首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Angiogenesis is increased in various human cancers, including head and neck squamous cell carcinoma (HNSCC), and correlates with tumor progression and metastasis. Vascular endothelial growth factor (VEGF) has been shown to be a key regulator of angiogenesis. We determined whether VEGF antisense oligonucleotide treatment can decrease angiogenic activity of HNSCC cell lines in vitro and of HNSCC xenografts in vivo. Established human HNSCC cell lines were screened for VEGF expression at both mRNA and protein levels. By using a 21-mer antisense phosphorothioate oligonucleotide targeting the translation start site of human VEGF mRNA, we examined modulation of VEGF expression in cell line supernatants by capture ELISA, and in cell lysates by Western blotting. Human umbilica vein endothelial cells (HUVEC) were grown in conditioned medium produced from the treated tumor cells. Endothelial cell (EC) proliferation was determined by cell count and EC migration was measured using a modified Boyden chamber. Mice with HNSCC xenografts were treated with PBS, VEGF antisense or sense oligonucleotides (10 mg/kg; i.p. injection), respectively and tumor volumes were measured for 5 weeks. VEGF antisense oligonucleotide treatment resulted in a significant reduction of VEGF protein expression compared to sense control. Although the growth rate of the tumor cell lines was not affected, addition of conditioned medium from VEGF antisense-treated tumor cells resulted in decrease of endothelial cell proliferation and migration. VEGF antisense oligonucleotide treatment of HNSCC xenografts resulted in a significant tumor growth suppression. These results suggest that downmodulation of VEGF using antisense oligonucleotides may be a potential therapy for the inhibition of angiogenesis in HNSCC.  相似文献   

5.
Nakazawa K  Nemoto T  Hata T  Seyama Y  Nagahara S  Sano A  Itoh H  Nagai Y  Kubota S 《Cancer》2007,109(5):993-1002
BACKGROUND: Substantial evidence supports a direct role of ornithine decarboxylase (ODC) in the development and maintenance of human tumors. Although antisense oligonucleotide therapy targeting various genes are useful for cancer treatment, 1 of the major limitations is the problem of delivery. A novel antisense oligonucleotide delivery method is described that allows prolonged sustainment and release of ODC antisense oligonucleotides in vivo using atelocollagen. METHODS: The effect of ODC antisense oligonucleotides in the atelocollagen on cell growth of gastrointestinal cancer (MKN 45 and COLO201) and rhabdomyosarcoma (RD) was studied in vitro using a cell-counting method with a hemocytometer. In vivo, the effect of intratumoral, intramuscular, and intraperitoneal single administration of ODC antisense oligonucleotides in the atelocollagen on tumor growth of MKN45, COLO201, and RD cells was studied. ODC activity and polyamine contents were measured. RESULTS: In vitro, ODC antisense oligonucleotides in the atelocollagen remarkably suppressed MKN45, COLO201, and RD cell growth. A single administration of antisense oligonucleotides in the atelocollagen via 3 routes remarkably suppressed the growth of MKN45, COLO201, and RD tumor over a period of 35-42 days. CONCLUSIONS: As various human cancers significantly express ODC, the results strongly suggest that this new antisense method may be of considerable value for treatment of human cancers.  相似文献   

6.
Mortality and morbidity of prostate cancer result from extracapsular invasion and metastasis. This tumor progression depends on active cell motility. Previous studies have shown that calpain-regulated rear detachment enabling forward locomotion is required for cell migration initiated by growth factor and adhesion receptors. Therefore, we asked whether calpain would be a target for limiting tumor progression, using as our model the PA DU-145 human prostate carcinoma cell line and a highly invasive subline, wild-type DU-145, derived from it. In vitro, the calpain-specific inhibitor CI-I (ALLN) and the preferential-but-less-specific inhibitor leupeptin decreased transmigration of both cell lines across a Matrigel barrier. These calpain inhibitors limited epidermal growth factor-induced motility but did not alter the growth rate of the tumor cells, as expected. Antisense down-regulation of the growth factor-activated calpain-2 (m-calpain) isoform also reduced transmigration and cell motility. These in vitro findings were then buttressed by in vivo studies, in which i.p. DU-145 tumor xenografts were treated with leupeptin. Tumor invasion into the diaphragm was reduced by leupeptin treatment for both the PA and wild-type DU-145 cells (from 1.7 to 0.78 for the parental line and 2.3 to 1.2 for the invasive derivative, respectively). Tumor cells of both types engineered to express calpain-2 antisense constructs also demonstrated a similar 50% reduced invasiveness in vivo. Finally, we found by gene expression survey of 53 human prostate tumors and 23 normal prostates that calpain was not up-regulated in relationship to invasiveness or metastatic activity, consistent with expectation from the biological role of this effector. Taken together, these results strongly suggest that epigenetic activation of calpain plays an important role in the invasion of human prostate cancer and that it can be targeted to reduce tumor progression.  相似文献   

