首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wu TW  Wang JM  Chen S  Brinton RD 《Neuroscience》2005,135(1):59-72
Our group and others have demonstrated that 17beta-estradiol (E2) induces neurotrophic and neuroprotective responses in hippocampal and cortical neurons which are dependent upon the Src/extracellular signal-regulated kinase (ERK) signaling pathways. The purpose of this study was to determine the upstream mechanism(s) that initiates the signaling cascade leading to E2-inducible neuroprotection. We tested the hypothesis that E2 activates rapid Ca(2+) influx in hippocampal neurons, which would lead to activation of the Src/ERK signaling cascade and up-regulation of Bcl-2 protein expression. Using fura-2 ratiometric Ca(2+) imaging, we demonstrated that E2 induced a rapid rise of intracellular Ca(2+) concentration ([Ca(2+)](i)) within minutes of exposure which was blocked by an L-type Ca(2+) channel antagonist. Inhibition of L-type Ca(2+) channels resulted in a loss of E2 activation of the Src/ERK cascade, activation of cyclic-AMP response element binding protein (CREB) and subsequent increase in Bcl-2. Real-time intracellular Ca(2+) imaging combined with pERK immunofluorescence, demonstrated that E2 induced [Ca(2+)](i) was coincident with ERK activation in the same neuron. Small interfering RNA knockdown of CREB resulted in a loss of E2 activation of CREB and subsequent E2-induced increase of Bcl-2 expression. We further demonstrated the presence of specific membrane E2 binding sites in hippocampal neurons. Together, these data indicate that E2-induced Ca(2+) influx via the L-type Ca(2+) channel is required for E2 activation of the Src/ERK/CREB/Bcl-2 signaling. Implications of these data for understanding estrogen action in brain and use of estrogen therapy for prevention of neurodegenerative disease are discussed.  相似文献   

2.
Metabotropic receptors modulate numerous cellular processes by intracellular Ca2+ signaling, but less is known about their role in regulating mitochondrial metabolic function within the CNS. In this study, we demonstrate in area CA3 of rat organotypic hippocampal slice cultures that glutamatergic, serotonergic, and muscarinic metabotropic receptor ligands, namely trans-azetidine-2,4-dicarboxylic acid, alpha-methyl-5-hydroxytryptamine, and carbachol, transiently increase mitochondrial Ca2+ concentration ([Ca2+]m) as recorded by changes in Rhod-2 fluorescence, stimulate mitochondrial oxidative metabolism as revealed by elevations in NAD(P)H fluorescence, and induce K+ outward currents as monitored by rapid increases in extracellular K+ concentration ([K+]o). Carbachol (1-1,000 microM) elevated NAD(P)H fluorescence by 相似文献   

3.
Staphylococcal alpha-toxin, a channel-forming protein, stimulates leukotriene B4 formation in rabbit polymorphonuclear leukocytes (PMN) (N. Suttorp, W. Seeger, J. Zucker-Reimann, L. Roka, and S. Bhakdi, Infect. Immun. 55:104-110, 1987). The concept was advanced that transmembrane toxin pores act as Ca2+ gates allowing passive Ca2+ influx into the cell, thus initiating stimulus response coupling. A critical step in this hypothesis is the demonstration of an increase in the cytosolic free Ca2+ concentration [( Ca2+]i). [Ca2+]i and membrane-associated Ca2+ were therefore monitored in quin-2- or chlorotetracycline-loaded PMN exposed to alpha-toxin. The effects of the Ca2+ ionophore ionomycin and the chemotactic tripeptide formylmethionyl-leucylphenylalanine (fMLP) were studied in parallel. All stimuli increased [Ca2+]i in dose- and time-dependent manner. In the presence of an EDTA excess there was a decrease of [Ca2+]i due to an efflux of Ca2+ in alpha-toxin- and ionomycin-treated cells, while addition of fMLP still induced an increase of [Ca2+]i. In the presence of verapamil, a Ca2+ channel blocker, [Ca2+]i was reduced after stimulation with fMLP but not with alpha-toxin or ionomycin. Addition of fMLP and ionomycin but not of alpha-toxin to PMN resulted in a rapid and substantial mobilization of membrane-associated Ca2+. The collective data demonstrate that exposure of PMN to staphylococcal alpha-toxin results in an increase in [Ca2+]i which is due to an influx of extracellular Ca2+ and not to a mobilization of intracellularly stored Ca2+. The concept of initiating stimulus response coupling by Ca2+ influx through transmembrane pores may be generally applicable to other channel-forming cytolysins.  相似文献   

