25+Foxp3+ Treg cells maintain immunological tolerance. In this study, the possibility that Treg cells control immune responses via the production of secreted membrane vesicles, such as exosomes, was investigated. Exosomes are released by many cell types, including T cells, and have regulatory functions. Indeed, TCR activation of both freshly isolated Treg cells and an antigen‐specific Treg‐cell line resulted in the production of exosomes as defined morphologically by EM and by the presence of tetraspanin molecules LAMP‐1/CD63 and CD81. Expression of the ecto‐5‐nucleotide enzyme CD73 by Treg cells has been shown to contribute to their suppressive function by converting extracellular adenosine‐5‐monophosphate to adenosine, which, following interaction with adenosine receptors expressed on target cells, leads to immune modulation. CD73 was evident on Treg cell derived exosomes, accordingly when these exosomes were incubated in the presence of adenosine‐5‐monophosphate production of adenosine was observed. Most importantly, CD73 present on Treg cell derived exosomes was essential for their suppressive function hitherto exosomes derived from a CD73‐negative CD4+ T‐cell line did not have such capabilities. Overall our findings demonstrate that CD73‐expressing exosomes produced by Treg cells following activation contribute to their suppressive activity through the production of adenosine.  相似文献   

15.
16.
The lymphatic vessels (lymphatics) play an important role in channeling fluid and leukocytes from the tissues to the secondary lymphoid organs. In addition to driving leukocyte egress from blood, chemokines have been suggested to contribute to leukocyte recirculation via the lymphatics. Previously, we have demonstrated that binding sites for several pro-inflammatory beta-chemokines are found on the endothelial cells (ECs) of lymphatics in human dermis. Here, using the MIP-1alpha isoform MIP-1alphaP, we have extended these studies to further support the contention that the in situ chemokine binding to afferent lymphatics exhibits specificity akin to that observed in vitro with the promiscuous beta-chemokine receptor D6. We have generated monoclonal antibodies to human D6 and showed D6 immunoreactivity on the ECs lining afferent lymphatics, confirmed as such by staining serial skin sections with antibodies against podoplanin, a known lymphatic EC marker. In parallel, in situ hybridization on skin with antisense D6 probes demonstrated the expression of D6 mRNA by lymphatic ECs. D6-immunoreactive lymphatics were also abundant in mucosa and submucosa of small and large intestine and appendix, but not observed in several other organs tested. In lymph nodes, D6 immunoreactivity was present on the afferent lymphatics and also in subcapsular and medullary sinuses. Tonsilar lymphatic sinuses were also D6-positive. Peripheral blood cells and the ECs of blood vessels and high endothelial venules were consistently nonreactive with anti-D6 antibodies. Additionally, we have demonstrated that D6 immunoreactivity is detectable in some malignant vascular tumors suggesting they may be derived from, or phenotypically similar to, lymphatic ECs. This is the first demonstration of chemokine receptor expression by lymphatic ECs, and suggests that D6 may influence the chemokine-driven recirculation of leukocytes through the lymphatics and modify the putative chemokine effects on the development and growth of vascular tumors.  相似文献   

17.
Lymph nodes are strategically localized at the interfaces between the blood and lymphatic vascular system, delivering immune cells and antigens to the lymph node. As cellular junctions of endothelial cells actively regulate vascular permeability and cell traffic, we have investigated their molecular composition by performing an extensive immunofluorescence study for adherens and tight junction molecules, including vascular endothelium (VE)-cadherin, the vascular claudins 1, 3, 5 and 12, occludin, members of the junctional adhesion molecule family plus endothelial cell-selective adhesion molecule (ESAM)-1, platelet endothelial cell adhesion molecule-1, ZO-1 and ZO-2. We found that junctions of high endothelial venules (HEV), which serve as entry site for naive lymphocytes, are unique due to their lack of the endothelial cell-specific claudin-5. LYVE-1(+) sinus-lining endothelial cells form a diffusion barrier for soluble molecules that arrive at the afferent lymph and use claudin-5 and ESAM-1 to establish characteristic tight junctions. Analysis of the spatial relationship between the different vascular compartments revealed that HEV extend beyond the paracortex into the medullary sinuses, where they are protected from direct contact with the lymph by sinus-lining endothelial cells. The specific molecular architecture of cellular junctions present in blood and lymphatic vessel endothelium in peripheral lymph nodes establishes distinct barriers controlling the distribution of antigens and immune cells within this tissue.  相似文献   

