首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CD4+ T‐helper (Th) cells reactive against myelin antigens mediate the mouse model experimental autoimmune encephalomyelitis (EAE) and have been implicated in the pathogenesis of multiple sclerosis (MS). It is currently debated whether encephalitogenic Th cells are heterogeneous or arise from a single lineage. In the current study, we challenge the dogma that stimulation with the monokine IL‐23 is universally required for the acquisition of pathogenic properties by myelin‐reactive T cells. We show that IL‐12‐modulated Th1 cells readily produce IFN‐γ and GM‐CSF in the CNS of mice and induce a severe form of EAE via an IL‐23‐independent pathway. Th1‐mediated EAE is characterized by monocyte‐rich CNS infiltrates, elicits a strong proinflammatory cytokine response in the CNS, and is partially CCR2 dependent. Conversely, IL‐23‐modulated, stable Th17 cells induce EAE with a relatively mild course via an IL‐12‐independent pathway. These data provide definitive evidence that autoimmune disease can be driven by distinct CD4+ T‐helper‐cell subsets and polarizing factors.  相似文献   

2.
3.
TGF‐β and IL‐4 were recently shown to selectively upregulate IL‐9 production by naïve CD4+ T cells. We report here that TGF‐β interactions with IL‐1α, IL‐1β, IL‐18, and IL‐33 have equivalent IL‐9‐stimulating activities that function even in IL‐4‐deficient animals. This was observed after in vitro antigenic stimulation of immunized or unprimed mice and after polyclonal T‐cell activation. Based on intracellular IL‐9 staining, all IL‐9‐producing cells were CD4+ and 80–90% had proliferated, as indicated by reduced CFSE staining. In contrast to IL‐9, IL‐13 and IL‐17 were strongly stimulated by IL‐1 and either inhibited (IL‐13) or were unaffected (IL‐17) by addition of TGF‐β. IL‐9 and IL‐17 production also differed in their dependence on IL‐2 and regulation by IL‐1/IL‐23. As IL‐9 levels were much lower in Th2 and Th17 cultures, our results identify TGF‐β/IL‐1 and TGF‐β/IL‐4 as the main control points of IL‐9 synthesis.  相似文献   

4.
5.
6.
CXCL4 regulates multiple facets of the immune response and is highly upregulated in various Th17‐associated rheumatic diseases. However, whether CXCL4 plays a direct role in the induction of IL‐17 production by human CD4+ T cells is currently unclear. Here, we demonstrated that CXCL4 induced human CD4+ T cells to secrete IL‐17 that co‐expressed IFN‐γ and IL‐22, and differentiated naïve CD4+ T cells to become Th17‐cytokine producing cells. In a co‐culture system of human CD4+ T cells with monocytes or myeloid dendritic cells, CXCL4 induced IL‐17 production upon triggering by superantigen. Moreover, when monocyte‐derived dendritic cells were differentiated in the presence of CXCL4, they orchestrated increased levels of IL‐17, IFN‐γ, and proliferation by CD4+ T cells. Furthermore, the CXCL4 levels in synovial fluid from psoriatic arthritis patients strongly correlated with IL‐17 and IL‐22 levels. A similar response to CXCL4 of enhanced IL‐17 production by CD4+ T cells was also observed in patients with psoriatic arthritis. Altogether, we demonstrate that CXCL4 boosts pro‐inflammatory cytokine production especially IL‐17 by human CD4+ T cells, either by acting directly or indirectly via myeloid antigen presenting cells, implicating a role for CXCL4 in PsA pathology.  相似文献   

7.
Using a mouse model of experimental autoimmune myocarditis (EAM), we showed for the first time that IL‐23 stimulation of CD4+ T cells is required only briefly at the initiation of GM‐CFS‐dependent cardiac autoimmunity. IL‐23 signal, acting as a switch, turns on pathogenicity of CD4+ T cells, and becomes dispensable once autoreactivity is established. Il23a?/? mice failed to mount an efficient Th17 response to immunization, and were protected from myocarditis. However, remarkably, transient IL‐23 stimulation ex vivo fully restored pathogenicity in otherwise nonpathogenic CD4+ T cells raised from Il23a?/? donors. Thus, IL‐23 may no longer be necessary to uphold inflammation in established autoimmune diseases. In addition, we demonstrated that IL‐23‐induced GM‐CSF mediates the pathogenicity of CD4+ T cells in EAM. The neutralization of GM‐CSF abrogated cardiac inflammation. However, sustained IL‐23 signaling is required to maintain IL‐17A production in CD4+ T cells. Despite inducing inflammation in Il23a?/? recipients comparable to wild‐type (WT), autoreactive CD4+ T cells downregulated IL‐17A production without persistent IL‐23 signaling. This divergence on the controls of GM‐CSF‐dependent pathogenicity on one side and IL‐17A production on the other side may contribute to the discrepant efficacies of anti‐IL‐23 therapy in different autoimmune diseases.  相似文献   

