首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Follicular helper T (Tfh) cells provide crucial help to germinal center B (GCB) cells for proper antibody production, and a specialized subset of regulatory T cells, follicular regulatory T (Tfr) cells, modulate this process. However, Tfr‐cell function in the GC is not well understood. Here, we define Tfr cells as a CD4+ Foxp3+ CXCR5hi PD‐1hi CD25low TIGIThigh T‐cell population. Furthermore, we have used a novel mouse model (“Bcl6FC”) to delete the Bcl6 gene in Foxp3+ T cells and thus specifically deplete Tfr cells. Following immunization, Bcl6FC mice develop normal Tfh‐ and GCB‐cell populations. However, Bcl6FC mice produce altered antigen‐specific antibody responses, with reduced titers of IgG and significantly increased IgA. Bcl6FC mice also developed IgG antibodies with significantly decreased avidity to antigen in an HIV‐1 gp120 “prime‐boost” vaccine model. In an autoimmune lupus model, we observed strongly elevated anti‐DNA IgA titers in Bcl6FC mice. Additionally, Tfh cells from Bcl6FC mice consistently produce higher levels of Interferon‐γ, IL‐10 and IL‐21. Loss of Tfr cells therefore leads to highly abnormal Tfh‐cell and GCB‐cell responses. Overall, our study has uncovered unique regulatory roles for Tfr cells in the GC response.  相似文献   

2.
B cells have been described as having the capacity to regulate cellular immune responses and suppress inflammatory processes. One such regulatory B‐cell population is defined as IL‐10‐producing CD19+CD1dhi cells. Previous work has identified an expansion of these cells in mice infected with the helminth, Schistosoma mansoni. Here, microarray analysis of CD19+CD1dhi B cells from mice infected with S. mansoni demonstrated significantly increased Tlr7 expression, while CD19+CD1dhi B cells from uninfected mice also demonstrated elevated Tlr7 expression. Using IL‐10 reporter, Il10?/? and Tlr7?/‐ mice, we formally demonstrate that TLR7 ligation of CD19+CD1dhi B cells increases their capacity to produce IL‐10. In a mouse model of allergic lung inflammation, the adoptive transfer of TLR7‐elicited CD19+CD1dhi B cells reduced airway inflammation and associated airway hyperresponsiveness. Using DEREG mice to deplete FoxP3+ T regulatory cells in allergen‐sensitized mice, we show that that TLR7‐elicited CD19+CD1dhi B cells suppress airway hyperresponsiveness via a T regulatory cell dependent mechanism. These studies identify that TLR7 stimulation leads to the expansion of IL‐10‐producing CD19+CD1dhi B cells, which can suppress allergic lung inflammation via T regulatory cells.  相似文献   

3.
Even today it is still not completely understood how CD8+ T‐cell memory is maintained long term. Since bone marrow (BM) is a niche for immunological memory, we sought to identify long‐lasting early memory CD8+ T cells in this compartment. To achieve this, we looked for CD8+ T cells that are able to efflux Rhodamine 123, a typical property of stem cells. Indeed, we identified a distinct subset of CD8+ T cells in BM, with the capacity to efflux and high CD127 expression. These CD127hi effluxers are conventional CD8+ T cells exhibiting a broad TCR‐Vβ repertoire and are generated in response to viral peptides in vitro. CD127hi effluxer CD8+ T cells have an early memory phenotype defined by preferential TNF‐α production and a Bcl‐2hi, KLRG‐1low profile. This population has long telomeres and shows constitutively low frequencies of Ki‐67 expression ex vivo, but has a high proliferative and differentiation capacity in vitro. However, IL‐15 downmodulates CD127 in CD127hi effluxer CD8+ T cells in vitro. Consequently, the CD127low effluxer subset may comprise cells recently exposed to IL‐15. Taken together, CD127hi effluxer CD8+ T cells represent a novel population of early memory T cells resident in BM with properties required for long‐lived memory.  相似文献   