4.
Ca2+ -induced Ca2+ -release (CICR) from ryanodine-sensitive Ca2+ stores provides a mechanism to amplify and propagate a transient increase in intracellular calcium concentration ([Ca2+]i). A subset of rat dorsal root ganglion neurons in culture exhibited regenerative CICR when sensitized by caffeine. [Ca2+]i oscillated in the maintained presence of 5 mM caffeine and 25 mM K+. Here, CICR oscillations were used to study the complex interplay between Ca2+ regulatory mechanisms at the cellular level. Oscillations depended on Ca2+ uptake and release from the endoplasmic reticulum (ER) and Ca2+ influx across the plasma membrane because cyclopiazonic acid, ryanodine, and removal of extracellular Ca2+ terminated oscillations. Increasing caffeine concentration decreased the threshold for action potential-evoked CICR and increased oscillation frequency. Mitochondria regulated CICR by providing ATP and buffering [Ca2+]i. Treatment with the ATP synthase inhibitor, oligomycin B, decreased oscillation frequency. When ATP concentration was held constant by recording in the whole cell patch-clamp configuration, oligomycin no longer affected oscillation frequency. Aerobically derived ATP modulated CICR by regulating the rate of Ca2+ sequestration by the ER Ca2+ pump. Neither CICR threshold nor Ca2+ clearance by the plasma membrane Ca2+ pump were affected by inhibition of aerobic metabolism. Uncoupling electron transport with carbonyl cyanide p-trifluoromethoxy-phenyl-hydrazone or inhibiting mitochondrial Na+/Ca2+ exchange with CGP37157 revealed that mitochondrial buffering of [Ca2+]i slowed oscillation frequency, decreased spike amplitude, and increased spike width. These findings illustrate the interdependence of energy metabolism and Ca2+ signaling that results from the complex interaction between the mitochondrion and the ER in sensory neurons.  相似文献   

5.
Human immunodeficiency virus type 1 (HIV-1) dementia is the commonest form of dementia in North American people less than 60 years of age. HIV-1 envelope glycoprotein gp120 has been implicated in the neurotoxicity observed in, and the pathogenesis of, HIV-1 dementia. Recombinant gp120 (gp120) was pressure-applied on to cultured human fetal neurons and astrocytes and, by using single-cell calcium imaging, we determined the mechanisms responsible for gp120-induced increases in the levels of intracellular calcium ([Ca2+]i). Significant dose-related increases in [Ca2+]i were observed in neurons and astrocytes. In neurons, 5 pM gp120 increased [Ca2+]i by 290+/-13 nM and increases of 2210+/-211 nM were found at 209 nM, the highest concentration of gp120 tested. The apparent EC50 value for gp120 of 223+/-40 pM in neurons was not significantly different from that in astrocytes. Immunoelution of gp120 with polyclonal anti-gp120 and Ca2+-free conditions blocked increases in [Ca2+]i by gp120. Increases in [Ca2+]i were significantly (P < 0.005) attenuated by the Na+/H+ exchange blocker 5-(N-methyl-N-isobutyl)-amiloride in neurons and astrocytes. The L-type calcium channel blockers nimodipine, diltiazem and CdCl2 + NiCl2 significantly (P < 0.005) reduced increases in [Ca2+]i in neurons, but not astrocytes. Increases in [Ca2+]i by gp120 were not significantly affected by blockers of N-, P- and Q-type calcium channels. The N-methyl-D-aspartate receptor antagonists (+/-)-2-amino-5-phosphonopentanoic acid (AP5), memantine and dizocilpine significantly (P < 0.01) lowered gp120-induced increases in [Ca2+]i in neurons. AP5 and memantine, but not dizocilpine, significantly (P < 0.01) reduced increases in [Ca2+]i by gp120 in astrocytes. Gp120 appears to activate astrocyte Na+/H+ exchangers to release glutamate and potassium and, subsequent to this, increases in [Ca2+]i in neurons and astrocytes result from activation of excitatory amino acid receptors on astrocytes and neurons, and voltage-operated calcium channels on neurons. Drugs that block gp120-induced changes in [Ca2+]i in neurons and astrocytes may help in the treatment of HIV-1 dementia.  相似文献   

