首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CD58 is the ligand for the CD2 molecule on human T cells and has been shown to provide a co-stimulatory signal for T cell activation. However, its physiological role is still unclear. We studied the effects of co-stimulation by CD58 on the production of T(h)1-type (IL-2- and IFN-gamma) or T(h)2 type (IL-4, IL-5 and IL-10) cytokines in an in vitro culture system of purified human T cells with CD58-transfected P815 cells and with anti-CD3 as the primary stimulus. Co-stimulation of T cells by CD58 potently induced IL-10 and IFN-gamma production (at the protein and at the mRNA level), and transforming growth factor-ss production (at the mRNA level), comparable to what can be found in CD80 co-stimulated T cell cultures. In contrast, we found low to absent IL-2, IL-4, IL-5, IL-13 and tumor necrosis factor-alpha production after CD58 co-stimulation, and this was not due to suppressive effects of endogenously produced IL-10. CD80 co-stimulation strongly induced all these cytokines. Intracellular staining for cytokine expression revealed the existence of a T cell subpopulation induced by CD58 co-stimulation to produce both IFN-gamma and IL-10. We furthermore found that the selective cytokine profile induced by CD58 co-stimulation is further accentuated by rIL-12 and by rIFN-alpha. Using cyclosporin A as an inhibitor of the calcineurin enzyme, we could show that production of all cytokines in this system is calcium dependent. CD58 co-stimulation thus induces a cytokine pattern corresponding to that described for T regulatory (T(r)) 1 cells and to the pattern reported to be induced by the newly identified B7 family member, B7-H1.  相似文献   

2.
3.
Naive CD4(+) T cells rapidly proliferate to generate effector cells after encountering an antigen and small numbers survive as memory T cells in preparation for future immunological events. In the present work, adoptive transfer of naive CD4(+) T cells into RAG2(-/-) mice caused the generation of memory-type effector T cells including T(h)1, T(h)2, T(h)17 and regulatory T cells, and eventually induced T cell-dependent colitis. We found here that blocking of the IL-6R with a specific mAb remarkably inhibited the CD4(+) T cell-mediated colitis in parallel with the inhibition of T(h)17 cell generation. However, the transfer of naive CD4(+) T cells prepared from IL-17(-/-) mice still induced severe colitis. At the effector phase, the mAb significantly inhibited IL-17 but not IFN-gamma production. The blockade of IL-6 signaling enhanced the generation of IL-4- and IL-10-producing CD4(+) T cells, and inhibited up-regulation of tumor necrosis factor -alpha mRNA expression in the colon. These findings clearly demonstrated that IL-6 is a critical factor for the induction of colitis by expansion of naive CD4(+) T cells in RAG2(-/-) mice. Thus, the IL-6-mediated signaling pathway may be a significant therapeutic target in T cell-mediated autoimmune diseases.  相似文献   

4.
Role of CD4(+)CD25(+) T regulatory cells in IL-2-induced vascular leak   总被引:2,自引:0,他引:2  
T regulatory cells (CD4(+)CD25(+)) play an important role in the regulation of the immune response. However, little is known about the ability of T regulatory cells to regulate endothelial cell (EC) damage following activation of lymphocytes with IL-2. Therefore, in the current study, we examined the role of T regulatory cells and the subsequent T(h)1/T(h)2 bias in IL-2-mediated EC injury using the well-characterized C57BL/6 (T(h)1-biased) and BALB/c (T(h)2-biased) models. Following IL-2 treatment, BALB/c mice were less susceptible to IL-2-induced vascular leak syndrome (VLS) compared with C57BL/6 mice. Splenocytes from BALB/c mice displayed less cytotoxicity against ECs compared with those from C57BL/6 mice. Interestingly, BALB/c mice had significantly higher numbers of CD4(+)CD25(+) T regulatory cells, which proliferated more profoundly following IL-2 treatment, compared with CD4(+)CD25(+) T regulatory cells from C57BL/6 mice. In addition, T regulatory cells from naive BALB/c mice were more potent suppressors of anti-CD3 mAb-stimulated proliferation of T cells than similar cells from C57BL/6 mice. Depletion of T regulatory cells in both BALB/c and C57BL/6 mice led to a significant increase in IL-2-induced VLS. Together, the results from this study suggest that CD4(+)CD25(+) T regulatory cells play an important role in the regulation of IL-2-induced EC injury.  相似文献   