4.
In this study, a critical and novel role for TNF receptor (TNFR) associated factor 2 (TRAF2) is elucidated for peripheral CD8+ T‐cell and NKT‐cell homeostasis. Mice deficient in TRAF2 only in their T cells (TRAF2TKO) show ∼40% reduction in effector memory and ∼50% reduction in naïve CD8+ T‐cell subsets. IL‐15‐dependent populations were reduced further, as TRAF2TKO mice displayed a marked ∼70% reduction in central memory CD8+CD44hiCD122+ T cells and ∼80% decrease in NKT cells. TRAF2TKO CD8+CD44hi T cells exhibited impaired dose‐dependent proliferation to exogenous IL‐15. In contrast, TRAF2TKO CD8+ T cells proliferated normally to anti‐CD3 and TRAF2TKO CD8+CD44hi T cells exhibited normal proliferation to exogenous IL‐2. TRAF2TKO CD8+ T cells expressed normal levels of IL‐15‐associated receptors and possessed functional IL‐15‐mediated STAT5 phosphorylation, however TRAF2 deletion caused increased AKT activation. Loss of CD8+CD44hiCD122+ and NKT cells was mechanistically linked to an inability to respond to IL‐15. The reduced CD8+CD44hiCD122+ T‐cell and NKT‐cell populations in TRAF2TKO mice were rescued in the presence of high dose IL‐15 by IL‐15/IL‐15Rα complex administration. These studies demonstrate a critical role for TRAF2 in the maintenance of peripheral CD8+ CD44hiCD122+ T‐cell and NKT‐cell homeostasis by modulating sensitivity to T‐cell intrinsic growth factors such as IL‐15.  相似文献   

5.
In the ectopic lymphoid‐like structures present in chronic inflammatory conditions such as rheumatoid arthritis, a subset of human effector memory CD4+ T cells that lacks features of follicular helper T (Tfh) cells produces CXCL13. Here, we report that TGF‐β induces the differentiation of human CXCL13‐producing CD4+ T cells from naïve CD4+ T cells. The TGF‐β‐induced CXCL13‐producing CD4+ T cells do not express CXCR5, B‐cell lymphoma 6 (BCL6), and other Tfh‐cell markers. Furthermore, expression levels of CD25 (IL‐2Rα) in CXCL13‐producing CD4+ T cells are significantly lower than those in FoxP3+ in vitro induced Treg cells. Consistent with this, neutralization of IL‐2 and knockdown of STAT5 clearly upregulate CXCL13 production by CD4+ T cells, while downregulating the expression of FoxP3. Furthermore, overexpression of FoxP3 in naïve CD4+ T cells downregulates CXCL13 production, and knockdown of FoxP3 fails to inhibit the differentiation of CXCL13‐producing CD4+ T cells. As reported in rheumatoid arthritis, proinflammatory cytokines enhance secondary CXCL13 production from reactivated CXCL13‐producing CD4+ T cells. Our findings demonstrate that CXCL13‐producing CD4+ T cells lacking Tfh‐cell features differentiate via TGF‐β signaling but not via FoxP3, and exert their function in IL‐2‐limited but TGF‐β‐rich and proinflammatory cytokine‐rich inflammatory conditions.  相似文献   

6.
7.
Human autoimmune diseases are often characterized by a relative deficiency in CD4+CD25+ regulatory T cells (Treg). We therefore hypothesized that expansion of Treg can ameliorate autoimmune pathology. We tested this hypothesis in an experimental model for autoimmune myasthenia gravis (MG), a B‐cell‐mediated disease characterized by auto‐Ab directed against the acetylcholine receptor within neuromuscular junctions. We showed that injection of immune complexes composed of the cytokine IL‐2 and anti‐IL‐2 mAb (JES6‐1A12) induced an effective and sustained expansion of Treg, via peripheral proliferation of CD4+CD25+Foxp3+ cells and peripheral conversion of CD4+CD25?Foxp3? cells. The expanded Treg potently suppressed autoreactive T‐ and B‐cell responses to acetylcholine receptor and attenuated the muscular weakness that is characteristic of MG. Thus, IL‐2/anti‐IL‐2 mAb complexes can expand functional Treg in vivo, providing a potential clinical application of this modality for treatment of MG and other autoimmune disorders.  相似文献   