7.
The receptor tyrosine kinase EphB4 and its ligand EphrinB2 play critical roles in blood vessel maturation, and are frequently overexpressed in a wide variety of cancers. We studied the aberrant expression and biological role of EphB4 in head and neck squamous cell carcinoma (HNSCC). We tested the effect of EphB4-specific siRNA and antisense oligonucleotides (AS-ODN) on cell growth, migration and invasion, and the effect of EphB4 AS-ODN on tumor growth in vivo. All HNSCC tumor samples express EphB4 and levels of expression correlate directly with higher stage and lymph node metastasis. Six of 7 (86%) HNSCC cell lines express EphB4, which is induced either by EGFR activation or by EPHB4 gene amplification. EphrinB2 was expressed in 65% tumors and 5 of 7 (71%) cell lines. EphB4 provides survival advantage to tumor cells in that EphB4 siRNA and AS-ODN significantly inhibit tumor cell viability, induce apoptosis, activate caspase-8, and sensitize cells to TRAIL-induced cell death. Furthermore, EphB4-specific AS-ODN significantly inhibits the growth of HNSCC tumor xenografts in vivo. Expression of EphB4 in HNSCC tumor cells confers survival and invasive properties, and thereby provides a strong rationale for targeting EphB4 as novel therapy for HNSCC.  相似文献   

8.
PURPOSE: The purpose of this study is to evaluate the role of the cell survival gene clusterin in radiation-induced cell death in human LNCaP and PC-3 prostate cancer models. Experimental Design: Radiation sensitivities were compared in parental and clusterin-overexpressing LNCaP cells and in PC-3 cells and tumors treated with antisense or mismatch clusterin oligonucleotides. RESULTS: Clusterin-overexpressing LNCaP cells were less sensitive to irradiation with significantly lower cell death rates (23% after 8 Gy) compared with parental LNCaP cells (50% after 8 Gy) 3 days after irradiation. Clusterin expression in PC-3 cells after radiation was found to be up-regulated in a dose-dependent manner in vitro by 70% up to 12 Gy and in vivo by 84% up to 30 Gy. Inhibition of clusterin expression in PC-3 cells using antisense oligonucleotides (ASOs) occurred in a sequence- and dose-dependent manner and significantly enhanced radiation-induced apoptosis and decreased PC-3 cell growth rate and plating efficiency. Compared with mismatch control oligonucleotide treatment, clusterin ASO treatment enhanced radiation therapy and significantly reduced PC-3 tumor volume in vivo by 50% at 9 weeks. In addition, TUNEL staining revealed increased number of apoptotic cells in clusterin ASO-treated and irradiated PC-3 tumors, compared with treatment with mismatch control oligonucleotides plus radiation. CONCLUSIONS: These findings support the hypothesis that clusterin acts as a cell survival protein that mediates radioresistance through the inhibition of apoptosis. In vivo results further suggest that inactivation of clusterin using ASO technology might offer a novel strategy to improve results of radiation therapy for prostate cancer patients.  相似文献   

9.
10.
Angiogenic potential of prostate carcinoma cells overexpressing bcl-2   总被引:9,自引:0,他引:9  
BACKGROUND: Tumors commonly outgrow their blood supply, thereby creating hypoxic conditions, which induce apoptosis and increase expression of angiogenic growth factors. The bcl-2 oncogene inhibits apoptosis induced by a variety of stimuli, including hypoxia. On the basis of bcl-2's role in regulating apoptosis in response to hypoxia, we hypothesized that this oncogene might affect other responses to hypoxia, such as the expression of angiogenic growth factors. METHODS: Three prostate carcinoma cell lines, PC3, LNCaP, and DU-145, were stably transfected with a bcl-2 complementary DNA (cDNA), and transfectants were analyzed in vitro for the expression of angiogenic factors after exposure to either normoxic (19% O(2)) or hypoxic (1% O(2)) conditions. The in vivo angiogenic potential of the transfected cells was determined by analyzing vessel density in xenografts derived from them and by measuring the ability of these xenografts to induce neovascularization when implanted in mouse corneal micropockets. Statistical tests were two-sided. RESULTS: When exposed to hypoxic conditions, prostate carcinoma cells overexpressing bcl-2 expressed statistically significantly higher levels of vascular endothelial growth factor (VEGF), an angiogenic factor, than control-transfected cells (P = .001 for PC3, P = .04 for DU-145 after 48 hours). This effect of bcl-2 was independent of its antiapoptotic activity because increased expression of VEGF was detected in PC3 cells overexpressing bcl-2 even though PC3 cells are inherently resistant to hypoxia-induced apoptosis. In vivo, xenograft tumors derived from the bcl-2-overexpressing prostate carcinoma cell lines displayed increased angiogenic potential and grew more aggressively than tumors derived from the control cell lines (P =.03 for PC3). Treatment of bcl-2-overexpressing and control tumors with the antiangiogenic drug TNP-470 neutralized the aggressive angiogenesis in bcl-2-overexpressing tumors (P = .04 for PC3, P = .004 for DU-145) and the moderate angiogenesis in control tumors (P = .01 for PC3, P = .05 for DU-145), resulting in similar growth rates for both tumors. CONCLUSIONS: bcl-2 may play a dual role in tumorigenesis by suppressing apoptosis and by stimulating angiogenesis.  相似文献   