5.
6.
We examined the co-stimulatory activity of H4/ICOS on murine activated CD4(+) T cells and found that the cross-linking of H4/ICOS enhanced their proliferation, in addition to raising IFN-gamma, IL-4 and IL-10 production to levels comparable to those induced by CD28. However, IL-2 production was only marginally co-stimulated by H4/ICOS. This distinct pattern of lymphokine production appears to be induced by a specific intracellular signaling event. Compared with CD28, H4/ICOS dominantly elicited the Akt pathway via phosphatidylinositol 3-kinase. In addition, mitogen-activated protein kinase family kinases were activated in different ways by CD28 and H4/ICOS. The strong phosphorylation of p46 c-Jun N-terminal kinase was observed upon CD28 co-stimulation, but was less potently induced by H4/ICOS. The strain diversity in the induction of H4/ICOS was recognized. The expression of H4/ICOS on BALB/c activated CD4(+) T cells was >6-fold higher compared with C57BL/6 activated CD4(+) T cells. Furthermore, BALB/c activated CD4(+) T cells exhibited more T(h)2-deviated lymphokine production as compared with C57BL/6 activated CD4(+) T cells and signaling through H4/ICOS during the primary stimulation of naive CD4(+) T cells promoted the generation of T(h)2 cells. Thus, the difference in H4/ICOS expression on activated CD4(+) T cells, which is regulated among the mouse strains, may also regulate the polarization of T(h) cells.  相似文献   

7.
8.
The murine CD44 receptor family is thought to be involved ina variety of lymphocyte functions, including lymphopoesis, lymphocytehoming and cell migration. Herein, we show that murine CD44also plays a role as a co-stimulatory molecule for the activationof CD4+ T cells. Ligation of CD44 by mAb enhanced IL-2 productionof long-term cultured, anti-CD3-stimulated Th1 cell lines. Moreover,anti-CD44 mAb synergized with anti-CD28 mAb in exerting thiseffect. A synergism of anti-CD28 and anti-CD44 mAb to co-stimulateIL-2 production was also observed in anti-CD3- triggered, freshlyisolated splenic CD4+ T cells. Blocking experiments with cyclosporinA indicated that the intracellular pathways used by the CD28and CD44 molecules appear to be different. In contrast to theeffects on the IL-2 production of Th1 cells, neither anti-CD44mAb alone nor the combination of anti-CD44 with anti-CD28 wereable to induce proliferation of anti-CD3-triggered Th1 cells.In accordance, triggering of CD44 and/or CD28 by mAb was notsufficient to reverse the previously described ‘proliferativeblock’. This term describes the unresponsiveness of Th1cells against IL-2, which occurs when Th1 cells are triggeredby anti-CD3 in the absence of co-signals. These data lead usto propose a model of Th1 cell activation which includes twofunctionally different types of co-signals: one for IL-2 productionand a separate one for proliferation.  相似文献   

9.
Mitogenic anti-CD28 antibody stimulates all peripheral T cells to proliferate in the absence of TCR ligation, providing an exception to the two-signal requirement of T cell responses. This antibody preferentially recognizes a mobilized signaling-competent form of CD28, normally induced following TCR ligation, thus providing a unique non-physiological tool to dissect CD28-specific signals leading to T cell proliferation. The protein kinase C (PKC)theta-NF-kappaB pathway has recently been shown to integrate TCR- and CD28-derived signals in co-stimulation. We now demonstrate that this pathway is activated by mitogenic anti-CD28 antibody stimulation. In contrast to conventional anti-CD28 antibody, mitogenic anti-CD28 antibody induced activation of phospholipase Cgamma and Ca(2+) flux in peripheral rat T cells despite no or low levels of inducible tyrosine phosphorylation of TCRzeta chain, TCRzeta-associated protein of 70 kDa (ZAP-70) or linker for activation of T cells (LAT)-critical components of the TCR signaling machinery. Nevertheless, PKCtheta kinase activity in vitro was increased following mitogenic anti-CD28 antibody stimulation, as was membrane association of both PKCtheta and Bcl10. As downstream targets of PKCtheta activation, NF-kappaB components translocated to the nucleus at levels comparable to those after TCR-CD28 co-stimulation. NF-kappaB translocation was diminished by PKCtheta inhibition, as was induction of the NF-kappaB/AP-1 responsive activation marker CD69. We propose that co-stimulation is a sequential process in which appropriate TCR engagement is required to mobilize CD28 into a signaling-competent form which then activates the PKCtheta-NF-kappaB pathway necessary for IL-2 production and proliferation.  相似文献   