8.
In contrast to antibody‐induced inflammatory responses, some B‐cell subpopulations suppress inflammation through the production of interleukin (IL)‐10. However, the mechanisms underlying Il10 gene expression during B‐cell development is elusive. Here, we identify IgM+B220loCD138hi cells responsible for marked IL‐10 production in the bone marrow and spleen of mice. These murine IL‐10‐producing cells predominantly secrete IgM and have unique characteristics of long‐lived plasma cells in spite of high expression of surface IgM. We found that IL‐10 production is strongly correlated with the expression level of Prdm1 (encoding the Blimp‐1 protein), an essential regulator of plasma cell development. Furthermore, overexpression of Prdm1 induces Il10 expression in naïve B cells. Immunoglobulin class‐switching recombination events resulted in the downregulation of both Il10 and Prdm1 expression in differentiating B cells. Thus, the prolonged elevation of Blimp‐1 expression during the formation of IgM+CD138hi cells without class‐switching elicits IL‐10 production. Adoptive transfer of Il10‐deficient B cells into B‐cell‐deficient mice demonstrated that IgM+CD138hi cell‐derived IL‐10 supports the survival of class‐switched plasma cells and their antibody production in response to antigen challenge. These findings reveal an important role for IL‐10 secretion by IgM+CD138hi cells in the complete and efficient humoral response.  相似文献   

9.
10.
It remains not fully elucidated the potential functions of Th17 cells and follicular helper T (Tfh) cells and secreting cytokines in the pathogenesis of rheumatoid arthritis (RA) and their association with disease activity. In this study, the frequencies of Th17 and Tfh cells were determined by flow cytometry, and the levels of interleukin (IL)‐17, IL‐21, and IL‐22 were measured by ELISA in RA patients with different disease activities. The dynamic changes of cell subsets were also detected in response to disease‐modify antirheumatic drugs (DMARDs) therapy. The percentages of CD3+CD4+IL‐17A+ (Th17) cells and CD3+CD4+CXCR5+ICOShigh (Tfh) cells, as well as the concentrations of IL‐17, IL‐21, and IL‐22 were significantly elevated in RA patients than those in healthy individuals. Furthermore, Tfh cells, IL‐21, and IL‐22 in the serum was positively correlated with the values of disease activity score. Concentrations of IL‐21 and IL‐22 in the serum were remarkably reduced following the DMARDs therapies. Our data suggested that Th17 cells, Tfh cells as well as the secreting cytokines may be involved in the pathogenesis of RA. The frequency of circulating Tfh cells and the productions of IL‐21 and IL‐22 were associated with the disease activity of RA patients, and might be potential therapeutic targets for treatment of RA.  相似文献   

11.
12.
13.
The complement receptor 2 (CR2, CD21) is part of a complex (CD21/CD19/CD81) acting as a co‐receptor to the B cell receptor (BCR). Simultaneous triggering of the BCR and CD21 lowers the threshold for B cell activation. Although CD21 is important, B cells that express low amounts or lack surface CD21 (CD21–/low) are increased in conditions with chronic inflammation, e.g. autoimmune diseases. However, little is known about the CD21–/low B cell subset in peripheral blood from healthy donors. Here, we show that CD21–/low cells represent approximately 5% of B cells in peripheral blood from adults but are barely detectable in cord blood, after excluding transitional B cells. The CD21–/low subset can be divided into CD3824+ and CD3824low cells, where most of the CD3824+ are CD27+immunoglobulin (Ig)M+IgD+ and the CD3824low are switched CD27. Expression levels of additional markers, e.g. CD95 and CD62L, are similar to those on classical memory B cells. In contrast to naive cells, the majority of CD21–/low cells lack expression of the ABCB1 transporter. Stimulation with a combination of BCR, Toll‐like receptor (TLR)?7/8 and interleukin (IL)?2 induces proliferation and differentiation of the CD21–/low B cells comparable to CD21+CD27+ memory B cells. The response excluding BCR agonist is not on par with that of classical memory B cells, although clearly above that of naive B cells. This is ascribed to a weaker response by the CD3824low subset, implying that some memory B cells require not only TLR but also BCR triggering. We conclude that the CD21–/low cells in healthy donors are memory B cells.  相似文献   