18.
It is difficult to identify lymph vessels in tissue sections by histochemical staining, and thus a specific marker for lymphatic endothelial cells would be more practical in histopathological diagnostics. Here we have applied a specific antigenic marker for lymphatic endothelial cells in the human skin, the vascular endothelial growth factor receptor-3 (VEGFR-3), and show that it identifies a distinct vessel population both in fetal and adult skin, which has properties of lymphatic vessels. The expression of VEGFR-3 was studied in normal human skin by in situ hybridization, iodinated ligand binding, and immunohistochemistry. A subset of developing vessels expressed the VEGFR-3 mRNA in fetal skin as shown by in situ hybridization and radioiodinated vascular endothelial growth factor (VEGF)-C bound selectively to a subset of vessels in adult skin that had morphological characteristics of lymphatic vessels. Monoclonal antibodies against the extracellular domain of VEGFR-3 stained specifically endothelial cells of dermal lymph vessels, in contrast to PAL-E antibodies, which stained only blood vessel endothelia. In addition, staining for VEGFR-3 was strongly positive in the endothelium of cutaneous lymphangiomatosis, but staining of endothelial cells in cutaneous hemangiomas was weaker. These results establish the utility of anti-VEGFR-3 antibodies in the identification of lymphovascular channels in the skin and in the differential diagnosis of skin lesions involving lymphatic or blood vascular endothelium.  相似文献   

19.
Anti‐apoptotic genes, including those of the Bcl‐2 family, have been shown to have dual functionality inasmuch as they inhibit cell death but also regulate inflammation. Several anti‐apoptotic molecules have been associated with endothelial cell (EC) survival following transplantation; however, their exact role has yet to be elucidated in respect to controlling inflammation. In this study we created mice expressing murine A1 (Bfl‐1), a Bcl‐2 family member, under the control of the human intercellular adhesion molecule 2 (ICAM‐2) promoter. Constitutive expression of A1 in murine vascular ECs conferred protection from cell death induced by the proinflammatory cytokine tumour necrosis factor (TNF)‐α. Importantly, in a mouse model of heart allograft transplantation, expression of A1 in vascular endothelium increased survival in the absence of CD8+ T cells. Better graft outcome in mice receiving an A1 transgenic heart correlated with a reduced immune infiltration, which may be related to increased EC survival and reduced expression of adhesion molecules on ECs. In conclusion, constitutive expression of the anti‐apoptotic molecule Bfl1 (A1) in murine vascular ECs leads to prolonged allograft survival due to modifying inflammation.  相似文献   

20.
Modulation of purinergic signaling, which is critical for vascular homeostasis and the response to vascular injury, is regulated by hydrolysis of proinflammatory ATP and/or ADP by ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD-1; CD39) to AMP, which then is hydrolyzed by ecto-5'-nucleotidase (CD73) to adenosine. We report here that compared with littermate controls (wild type), transgenic mice expressing human ENTPDase-1 were resistant to the formation of an occlusive thrombus after FeCl(3)-induced carotid artery injury. Treatment of mice with the nonhydrolyzable ADP analog, adenosine-5'-0-(2-thiodiphosphate) trilithium salt, Ado-5'-PP[S], negated the protection from thrombosis, consistent with a role for ADP in platelet recruitment and thrombus formation. ENTPD-1 expression decreased whole-blood aggregation after stimulation by ADP, an effect negated by adenosine-5'-0-(2-thiodiphosphate) trilithium salt, Ado-5'-PP[S] stimulation, and limited the ability to maintain the platelet fibrinogen receptor, glycoprotein α(IIb)/β(3), in a fully activated state, which is critical for thrombus formation. In vivo treatment with a CD73 antagonist, a nonselective adenosine-receptor antagonist, or a selective A(2A) or A(2B) adenosine-receptor antagonist, negated the resistance to thrombosis in transgenic mice expressing human ENTPD-1, suggesting a role for adenosine generation and engagement of adenosine receptors in conferring in vivo resistance to occlusive thrombosis in this model. In summary, our findings identify ENTPDase-1 modulation of purinergic signaling as a key determinant of the formation of an occlusive thrombus after vascular injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号