10.
The physiological functions of CD30 have not been fully elucidated. Here we show that in CD30-deficient mice (CD30(-/-)), lung inflammation is significantly diminished in the ovalbumin (OVA) model of airway hyperreactivity. In CD30(-/-) mice, the recruitment of eosinophils into the airways after OVA-aerosol challenge of OVA-primed mice was significantly diminished when compared with wild-type (w.t.) mice. IL-13 levels were also significantly reduced in CD30(-/-) mice while levels of IFN-gamma, IL-4, IL-5 and IgE in bronchoalveolar lavage fluid, lung tissue and serum were comparable to w.t. mice. Peribronchial lymph node cells from CD30(-/-) mice, re-stimulated in vitro with OVA, secreted significantly lower levels of IL-13 than those from w.t. mice, but showed normal proliferative response and other cytokine production. Exogenous IL-13 reconstituted airway recruitment of leukocytes in OVA-challenged CD3O(-/-) mice. Adoptive transfer to naive w.t. mice of in vitro OVA-re-stimulated spleen cells from CD30(-/-) mice failed to induce eosinophilic pulmonary inflammation in contrast to transfer of primed cells from w.t. mice. These results indicate that CD30 is a regulator of T(h)2 responses in the effector-memory phase and a regulator of IL-13 production in memory cells in the lung.  相似文献   

11.
Pancreatic islet xenotransplantation has been advocated as a way of overcoming the shortage of human donor tissue for the treatment of type 1 diabetes. However, the potent immune response against xenografts is a major barrier to their use. We show that a short course of the anti-CD45RB antibody, MB23G2, prolongs survival of fetal pig pancreas grafts in mice. To investigate this effect further we used an i.p. xenograft model in which both donor pig cells and host inflammatory cells can be expediently recovered and analyzed. Graft prolongation was associated with reduced T cell and macrophage infiltration, and reduced production of both T(h)1 and T(h)2 cytokines at the graft site. Graft survival was further increased and T cell infiltration further reduced by combining anti-CD45RB antibody with co-stimulation blockade. The primary effect of anti-CD45RB antibody may be on CD4 T cells, in keeping with the marked reduction in T cell cytokine production in both spleen and graft sites. This concurs with previous studies in allogeneic models that indicate that this antibody perturbs T cell responses by modifying signaling via the TCR. In addition, anti-CD45RB treatment led to reduced expression of LFA-1 and CD62 ligand (CD62L) on CD4 T cells, independent of antigenic challenge. LFA-1 may enhance co-stimulation, and both LFA-1 and CD62L are involved in T cell trafficking. Their reduced expression provides an explanation why the T cell pool is reduced in lymph nodes. We conclude that modulation of inflammation against xenografts by anti-CD45RB antibody is due to effects on both T cell priming and trafficking.  相似文献   

12.
Summary: The functional significance of B7 co-stimulation in T-cell activation was described first in the context of preventing the induction of anergy. The functions of this pathway are far more complex than initially appreciated in view of the existence of two B7 molecules which have specificities for both CD28 and CTLA-4, which serve to amplify and terminate T-cell responses respectively Mice lacking B7 co-stimulators and CD28 and CTLA-4 co-stimulatory receptors are helping to clarify the functions of this key immunoregulatory pathway. In this review we will focus on the role of B7 co-stimulation in the activation and differentiation of CD4+ helper cells and CD8+ cytotoxic cells. The contribution of B7 co-stimulation to CD+ responses depends upon the activation history of the T-cell and the strength of the T-cell antigen receptor signal. B7 co-stimulation contributes to in Cerleukin (IL)-2 production by both naive and previously activated CD4+ T cells. B7 co-stimulation is most critical for the differentiation of naive CD4+ T cells to IL-4 producers, but predominately influences IL-2 production by previously activated CD4+ cells. B7 co-stimulation is important in development of cytotoxic T cells through both effects on T-helper cells and by direct co-stimulation of CDS+ cells.  相似文献   

13.
T cell activation requires two signals: a signal from the TCR and a co-stimulatory signal provided by antigen-presenting cells (APC). In addition to CD28, multiple molecules on the T cell have been described to deliver co-stimulatory signals. Here, we investigated whether there exist quantitative or qualitative differences in the co-stimulatory capacity between CD28 and other molecules. Anti-CD28 monoclonal antibody (mAb) and mAb against CD5, CD9, CD2, CD44 or CD11a all induced activation of naive T cells in the absence of APC when co-immobilized with a submitogenic dose of anti-CD3 mAb. [ 3 H]Thymidine incorporation determined 2 days after co-stimulation was all comparable. In contrast to progressive T cell proliferation induced by CD28 co-stimulation, co-stimulation by other T cell molecules led to a decrease in viable cell recovery along with the induction of apoptosis of once activated T cells. This was associated with a striking difference in IL-2 production; CD28 co-stimulation induced progressively increasing IL-2 production, whereas co-stimulation by other molecules produced limited amounts of IL-2. Addition of recombinant IL-2 to the latter cultures corrected the induction of apoptosis, resulting in levels of cellular proliferation comparable to those observed for CD28 co-stimulation. These results indicate that a fundamental difference exists in the nature of co-stimulation between CD28 and other molecules, which can be evaluated by the levels of IL-2 production, but not simply by [ 3 H]thymidine incorporation.  相似文献   