8.
Th type 17 (Th17) cells have been identified as a proinflammatory T‐cell subset. Here, we investigated the regulation of human Th17 cells by fetal BM‐derived mesenchymal stem cells (FBM‐MSC). We cocultured FBM‐MSC with human PBMC or CD4+ T cells from healthy donors. FBM‐MSC significantly suppressed the proliferation of CD4+ T cells stimulated by PHA and recombinant IL‐2. Significantly higher levels of IL‐17 were observed in FBM‐MSC cocultured with either PBMC or CD4+ T cells than that in PBMC cultured alone or CD4+ T cells cultured alone. Flow cytometry analysis showed that the percentage of Th17 cells in coculture of FBM‐MSC and CD4+ T cells was significantly higher than that in CD4+ T‐cell cultured alone. FBM‐MSC did not express IL‐17 protein. Consistent with the augmentation of Th17 cells, significantly higher levels of IL‐6 and IL‐1 were observed in coculture of FBM‐MSC and CD4+ T cells than that in CD4+ T‐cell culture, while the levels of IL‐23 were similar between FBM‐MSC + PBMC coculture and PBMC alone, or FBM‐MSC + CD4+ T‐cell and CD4+ T‐cell alone. The presence of FBM‐MSC decreased the percentage of Th1 cells, but minimally affected the expansion of CD4+CD25+ T cells. In conclusion, our data demonstrate for the first time that FBM‐MSC promote the expansion of Th17 cells and decrease IFN‐γ‐producing Th1 cells. These data suggest that IL‐6 and IL‐1, instead of IL‐23, may be partly involved in the expansion of Th17 cells.  相似文献   

9.
We studied the factors that regulate IL‐23 receptor expression and IL‐17 production in human tuberculosis infection. Mycobacterium tuberculosis (M. tb)‐stimulated CD4+ T cells from tuberculosis patients secreted less IL‐17 than did CD4+ T cells from healthy tuberculin reactors (PPD+). M. tb‐cultured monocytes from tuberculosis patients and PPD+ donors expressed equal amounts of IL‐23p19 mRNA and protein, suggesting that reduced IL‐23 production is not responsible for decreased IL‐17 production by tuberculosis patients. Freshly isolated and M. tb‐stimulated CD4+ T cells from tuberculosis patients had reduced IL‐23 receptor and phosphorylated STAT3 (pSTAT3) expression, compared with cells from PPD+ donors. STAT3 siRNA reduced IL‐23 receptor expression and IL‐17 production by CD4+ T cells from PPD+ donors. Tuberculosis patients had increased numbers of PD‐1+ T cells compared with healthy PPD+ individuals. Anti‐PD‐1 antibody enhanced pSTAT3 and IL‐23R expression and IL‐17 production by M. tb‐cultured CD4+ T cells of tuberculosis patients. Anti‐tuberculosis therapy decreased PD‐1 expression, increased IL‐17 and IFN‐γ production and pSTAT3 and IL‐23R expression. These findings demonstrate that increased PD‐1 expression and decreased pSTAT3 expression reduce IL‐23 receptor expression and IL‐17 production by CD4+ T cells of tuberculosis patients.  相似文献   