14.
Th type 17 (Th17) cells have been identified as a proinflammatory T‐cell subset. Here, we investigated the regulation of human Th17 cells by fetal BM‐derived mesenchymal stem cells (FBM‐MSC). We cocultured FBM‐MSC with human PBMC or CD4+ T cells from healthy donors. FBM‐MSC significantly suppressed the proliferation of CD4+ T cells stimulated by PHA and recombinant IL‐2. Significantly higher levels of IL‐17 were observed in FBM‐MSC cocultured with either PBMC or CD4+ T cells than that in PBMC cultured alone or CD4+ T cells cultured alone. Flow cytometry analysis showed that the percentage of Th17 cells in coculture of FBM‐MSC and CD4+ T cells was significantly higher than that in CD4+ T‐cell cultured alone. FBM‐MSC did not express IL‐17 protein. Consistent with the augmentation of Th17 cells, significantly higher levels of IL‐6 and IL‐1 were observed in coculture of FBM‐MSC and CD4+ T cells than that in CD4+ T‐cell culture, while the levels of IL‐23 were similar between FBM‐MSC + PBMC coculture and PBMC alone, or FBM‐MSC + CD4+ T‐cell and CD4+ T‐cell alone. The presence of FBM‐MSC decreased the percentage of Th1 cells, but minimally affected the expansion of CD4+CD25+ T cells. In conclusion, our data demonstrate for the first time that FBM‐MSC promote the expansion of Th17 cells and decrease IFN‐γ‐producing Th1 cells. These data suggest that IL‐6 and IL‐1, instead of IL‐23, may be partly involved in the expansion of Th17 cells.  相似文献   

15.
‘Circulating’ T follicular helper cells (Tfh), characterized by their surface phenotypes CD4+chemokine receptor 5 (CXCR5)+ inducible co‐stimulatory molecule (ICOS)+, have been identified as the CD4+ T cell subset specialized in supporting the activation, expansion and differentiation of B cells. Fibroblast‐like synoviocytes (FLS) are critical in promoting inflammation and cartilage destruction in rheumatoid arthritis (RA), and the interaction between FLS and T cells is considered to facilitate FLS activation and T cell recruitment. However, it remains unknown whether RA‐FLS co‐cultured with activated peripheral blood mononuclear cells (PBMC) has immunoregulatory effects on peripheral Tfh. In the present study, we co‐cultured RA‐FLS with or without anti‐CD3/CD28‐stimulated PBMC. The results showed that RA‐FLS co‐cultured with stimulated PBMC could increase the numbers of CD4+CXCR5+ICOS+ T cells of RA PBMC possibly via the production of interleukin (IL)‐6, a critical cytokine involved in the differentiation of Tfh cells. We also observed increased reactive oxygen species (ROS) levels in the co‐culture system of RA‐FLS and PBMC. The percentage of CD4+CXCR5+ICOS+ T cells was decreased when ROS production was inhibited by N‐acetyl‐L‐cysteine (NAC), a specific inhibitor which can decrease ROS production. In addition, we showed that the higher levels of tumour necrosis factor (TNF)‐α and IL‐1β in the co‐culture system and the blocking of TNF receptor 2 (TNF‐R2) and IL‐1β receptor (IL‐1βR) both decreased the numbers of CD4+CXCR5+ICOS+ T cells. Our study reveals a novel mechanistic insight into how the interaction of RA‐FLS and PBMC participates in the RA pathogenesis, and also provides support for the biologicals application for RA.  相似文献   