11.
The accumulation of angiostatin-like fragments in human prostate carcinoma.   总被引:5,自引:0,他引:5  
PURPOSE: Angiostatin, a potent inhibitor of angiogenesis and, hence, the growth of tumor cell metastasis, is generated by a proteolytic enzyme from plasminogen. However, its localization and specific enzymes have yet to be ascertained in human tissue. EXPERIMENTAL DESIGN: To elucidate the generation and the localization of angiostatin in prostate carcinoma, we examined angiostatin generation in a panel of human prostate cancer cell lines and performed immunohistochemistry with the antibodies to angiostatin and prostate-specific antigen (PSA), a potent proteolytic enzyme of angiostatin in 55 cases of prostate carcinoma. RESULTS: We demonstrated that the lysates of human prostate carcinoma cell lines could generate angiostatin-like fragments from purified human plasminogen but could not generate angiostatin in the absence of exogenous plasminogen. The fragmented proteins were reacted with the monoclonal antibody specific for plasminogen lysine-binding site 1 (LBS-1). Immunohistochemically, the intracytoplasmic immunostaining of LBS-1 was positive in 87.3% (48 of 55) of prostate carcinoma cases, and the immunostaining of miniplasminogen was negative in all cases. There was a significant relationship between the positive immunostaining of LBS-1 and Gleason score (P = 0.0007). The intracytoplasmic immunostaining of PSA was positive in 37.0% (20 of 54) of prostate carcinoma cases, but there was no significant relationship between the expression of PSA and Gleason score, or between the positive immunostaining of LBS-1 and PSA. CONCLUSIONS: These findings suggest that angiostatin is generated by prostate carcinoma cells and is accumulated within the cytoplasm. In addition, the generation of angiostatin-like fragments was correlated with tumor grade; however, PSA may not be the only enzyme for angiostatin generation in human prostate carcinoma.  相似文献   

12.
RAF antisense oligonucleotide as a tumor radiosensitizer   总被引:1,自引:0,他引:1  
Kasid U  Dritschilo A 《Oncogene》2003,22(37):5876-5884
The RAF-1 serine-threonine kinase plays a central role in signal transduction pathways involved in cell survival and proliferation. The concept of RAF-1-targeted disruption of cell signaling for therapeutic purposes was first advanced in 1989 with the demonstration of tumor growth inhibition in athymic mice and radiosensitization of human squamous carcinoma cells transfected with a vector expressing antisense cDNA. However, the clinical application of antisense strategies has awaited the development of improved antisense oligonucleotide technologies and drug delivery methods. Nuclease-resistant phosphorothioated antisense oligonucleotides have been the focus of pharmaceutical industry attention. In vivo delivery of nuclease-sensitive, natural backbone/phosphodiester oligonucleotides has remained a formidable challenge. Liposomal encapsulation of antisense oligonucleotides protects them from degradation and enhances drug delivery. Here, we review the importance of targeting RAF-1 signaling in cancer therapy and the preclinical and clinical experiences with a liposomal formulation of a nuclease-sensitive, ends-modified antisense RAF oligonucleotide.  相似文献   