10.
C. Stoeckle  H.‐U. Simon 《Allergy》2013,68(12):1622-1625
The cytokines IL‐5, IL‐3, and GM‐CSF are crucial for eosinophil development, survival, and function. To better understand their role in non‐IgE‐mediated eosinophilic diseases, we investigated plasma levels of these cytokines as well as cytokine expression in peripheral blood T cells. While we did not find any evidence for an involvement of T‐cell‐derived GM‐CSF, some of these patients did show an increased proportion of IL‐5‐ or IL‐3‐producing CD4+ T cells. However, in a significant proportion of patients, IL‐5‐producing CD8+ T cells, so‐called Tc2 cells, which in healthy donors can only be detected at very low levels, were prominent. Furthermore, increased IL‐3 production by CD8+ T cells was also observed, strongly supporting the notion that CD8+ T cells, not just CD4+ T cells, must also be considered as a potential source of the cytokines promoting eosinophilia.  相似文献   

11.
Interleukin (IL)‐36α, IL‐36β and IL‐36γ are expressed highly in skin and are involved in the pathogenesis of psoriasis, while the antagonists IL‐36Ra or IL‐38, another potential IL‐36 inhibitor, limit uncontrolled inflammation. The expression and role of IL‐36 cytokines in rheumatoid arthritis (RA) and Crohn's disease (CD) is currently debated. Here, we observed that during imiquimod‐induced mouse skin inflammation and in human psoriasis, expression of IL‐36α, γ and IL‐36Ra, but not IL‐36β and IL‐38 mRNA, was induced and correlated with IL‐1β and T helper type 17 (Th17) cytokines (IL‐17A, IL‐22, IL‐23, CCL20). In mice with collagen‐induced arthritis and in the synovium of patients with RA, IL‐36α, β, γ, IL‐36Ra and IL‐38 were all elevated and correlated with IL‐1β, CCL3, CCL4 and macrophage colony‐stimulating factor (M‐CSF), but not with Th17 cytokines. In the colon of mice with dextran sulphate sodium‐induced colitis and in patients with CD, only IL‐36α, γ and IL‐38 were induced at relatively low levels and correlated with IL‐1β and IL‐17A. We suggest that only a minor subgroup of patients with RA (17–29%) or CD (25%) had an elevated IL‐36 agonists/antagonists ratio, versus 93% of patients with psoriasis. By immunohistochemistry, IL‐36 cytokines were produced by various cell types in skin, synovium and colonic mucosa such as keratinocytes, CD68+ macrophages, dendritic/Langerhans cells and CD79α+ plasma cells. In primary cultures of monocytes or inflammatory macrophages (M1), IL‐36β and IL‐36Ra were produced constitutively, but IL‐36α, γ and IL‐38 were produced after lipopolysaccharide stimulation. These distinct expression profiles may help to explain why only subgroups of RA and CD patients have a potentially elevated IL‐36 agonists/antagonists ratio.  相似文献   

12.
IL‐17 is produced not only by CD4+ αβ T cells, but also CD8+ αβ T cells, NKT cells, and γδ T cells, plus some non‐T cells, including macrophages and neutrophils. The ability of IL‐17 to deploy neutrophils to sites of inflammation imparts this cytokine with a key role in diseases of several types. Surprisingly, γδ T cells are responsible for much of the IL‐17 produced in several disease models, particularly early on.  相似文献   

13.
γδ T cells are a potent source of innate IL‐17A and IFN‐γ, and they acquire the capacity to produce these cytokines within the thymus. However, the precise stages and required signals that guide this differentiation are unclear. Here we show that the CD24low CD44high effector γδ T cells of the adult thymus are segregated into two lineages by the mutually exclusive expression of CCR6 and NK1.1. Only CCR6+ γδ T cells produced IL‐17A, while NK1.1+ γδ T cells were efficient producers of IFN‐γ but not of IL‐17A. Their effector phenotype correlated with loss of CCR9 expression, particularly among the NK1.1+ γδ T cells. Accordingly, both γδ T‐cell subsets were rare in gut‐associated lymphoid tissues, but abundant in peripheral lymphoid tissues. There, they provided IL‐17A and IFN‐γ in response to TCR‐specific and TCR‐independent stimuli. IL‐12 and IL‐18 induced IFN‐γ and IL‐23 induced IL‐17A production by NK1.1+ or CCR6+ γδ T cells, respectively. Importantly, we show that CCR6+ γδ T cells are more responsive to TCR stimulation than their NK1.1+ counterparts. In conclusion, our findings support the hypothesis that CCR6+ IL‐17A‐producing γδ T cells derive from less TCR‐dependent selection events than IFN‐γ‐producing NK1.1+ γδ T cells.  相似文献   