16.
Follicular helper T (Tfh) cells and follicular regulatory T (Tfr) cells are critical for the development and maintenance of germinal centre (GC) and humoral immune responses. Accumulating evidence has demonstrated that the dysregulation of either Tfh cells or Tfr cells contributes to the pathogenesis of autoimmune diseases. We aim to investigate the roles of circulating Tfh cells and circulating Tfr cells in the pathogenesis of primary biliary cholangitis (PBC). A total of 34 patients with PBC and 27 health individuals were enrolled in this study. Flow cytometry revealed that circulating Tfh (CD4+CXCR5+CD127hiCD25lo) cells were increased, but Tfr (CD4+CXCR5+CD127loCD25hi) cells and ratio of Tfr/Tfh were dramatically decreased in PBC patients compared with healthy controls. The Tfr/Tfh ratio was negatively correlated with level of serum IgM. Meanwhile, we also observed effector memory (CCR7loPD‐1hi) Tfh cells and Tfr cells were dramatically increased, but central memory (CCR7hiPD‐1lo) Tfh cells and Tfr cells were decreased in PBC patients compared with healthy controls. Effector memory Tfr cells were positively correlated with level of serum ALP. These results indicate that an imbalance of circulating Tfr cells and Tfh cells may be involved in the immunopathogenesis of PBC and may provide novel insight for the development of PBC therapies.  相似文献   

17.
The atypical chemokine receptor CXCR7 binds the chemokines CXCL12 and CXCL11. The receptor is widely expressed and was shown to tune CXCR12‐induced responses of CXCR4. Here, the function of CXCR7 was examined at late stages of human B‐cell maturation, when B cells differentiate into Ab‐secreting plasmablasts. We identified two populations of CXCR7+ cells in tonsillar lymphocytes, one being presumably memory B cells or early plasmablasts (FSClowCD19+CD38mid) and the other being plasmablasts or early plasma cells (FSChighCD19+CD38+). CXCR7 is expressed on CD19+CD27+ memory B cells, on CD19+CD38+CD138? and intracellular immunoglobulin high plasmablasts, but not on CD19+CD138+icIghigh plasma cells. The differential expression pattern suggests a potential contribution of the scavenger receptor in final B‐cell maturation. On in vitro differentiating B cells, we found a marked inverse correlation between CXCR7 and CXCR5 cell surface levels, whereas expression of CXCR4 remained almost constant. Migration assays performed with tonsillar mononuclear cells or in vitro differentiated cells revealed that inhibition of CXCR7 markedly increases chemotaxis toward CXCL12, especially at late stages of B‐cell maturation. Chemotaxis was attenuated in the presence of CXCR4 antagonists, confirming that migration is CXCR4 mediated. Our findings unequivocally demonstrate a novel role for CXCR7 in regulating the migration of plasmablasts during B‐cell maturation.  相似文献   