13.
14.
15.
Inhibition of focal adhesion kinase (FAK), a non-receptor tyrosine kinase linked to tumour cell survival, causes cell rounding, loss of adhesion and apoptosis in human cancer cell lines. In this study, we tested antisense oligonucleotide inhibitors of FAK, in combination with 5-fluorouracil (5-FU), to increase its sensitivity in human melanoma cell lines. Antisense oligonucleotides directed to the 5' mRNA sequence of FAK and missense control oligonucleotides were used. In BL melanoma cells, treatment with FAK antisense oligonucleotide was associated with a 2.5-fold increase in cell death compared with treatment with control oligonucleotide (33+/-2% vs. 13+/-3%, P<0.0001). 5-FU alone had no effect on BL cells (4.4% cell death, P=0.15). The addition of 5-FU after antisense oligonucleotide resulted in a significant synergistic increase in cell death equal to 69+/-2% compared with treatments with antisense oligonucleotide alone, 5-FU alone and control oligonucleotide (P<0.0001). Similar results were found in the C8161 melanoma cell line. In both cell lines, reduction in cell viability was accompanied by an increased loss of adhesion and increased apoptosis that was proportional to the decrease in viability. Treatment with antisense oligonucleotide plus 5-FU resulted in significantly decreased p125FAK expression in both C8161 and BL melanoma cell lines, demonstrated by Western blot analyses. These data show that the downregulation of FAK by antisense oligonucleotide combined with 5-FU chemotherapy results in a greater loss of adhesion and greater apoptosis in melanoma cells than treatment with either agent alone, suggesting that the combination may be a potential therapeutic agent for human melanoma in vivo.  相似文献   

16.
IGFBP-3 mediates TGF beta 1 proliferative response in colon cancer cells   总被引:3,自引:0,他引:3  
Many human tumor cells are resistant to growth inhibition by TGF beta 1. Resistance may be caused by mutations in TGFbeta receptors or in other components of the TGF beta signal transduction systems, or by knockout of the retinoblastoma (Rb) gene, which in fibroblasts converts cellular response to TGF beta 1 from growth inhibition to growth stimulation. Our earlier studies showed such a switch in response to TGF beta 1 occurred in 45% of colon cancers but without deletion of Rb. We now show that insulin-like growth factor binding protein 3 (IGFBP-3) mediates the TGF beta 1-induced proliferation of 3 metastatic or highly aggressive colon carcinoma cell lines. TGF beta 1 increases IGFBP-3 abundance while phosphorothiolated antisense oligonucleotides to IGFBP-3 block the growth-promoting effect of TGF beta 1 in each of 3 lines.IGFBP-3 induces carcinoma cell growth in a dose-dependent and time-dependent manner in vitro. IGFBP-3 may confer a selective growth advantage on tumor cells in vivo because levels of mature IGFBP-3 were elevated at least 2-fold in 7 of 10 resected colon cancers compared with adjacent normal tissue.  相似文献   

17.
Kim SG  Song JY 《Oncology reports》2012,28(2):539-544
The transforming growth factor-β1 (TGF-β1) signaling pathway is important in human oral squamous cell carcinoma (OSCC). Accordingly, the aims of this study were to evaluate the effect of antisense TGF-β1 oligonucleotides (ODNs) on OSCC in cell culture and in a xenograft model, as well as to evaluate any effects ODNs have on proliferating cell nuclear antigen (PCNA) and matrix metalloproteinase-2 (MMP-2) expression in the xenograft model. We performed real-time cell electronic sensing (RT-CES) to determine the effect of antisense TGF-β1 ODNs on SCC-9?cell growth. To examine the in?vivo effect of antisense TGF-β1 ODN therapy, SCC-9?cells were grafted into nude mice. Antisense ODNs were injected into the mass daily. Tumor size, body weight and duration of survival were assessed daily. Specimens from the main mass were used for immunohistochemical staining to analyze PCNA and MMP-2 expression. In?vitro treatment with antisense TGF-β1 ODNs decreased TGF-β1 expression and growth of SCC-9?cells. In the xenograft model, the antisense TGF-β1 ODN group exhibited a significantly decreased tumor growth rate compared to the control, which received Dulbecco's modified Eagle's medium (DMEM) (P=0.022). However, mean survival time and body weights were not significantly different between the groups (P>0.05). Immunohistochemistry showed that tumors from animals that received antisense TGF-β1 ODNs had significantly lower expression levels of PCNA and MMP-2 compared to tumors from animals in the DMEM group (P<0.05). In conclusion, antisense TGF-β1 ODN therapy significantly inhibits tumor growth compared to controls, however, there are no significant differences between groups with respect to changes in body weight.  相似文献   