6.
Rises in cytosolic Ca2+ induced by a high K+ concentration (30 or 60 mM) (K+-induced Ca2+ transient) were recorded by fluorimetry of Ca2+ indicators in cultured rabbit otic ganglion cells. When external Ca2+ ([Ca2+]o) was reduced to a micromolar (10-40 microM) or nanomolar (<10 nM) level prior to high-K+ treatment, K+-induced Ca2+ transients of considerable amplitude (50% of control) were generated in most cells, although those initiated at normal [Ca2+]o were reduced markedly or abolished by reducing [Ca2+]o during exposure to a high K+ concentration. Lowering [Ca2+]o alone occasionally caused a transient rise in cytosolic Ca2+. K+-induced Ca2+ transients at micromolar [Ca2+]o were repeatedly generated and propagated inwardly at a speed slower than that at normal [Ca2+]o, while those at nanomolar [Ca2+]o occurred only once. K+-induced Ca2+ transients at micromolar [Ca2+]o were not blocked by ryanodine (10 microM), carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP, 5 microM: at 20-22 degrees C but blocked at 31-34 degrees C) or thapsigargin (1-2 microM), but were blocked by Ni2+ (1 mM) or nicardipine (10 microM). Thus, there is a ryanodine-insensitive Ca2+-release mechanism in FCCP- and thapsigargin-insensitive Ca2+ stores in rabbit otic ganglion cells, which is primed by lowering [Ca2+]o and then activated by depolarization-induced Ca2+ entry. This Ca2+-induced Ca2+ release may operate when [Ca2+]o is decreased by intense neuronal activity.  相似文献   

7.
We analyzed mutant mice showing behavioral defects such as severe tremor, up-and-down and side-to-side wriggling of neck without coordination, and found that the gene causing the defects was located between 46 and 60.55 centimorgans (cM) on the mouse chromosome 6. In this region, nucleotide transition of the plasma membrane Ca2+-ATPase isoform 2 (PMCA2) gene was found, which caused a glutamic acid to change into lysine. Since PMCA2 is expressed in the cerebellum and plays an important role to maintain the homeostasis of the intracellular Ca2+ as a Ca2+ pump, the behavioral defect can be ascribed to the impairment of Ca2+ regulation in neurons of the cerebellum. To confirm the defect of Ca2+ homeostasis in the mutant mice, we measured high K+-induced changes in intracellular Ca2+ concentration ([Ca2+]i) in the cerebellar neurons. Contrary to our expectation, the extent of the [Ca2+]i increase in all the regions tested in the cerebellar slice was far smaller than that of the wild type mice, while the resting [Ca2+]i remained almost unaltered. The rate of rise in [Ca2+]i during high K+-induced depolarization was significantly reduced, and the extrusion rate of increased [Ca2+]i was also reduced. These results suggested that voltage-gated Ca2+ channels were down-regulated in the mutant mice in order to regulate [Ca2+]i toward the normal homeostasis. The behavioral defects may be ascribed to the down-regulated Ca2+ homeostasis since dynamic changes in [Ca2+]i are important for various neuronal functions.  相似文献   