14.
The role of Th17 cells in the pathogenesis of autoantibody‐mediated diseases is unclear. Here, we assessed the contribution of Th17 cells to the pathogenesis of experimental autoimmune myasthenia gravis (EAMG), which is induced by repetitive immunizations with Torpedo californica acetylcholine receptor (tAChR). We show that a significant fraction of tAChR‐specific CD4+ T cells is producing IL‐17. IL‐17ko mice developed fewer or no EAMG symptoms, although the frequencies of tAChR‐specific CD4+ T cells secreting IL‐2, IFN‐γ, or IL‐21, and the percentage of FoxP3+ Treg cells were similar to WT mice. Even though the total anti‐tAChR antibody levels were equal, the complement fixating IgG2b subtype was reduced in IL‐17ko as compared to WT mice. Most importantly, pathogenic anti‐murine AChR antibodies were significantly lower in IL‐17ko mice. Furthermore, we confirmed the role of Th17 cells in EAMG pathogenesis by the reconstitution of TCR β/δko mice with WT or IL‐17ko CD4+ T cells. In conclusion, we show that the level of IgG2b and the loss of B‐cell tolerance, which results in pathogenic anti‐murine AChR‐specific antibodies, are dependent on IL‐17 production by CD4+ T cells. Thus, we describe here for the first time how Th17 cells are involved in the induction of classical antibody‐mediated autoimmunity.  相似文献   

15.
Interleukin‐15 (IL‐15) is an inflammatory cytokine whose role in autoimmune diseases has not been fully elucidated. Th17 cells have been shown to play critical roles in experimental autoimmune encephalomyelitis (EAE) models. In this study, we demonstrate that blockade of IL‐15 signaling by TMβ‐1 mAb treatment aggravated EAE severity. The key mechanism was not NK‐cell depletion but depletion of CD8+CD122+ T cells. Adoptive transfer of exogenous CD8+CD122+ T cells to TMβ‐1‐treated mice rescued animals from severe disease. Moreover, transfer of preactivated CD8+CD122+ T cells prevented EAE development and significantly reduced IL‐17 secretion. Naïve effector CD4+CD25? T cells cultured with either CD8+CD122+ T cells from wild‐type mice or IL‐15 transgenic mice displayed lower frequencies of IL‐17A production with lower amounts of IL‐17 in the supernatants when compared with production by effector CD4+CD25? T cells cultured alone. Addition of a neutralizing antibody to IL‐10 led to recovery of IL‐17A production in Th17 cultures. Furthermore, coculture of CD8+CD122+ T cells with effector CD4+ T cells inhibited their proliferation significantly, suggesting a regulatory function for IL‐15 dependent CD8+CD122+ T cells. Taken together, these observations suggest that IL‐15, acting through CD8+CD122+ T cells, has a negative regulatory role in reducing IL‐17 production and Th17‐mediated EAE inflammation.  相似文献   

16.
Breast cancer is a leading cause of neoplasia‐associated death in women worldwide. Regulatory T (Treg) and Th17 cells are enriched within some tumors, but the role these cells play in invasive ductal carcinoma (IDC) of the breast is unknown. We show that CD25+CD4+ T cells from PBMCs and tumor express high levels of Foxp3, GITR, CTLA‐4, and CD103, indicating that tumor‐infiltrating Treg cells are functional and possibly recruited by CCL22. Additionally, we observed upregulation of Th17‐related molecules (IL‐17A, RORC, and CCR6) and IL‐17A produced by tumor‐infiltrating CD4+ and CD8+ T lymphocytes. The angiogenic factors CXCL8, MMP‐2, MMP‐9, and vascular endothelial growth factor detected within the tumor are possibly induced by IL‐17 and indicative of poor disease prognosis. Treg and Th17 cells were synchronically increased in IDC patients, with positive correlation between Foxp3, IL‐17A, and RORC expression, and associated with tumor aggressiveness. Therefore, Treg and Th17 cells can affect disease progression by Treg‐cell‐mediated suppression of the effector T‐cell response, as indicated by a decrease in the proliferation of T cells isolated from PBMCs of IDC patients and induction of angiogenic factors by IL‐17‐producing Th17. The understanding of regulation of the Treg/Th17 axis may result in novel perspectives for the control of invasive tumors.  相似文献   