18.
Heat shock protein 27 (Hsp27) is a chaperone implicated as an independent predictor of clinical outcome in prostate cancer. Our aim was to characterize changes in Hsp27 after androgen withdrawal and during androgen-independent progression in prostate xenografts and human prostate cancer to assess the functional significance of these changes using antisense inhibition of Hsp27. A tissue microarray was used to measure changes in Hsp27 protein expression in 232 specimens from hormone naive and posthormone-treated cancers. Hsp27 expression was low or absent in untreated human prostate cancers but increased beginning 4 weeks after androgen-ablation to become uniformly highly expressed in androgen-independent tumors. Androgen-independent human prostate cancer PC-3 cells express higher levels of Hsp27 mRNA in vitro and in vivo, compared with androgen-sensitive LNCaP cells. Phosphorothioate Hsp27 antisense oligonucleotides (ASOs) and small interference RNA potently inhibit Hsp27 expression, with increased caspase-3 cleavage and PC3 cell apoptosis and 87% decreased PC3 cell growth. Hsp27 ASO and small interference RNA also enhanced paclitaxel chemosensitivity in vitro, whereas in vivo, systemic administration of Hsp27 ASO in athymic mice decreased PC-3 tumor progression and also significantly enhanced paclitaxel chemosensitivity. These findings suggest that increased levels of Hsp27 after androgen withdrawal provide a cytoprotective role during development of androgen independence and that ASO-induced silencing can enhance apoptosis and delay tumor progression.  相似文献   

19.
The ERK pathway is typically associated with activation of the EGF receptor and has been shown to play a major role in promoting several tumor phenotypes. An analogous signaling module, the JNK pathway, has not been shown to be consistently activated by the EGF receptor but is instead more uniformly stimulated by cellular stresses and cytokines. The function of the JNK pathway in primary tumors is unclear as it has been implicated in both promoting apoptosis and cell growth in vitro, which may be a reflection of the cell lines chosen. Primary human brain tumors frequently show overexpression of the EGF receptor. To clarify the role of JNK in tumorigenesis, we have investigated the role of JNK in a large panel of primary human brain tumors and tumor derived cell lines. Here we present evidence that JNK has a major role in promoting tumorigenesis both in vivo and in vitro. Western blot analysis demonstrated that 86% (18 of 21) of primary brain tumors showed evidence of JNK activation but only 38% (8 of 21) showed evidence of ERK activation. Kinase assays revealed that 77% of brain tumor cell lines activated JNK in response to EGF (7 of 13) or had high levels of basal activity (3 of 13), whereas none of six normal cell lines analysed, including astrocytes, had these properties. Of several growth factors examined, EGF produced the highest level of JNK induction in tumor cell lines and the duration of activation was greater than that seen for ERK. Expression of a dominant-negative (dn) form of JNK potently inhibited EGF mediated anchorage independent growth and protection from cell death in two glial tumor cell lines. These findings demonstrate that enhanced JNK activation is frequently found in primary brain tumors and that this activation contributes to phenotypes related to transformation.  相似文献   

20.
PURPOSE: To show the efficacy of targeting EWS/FLI-1 expression with a combination of specific antisense oligonucleotides and rapamycin for the control of Ewing's sarcoma (EWS) cell proliferation in vitro and the treatment of mouse tumor xenografts in vivo. EXPERIMENTAL DESIGN: EWS cells were simultaneously exposed to EWS/FLI-1-specific antisense oligonucleotides and rapamycin for various time periods. After treatment, the following end points were monitored and evaluated: expression levels of the EWS/FLI-1 protein, cell proliferation, cell cycle distribution, apoptotic cell death, caspase activation, and tumor growth in EWS xenografts implanted in nude mice. RESULTS: Simultaneous exposure of EWS cells in culture to an EWS/FLI-1-targeted suppression therapy using specific antisense oligonucleotides and rapamycin resulted in the activation of a caspase-dependent apoptotic process that involved the restoration of the transforming growth factor-beta-induced proapoptotic pathway. In vivo, individual administration of either antisense oligonucleotides or rapamycin significantly delayed tumor development, and the combined treatment with antisense oligonucleotides and rapamycin caused a considerably stronger inhibition of tumor growth. CONCLUSIONS: Concurrent administration of EWS/FLI-1 antisense oligonucleotides and rapamycin efficiently induced the apoptotic death of EWS cells in culture through a process involving transforming growth factor-beta. In vivo experiments conclusively showed that the combined treatment with antisense oligonucleotides and rapamycin caused a significant inhibition of tumor growth in mice. These results provide proof of principle for further exploration of the potential of this combined therapeutic modality as a novel strategy for the treatment of tumors of the Ewing's sarcoma family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号