8.
Agonist-induced platelet cytoplasmic Ca2+ concentrations ([Ca2+]i) in patients with congenital cyclo-oxygenase deficiency (A) and with impaired aggregation to A23187 (B) were measured with aequorin in the presence or absence of extracellular Ca2+. The influence of TMB-8 or ONO3708 on agonist-induced [Ca2+]i in those platelets was also investigated. In Patient 1, there was a single aequorin luminescence peak in response to arachidonate, which was a thromboxane A2(TXA2) independent Ca2+ influx. The luminescence peak due to the formation of TXA2 was not detectable. The A23187-induced [Ca2+] i was decreased in the presence of extracellular Ca2+, but was within normal limits in the absence of extracellular Ca2+. A thrombin or STA2-induced elevation of [Ca2+] i was always within normal limits under any conditions. These results suggest that cyclo-oxygenase activity (CO activity) contributes to the A23187-induced Ca2+ influx, but does not contribute to the Ca2+ release from intracellular stores, and that the thrombin or STA2-induced Ca2+ influx and release do not depend on the CO activity. In Patient 2, the time lag from the addition of A23187 to the aequorin luminescence peak was found both in the presence and absence of extracellular Ca2+, which was more obvious in the latter. This A23187-induced elevation of [Ca2+] i disappeared after treatment of the platelets with TMB-8 in the absence of extracellular Ca2+, which is rarely seen in normal platelets. The most striking finding was that the thrombin-induced rise in [Ca2+] i in the absence of extracellular Ca2+ was not detectable. These findings might be closely related to abnormal platelet function in this patient.  相似文献   

9.
Changes in free cytosolic calcium concentrations ([Ca2+]i) are thought to be important initiating events in the activation of T lymphocytes. Mitogen-induced increases in [Ca2+]i may result from net influx across the plasma membrane and/or release of Ca2+ from intracellular stores. In human T lymphocytes loaded with the fluorescent indicator indo-1, addition of phytohemagglutinin (PHA) or the anti-CD3 antibody UCHT-1 elicits a biphasic [Ca2+]i response. A major component of the initial transient peak was due to release from internal stores whereas the lower plateau phase was sustained by Ca2+ influx. Previous work suggested that Ca2+ influx is essential for interleukin 2 (IL 2) secretion and cell proliferation. To determine the relative effects of the initial and sustained phases of [Ca2+]i change, IL 2 secretion and cell proliferation, we introduced into the cell 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), a high affinity intracellular Ca2+ chelator which neither contributes to nor interferes with the fluorescence determinations of [Ca2+]i. In cells preloaded with BAPTA, both PHA and UCHT-1 antibody failed to elicit the transient [Ca2+]i overshoot. Only the plateau phase could be observed in the presence of extracellular Ca2+. In contrast, BAPTA-loaded cells were found to be fully functional when assessed for IL 2 receptor expression, IL 2 secretion and cell proliferation. Thus, the mitogen-induced, maximal but transient increase in [Ca2+]i, contributed to mainly by release of Ca2+ from internal stores, does not appear to be essential for these T cell responses.  相似文献   

10.
The origin of intracellular Ca2+ concentration ([Ca2+]i) transients stimulated by nicotinic (nAChR) and muscarinic (mAChR) receptor activation was investigated in fura-2-loaded neonatal rat intracardiac neurons. ACh evoked [Ca2+]i increases that were reduced to approximately 60% of control in the presence of either atropine (1 microM) or mecamylamine (3 microM) and to <20% in the presence of both antagonists. Removal of external Ca2+ reduced ACh-induced responses to 58% of control, which was unchanged in the presence of mecamylamine but reduced to 5% of control by atropine. The nAChR-induced [Ca2+]i response was reduced to 50% by 10 microM ryanodine, whereas the mAChR-induced response was unaffected by ryanodine, suggesting that Ca2+ release from ryanodine-sensitive Ca2+ stores may only contribute to the nAChR-induced [Ca2+]i responses. Perforated-patch whole cell recording at -60 mV shows that the rise in [Ca2+]i is concomitant with slow outward currents on mAChR activation and with rapid inward currents after nAChR activation. In conclusion, different signaling pathways mediate the rise in [Ca2+]i and membrane currents evoked by ACh binding to nicotinic and muscarinic receptors in rat intracardiac neurons.  相似文献   