17.
18.
Co‐expression of IL‐22 and IL‐17 has been identified and demonstrated to be involved in the immunopathogenesis of some autoimmune diseases as well as the defense against pathogenic infections in animal studies. However, the properties of IL‐22‐producing cells in humans remain largely unclear. In the present study, we showed that IL‐22 could be induced from human PBMC following various polyclonal stimulations. The majority of IL‐22‐producing cells in PBMC were CD4+ T cells with a memory cell phenotype. In addition, we found that a subset of IL‐22+ T cells produced IL‐22 alone, whereas other IL‐22+ T cells co‐expressed cytokines typical of Th1, Th2 and Th17 cells. Importantly, stimulation of PBMC from healthy adults with heat‐inactivated Candida albicans (C. albicans) yeast or hyphae resulted in IL‐22 production by central and effector memory CD4+ T cells. Moreover, CD4+CCR6+ but not CD4+CCR6? T cells produced IL‐22 when stimulated with either C. albicans or PMA and ionomycin. In addition, PBMC from the individuals infected with C. albicans produced a significantly higher amount of IL‐22 compared with healthy controls following stimulation with C. albicans. These data demonstrate that IL‐22‐producing T cells in humans may play an important role in the defense against fungal infections such as C. albicans.  相似文献   

19.
Host protection to helminth infection requires IL‐4 receptor α chain (IL‐4Rα) signalling and the establishment of finely regulated Th2 responses. In the current study, the role of IL‐4Rα‐responsive T cells in Schistosoma mansoni egg‐induced inflammation was investigated. Egg‐induced inflammation in IL‐4Rα‐responsive BALB/c mice was accompanied with Th2‐biased responses, whereas T‐cell‐specific IL‐4Rα‐deficient BALB/c mice (iLckcreIl4ra?/lox) developed Th1‐biased responses with heightened inflammation. The proportion of Foxp3+ Treg in the draining LN of control mice did not correlate with the control of inflammation and was reduced in comparison to T‐cell‐specific IL‐4Rα‐deficient mice. This was due to IL‐4‐mediated inhibition of CD4+Foxp3+ Treg conversion, demonstrated in adoptively transferred Rag2?/? mice. Interestingly, reduced footpad swelling in Il4ra?/lox mice was associated with the induction of IL‐4 and IL‐10‐secreting CD4+CD25?CD103+Foxp3? cells, confirmed in S. mansoni infection studies. Transfer of IL‐4Rα‐responsive CD4+CD25?CD103+ cells, but not CD4+CD25high or CD4+CD25?CD103? cells, controlled inflammation in iLckcreIl4ra?/lox mice. The control of inflammation depended on IL‐10, as transferred CD4+CD25?CD103+ cells from IL‐10‐deficient mice were not able to effectively downregulate inflammation. Together, these results demonstrate that IL‐4 signalling in T cells inhibits Foxp3+ Treg in vivo and promotes CD4+CD25?CD103+Foxp3? cells that control S. mansoni egg‐induced inflammation via IL‐10.  相似文献   

20.
IL‐17, produced by a distinct lineage of CD4+ helper T (Th) cells termed Th17 cells, induces the production of pro‐inflammatory cytokines from resident cells and it has been demonstrated that over‐expression of IL‐17 plays a crucial role in the onset of several auto‐immune diseases. Here we examined the role of IL‐17 in the pathogenesis of autoimmune gastritis, a disease that was previously believed to be mediated by IFN‐γ. Significantly higher levels of IL‐17 and IFN‐γ were found in the stomachs and stomach‐draining lymph nodes of mice with severe autoimmune gastritis. Unlike IL‐17, which was produced solely by CD4+ T cells in gastritic mice, the majority of IFN‐γ‐producing cells were CD8+ T cells. However, CD8+ T cells alone were not able to induce autoimmune gastritis. T cells that were deficient in IL‐17 or IFN‐γ production were able to induce autoimmune gastritis but to a much lower extent compared with the disease induced by wild‐type T cells. These data demonstrate that production of neither IL‐17 nor IFN‐γ by effector T cells is essential for the initiation of autoimmune gastritis, but suggest that both are required for the disease to progress to the late pathogenic stage that includes significant tissue disruption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号