18.
Pneumoconiosis is caused by the accumulation of airborne dust in the lung, which stimulates a progressive inflammatory response that ultimately results in lung fibrosis and respiratory failure. It is possible that regulatory cells in the immune system could function to suppress inflammation and possibly slow or reverse disease progression. However, results in this study suggest that in pneumoconiosis patients, the regulatory T cells (Tregs) and B cells are functionally impaired. First, we found that pneumoconiosis patients presented an upregulation of CD4+CD25+ T cells compared to controls, whereas the CD4+CD25+ and CD4+CD25hi T cells were enriched with Th1‐ and Th17‐like cells but not Foxp3‐expressing Treg cells and evidenced by significantly higher T‐bet, interferon (IFN)‐γ, and interleukin (IL)‐17 expression but lower Foxp3 and transforming growth factor (TGF)‐β expression. Regarding the CD4+CD25hi T‐cell subset, the frequency of this cell type in pneumoconiosis patients was significantly reduced compared to controls, together with a reduction in Foxp3 and TGF‐β and an enrichment in T‐bet, RORγt, IFN‐γ, and IL‐17. This skewing toward Th1 and Th17 types of inflammation could be driven by monocytes and B cells, since after depleting CD14+ monocytes and CD19+ B cells, the levels of IFN‐γ and IL‐17 were significantly decreased. Whole peripheral blood mononuclear cells and isolated monocytes and B cells in pneumoconiosis patients also presented reduced capacity of TGF‐β secretion. Furthermore, monocytes and B cells from pneumoconiosis patients presented reduced capacity in inducing Foxp3 upregulation, a function that could be rescued by exogenous TGF‐β. Together, these data indicated a potential pathway for the progression of pneumoconiosis through a loss of Foxp3+ Treg cells associated with impaired TGF‐β secretion.  相似文献   

19.
In BDC2·5 non‐obese diabetic (BDC2·5NOD) mice, a spontaneous model of type 1 diabetes, CD4+ T cells express a transgene‐encoded T cell receptor (TCR) with reactivity against a pancreatic antigen, chromogranin. This leads to massive infiltration and destruction of the pancreatic islets and subsequent diabetes. When we reconstituted lethally irradiated, lymphocyte‐deficient B6.g7 (I‐Ag7+) Rag–/– mice with BDC2·5NOD haematopoietic stem and progenitor cells (HSPC; ckit+LinSca‐1hi), the recipients exhibited hyperglycaemia and succumbed to diabetes. Surprisingly, lymphocyte‐sufficient B6.g7 mice reconstituted with BDC2·5NOD HSPCs were protected from diabetes. In this study, we investigated the factors responsible for attenuation of diabetes in the B6.g7 recipients. Analysis of chimerism in the B6.g7 recipients showed that, although B cells and myeloid cells were 98% donor‐derived, the CD4+ T cell compartment contained ~50% host‐derived cells. These host‐derived CD4+ T cells were enriched for conventional regulatory T cells (Tregs) (CD25+forkhead box protein 3 (FoxP3)+] and also for host‐ derived CD4+CD25FoxP3 T cells that express markers of suppressive function, CD73, FR4 and CD39. Although negative selection did not eliminate donor‐derived CD4+ T cells in the B6.g7 recipients, these cells were functionally suppressed. Thus, host‐derived CD4+ T cells that emerge in mice following myeloablation exhibit a regulatory phenoytpe and probably attenuate autoimmune diabetes. These cells may provide new therapeutic strategies to suppress autoimmunity.  相似文献   

20.
Treg cells are critical for the prevention of autoimmune diseases and are thus prime candidates for cell‐based clinical therapy. However, human Treg cells are “plastic”, and are able to produce IL‐17 under inflammatory conditions. Here, we identify and characterize the human Treg subpopulation that can be induced to produce IL‐17 and identify its mechanisms. We confirm that a subpopulation of human Treg cells produces IL‐17 in vitro when activated in the presence of IL‐1β, but not IL‐6. “IL‐17 potential” is restricted to population III (CD4+CD25hiCD127loCD45RA?) Treg cells expressing the natural killer cell marker CD161. We show that these cells are functionally as suppressive and have similar phenotypic/molecular characteristics to other subpopulations of Treg cells and retain their suppressive function following IL‐17 induction. Importantly, we find that IL‐17 production is STAT3 dependent, with Treg cells from patients with STAT3 mutations unable to make IL‐17. Finally, we show that CD161+ population III Treg cells accumulate in inflamed joints of patients with inflammatory arthritis and are the predominant IL‐17‐producing Treg‐cell population at these sites. As IL‐17 production from this Treg‐cell subpopulation is not accompanied by a loss of regulatory function, in the context of cell therapy, exclusion of these cells from the cell product may not be necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号