11.
The ability of dextromethorphan (DXM) and phencyclidine (PCP) receptor ligands to attenuate increases in cytosolic free Ca2+ concentration ([Ca2+]i) evoked by N-methyl-D-aspartate (NMDA) and high extracellular [K+] was examined using the fluorescent dye Fura 2 in cultured rat hippocampal pyramidal neurons. The DXM receptor ligand caramiphen (40 microM) reduced K(+)-evoked rises in [Ca2+]i to a greater extent than NMDA-evoked rises; the reverse was true for the PCP receptor ligands ketamine (10-40 microM) and dextrorphan (10 microM). DXM itself, which has affinity for both DXM and PCP receptors, reduced both K(+)- and NMDA-evoked increases in [Ca2+]i in a concentration-dependent manner. The results suggest that DXM receptor ligands may at least in part exert their known anticonvulsant and neuroprotective effects by reducing Ca2+ influx through voltage-activated Ca2+ channels.  相似文献   

12.
Neurotrophic factors are a group of secreted proteins which generally regulate neurite outgrowth and synaptic development. SGP-1 has been reported as a neurotrophic factor, though little is known of its effect on neurite outgrowth, and it is unknown whether SGP-1 affects synaptic development. We report here that SGP-1 is distributed in vesicle-like puncta in somas and dendrites of primary neurons in culture, and that SGP-1 is secreted in culture and is taken up by endocytosis in dendrites. Endogenous extracellular activity of SGP-1 promotes dendritic, but not axonal outgrowth. Furthermore, endogenous activity of SGP-1 increases synaptogenesis in hippocampal neurons as determined by measuring the density and size of synaptophysin puncta and by determining the density of dendritic spines, their surface expression of GluR2 and their immunoreactivity for GluR1. The effect of SGP-1 on the amount of postsynaptic receptors in dendritic spines depends on synaptic activity and apparently on activation of MAPK, as inhibition of either of these abolished the affect. Hence, SGP-1 has neurotrophic effects, increasing dendritic growth and promoting synaptic development in an activity-dependent fashion.  相似文献   

13.
Thapsigargin (TG), a sesquiterpene lactone and non-phorbol 12-myristate 13-acetate tumor promoter, stimulates a rapid increase in intracellular free Ca2+ [( Ca2+]i) in human T lymphocytes clone P28. The [Ca2+]i response to TG is sustained in the presence of 1 mM extracellular Ca2+, while it becomes transient in Ca2(+)-free medium suggesting that TG activates both the release of Ca2+ from intracellular stores and the entry of Ca2+ from extracellular spaces. TG-induced Ca2+ influx is completely abolished after cell depolarization caused by increased extracellular concentrations of K+. The rise in [Ca2+]i stimulated by TG occurs in the absence of detectable production of inositol phosphates. Moreover, TG does not alter the early biochemical events of T cell activation triggered through the CD2 or the CD3 T cell antigens. Indeed, both inositol phosphate production and intracellular pH increase induced by specific monoclonal antibodies (mAb) remain unchanged after TG treatment. These data suggest that in human T lymphocytes TG releases Ca2+ from an intracellular pool by a mechanism which is independent of the phospholipase C metabolic pathway. Preincubation with TG of T cell clone P28 empties both the CD2 and the CD3-sensitive intracellular Ca2+ pool(s). Conversely, prestimulation of T cell clone P28 by CD3 or CD2-specific mAb inhibits the Ca2(+)-mobilizing effect of TG. Thus it appears that TG and CD2- or CD3-specific mAb mobilize Ca2+ from common Ca2+ pool(s). Taken together, these results demonstrate that Ca2+ influx in human T cells may be linked to mobilization of intracellular Ca2+ pools and by a mechanism independent of phosphoinositide hydrolysis. They further indicate that the release of intracellular Ca2+ pool(s) may play a major role in the opening of cell membrane Ca2+ channels observed during the CD2- or CD3-induced stimulation of human T lymphocytes.  相似文献   