14.
15.
16.
We previously demonstrated that CD81-/- mice fail to develop Th2-biased immune responses and allergen-induced airway hyper-reactivity. Because CD81 is expressed on both activated T and on B cells, we examined the role of CD81 expression by each cell type. We established an in vitro system by backcrossing the CD81 deletion to TCR transgenic (Tg) mice and to BCR Tg mice. Here we demonstrate that CD81 expression by T cells is critical for their induction of IL-4 synthesis by B cells. CD81-/- TCR Tg T cells were impaired in IL-4 production compared to CD81+/+ TCR Tg T cells, whereas CD81-/- and CD81+/+ BCR Tg B cells induced equivalent amounts of IL-4 in CD81+/+ TCR Tg T cells. CD81-/- TCR Tg T cells expressed reduced levels of ICOS, GATA-3, STAT6 and phosphorylated STAT6 when activated by antigen-presenting B cells. Taken together, these results indicate that CD81 expression by T cells greatly enhances cognate T-B cell interactions and greatly augments intracellular activation pathways leading to Th2 polarization.  相似文献   

17.
In this study we have investigated the capacity of human fetalthymocytes to differentiate in vitro into subsets of T cellswith polarized Th1 or Th2 cytokine profiles. Stimulation offreshly isolated human fetal thymocytes with anti-CD3 mAb, cross-linkedonto CD32,CD58,CD80-expressing mouse fibroblasts and subsequentculture in the presence of exogenous rIL-2 for 6 days, inducedthe production of both IL-4 and IFN-, which was mainly producedby CD4+ single-positive (SP) and CD8+ SP cells respectively.Addition of rIL-4 during priming augmented IL-4 production incultures of human fetal thymocytes, which was mainly due toan increased production of IL-4 by CD8SP cells. In contrast,addition of IL-4 to the cultures only slightly enhanced IL-4production and had little effect on frequencies of IL-4-producingCD4SP cells. Both CD4SP and CD8SP cells produced IL-5, IL-10and IL-13 at comparable levels, following priming in the presenceof rIL-4. Priming in the presence of rIL-12 strongly enhancedthe production of IFN- in both CD4SP and CD8SP cells. No correlationbetween expression of CD27, CD30 and CD60, and a particularcytokine profile of differentiated thymocytes could be demonstrated.Together, these results demonstrate the full capacity of fetalhuman thymocytes to differentiate into cytokine-producing Tcells in a priming milieu with appropriate stimulatory moleculesand exogenous cytokines. In addition, CD4SP thymocytes rapidlydifferentiate into polarized Th2 cells following stimulationin vitro in the absence of exogenous rIL-4.  相似文献   

18.
Experimental autoimmune encephalomyelitis (EAE) is a CD4(+) T cell-dependent, organ-specific autoimmune model commonly used to investigate mechanisms involved in the activation of autoreactive T(h)1 cells. Mitogen-activated protein kinases such as c-Jun N-terminal kinase (Jnk) 1 and 2 play an important role in the differentiation of naive precursors into T(h)1 or T(h)2 effector cells. To investigate the role of Jnk2 on autoimmunity, Jnk2(-/-) and wild-type mice were immunized with the myelin oligodendrocyte glycoprotein (MOG) 35-55 peptide and the onset of EAE studied. Surprisingly, Jnk2(-/-) mice were as susceptible to EAE as wild-type mice, regardless of whether low or high antigen doses were used to induce disease. In vitro stimulation of lymph node cells from Jnk2(-/-) and wild-type mice resulted in comparable proliferation in response to MOG35-55, Mycobacterium tuberculosis and concanavalin A. MOG35-55-specific T cells lacking Jnk2 showed a T(h)1 cytokine profile with IFN-gamma, but no IL-4 or IL-5 production. No differences in the types of infiltrating cells or myelin destruction in the central nervous system were found between Jnk2(-/-) and wild-type mice, indicating that lack of Jnk2 does not alter the effector phase of EAE. Our results suggest that, despite involvement in T(h)1/T(h)2 differentiation in vitro, Jnk2 is necessary neither for the induction nor effector phase of MOG35-55-induced EAE and nor is it required for antigen-specific IFN-gamma production.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号