14.
Anti-immunoglobulin antibodies (anti-Ig) provoke the rapid breakdown of phosphatidylinositol bisphosphate (PIP2), elevation of cytoplasmic Ca2+ levels ([Ca2+]i) and activation of protein kinase C (PKC) in B lymphocytes. Tumor-promoting phorbol esters, like phorbol myristate acetate, also activate PKC, but inhibit anti-Ig-induced B cell proliferation. To investigate the basis of the latter effect, we studied the influence of phorbol esters on PIP2 degradation and [Ca2+]i in murine B cells. The results show that PKC-activating phorbol esters cause marked inhibition of anti-Ig-stimulated PIP2 breakdown and Ca2+ mobilization. In addition, these agents inhibit concanavalin A-provoked Ca2+ influx, lower resting cytoplasmic Ca2+ levels and reduce ionophore-induced Ca2+ influx in B cells. Apparently, PKC stimulation causes feedback inhibition of receptor signalling, not only by suppressing PIP2 degradation, but also by exerting additional complex effects on the control of [Ca2+]i in B cells. It is, however, not clear how these findings relate to the anti-proliferative effects of phorbol esters on B cells.  相似文献   

15.
The relaxation effects of forskolin and methylxanthines on noradrenaline (NA)-induced contractions were investigated by measuring isotonic contraction and intracellular calcium concentration ([Ca2+]i) in the epididymal side of guinea-pig vas deferens. NA (100 microM) and high K+ (55 mM) induced a biphasic contraction; fast, transient (phasic) and slow, sustained (tonic) phases. Both phases in either NA or high K+ stimulation were abolished in Ca2+-free solution. Pretreatment with 10 microM nifedipine, an L-type Ca2+ channel blocker, reduced both phasic and tonic contractions induced by high K+. In the case of NA-induced contraction, however, nifedipine reduced the phasic contraction but not the tonic contraction. The nifedipine-insensitive tonic contraction was relaxed by the application of polyvalent cations (Mn2+, Co2+, Cd2+ and La3+). These findings indicate that NA-induced biphasic contraction is mainly due to nifedipine-insensitive Ca2+ influx, especially in the tonic phase. Cyclic AMP-increasing agents such as forskolin (0.5-10 microM), IBMX (5-500 microM) and caffeine (1-20 mM) relaxed the NA-induced contraction extensively in a concentration-dependent manner. However, these agents only partially relaxed the high K+-induced contraction. Forskolin (10 microM) and IBMX (100 microM) reduced the [Ca2+]i response to NA, but had no effect on the [Ca2+]i response to high K+. These results suggest that an increase in intracellular cAMP may relax the NA-induced contraction by attenuating a nifedipine-insensitive Ca2+ influx and by a mechanism independent of a reduction in [Ca2+]i.  相似文献   

16.
The ability of the neuroactive steroid pregnenolone sulfate to alter N-methyl-D-aspartate (NMDA) receptor-mediated elevations in intracellular Ca2+ ([Ca2+]i) was studied in cultured fetal rat hippocampal neurons using microspectrofluorimetry and the Ca2+ sensitive indicator fura-2. Pregnenolone sulfate (5-250 microM) caused a concentration-dependent and reversible potentiation of the rise (up to approximately 800%) in [Ca2+]i induced by NMDA. In contrast, the steroid failed to alter basal (unstimulated) [Ca2+]i or to modify the rise in [Ca2+]i that occurs when hippocampal neurons are depolarized by high K+ in the presence of the NMDA receptor antagonist CPP. These data suggest that the previously reported excitatory properties of pregnenolone sulfate may be due, in part, to an augmentation of the action of glutamic acid at the NMDA receptor.  相似文献   

17.
Intracellular Ca2+ is influenced by both Ca2+ influx and release. We examined intracellular Ca2+ following action potential firing in the bag cell neurons of Aplysia californica. Following brief synaptic input, these neuroendocrine cells undergo an afterdischarge, resulting in elevated Ca2+ and the secretion of neuropeptides to initiate reproduction. Cultured bag cell neurons were injected with the Ca2+ indicator, fura-PE3, and subjected to simultaneous imaging and electrophysiology. Delivery of a 5-Hz, 1-min train of action potentials (mimicking the fast phase of the afterdischarge) produced a Ca2+ rise that markedly outlasted the initial influx, consistent with Ca2+-induced Ca2+ release (CICR). This response was attenuated by about half with ryanodine or depletion of the endoplasmic reticulum (ER) by cyclopiazonic acid. However, depletion of the mitochondria, with carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone, essentially eliminated CICR. Dual depletion of the ER and mitochondria did not reduce CICR further than depletion of the mitochondria alone. Moreover, tetraphenylphosphonium, a blocker of mitochondrial Ca2+ release, largely prevented CICR. The Ca2+ elevation during and subsequent to a stimulus mimicking the full afterdischarge was prominent and enhanced by protein kinase C activation. Traditionally, the ER is seen as the primary Ca2+ source for CICR. However, bag cell neuron CICR represents a departure from this view in that it relies on store interaction, where Ca2+ released from the mitochondria may in turn liberate Ca2+ from the ER. This unique form of CICR may be used by both bag cell neurons, and other neurons, to initiate secretion, activate channels, or induce gene expression.  相似文献   

18.
The effects of antibodies against immunoglobulin delta-heavy chains (anti-delta) on intracellular free Ca2+ concentrations, [Ca2+]i, and 86Rb+ influx in human neoplastic B-cells were tested in vitro. When preloading the cells with high concentrations of the fluorescent Ca2+ chelator quin 2 and subsequently stimulating in EGTA medium, the anti-delta induced rise in [Ca2+]i was strongly reduced or blocked. Nevertheless, 86Rb+ influx, also induced by anti-delta, was potentiated. In fact, in a population of cells in which anti-delta increased [Ca2+]i, but not 86Rb+ influx under standard conditions, the combination of quin-2 preloading and subsequent extracellular Ca2+ chelation by EGTA revealed an anti-delta induced 86Rb+ influx. Most of this influx was ouabain resistant, suggesting only a minor contribution from the Na+/K+ pump. Based on the Ca2+ buffer effect of quin 2 we suggest that the Ca2+ effect on 86Rb+ (K+ analogue) permeability is not mediated by increased [Ca2+]i but rather by the Ca2+ release per se from the plasma membrane.  相似文献   

19.
We investigated the relationship between tension development and the cytosolic free Ca2+ level ([Ca2+]i) in responses to norepinephrine (NE) and selective alpha2-adrenoceptor agonist, UK14,304 of the endothelium-denuded rat aorta loaded with fura PE-3. NE (3 x 10(-8) M) evoked a rapid increase in [Ca2+]i followed by slight decreasing to a steady state level and produced a contraction. After the NE-induced increase in [Ca2+]i had reached a maximum, the [Ca2+]i showed persistent oscillations. The Ca2+ oscillations were superimposed on the sustained increase in [Ca2+]i. UK14,304 (3 x 10(-6) M) also evoked an increase in [Ca2+]i and produced a contraction. However, the UK14,304-induced effect on [Ca2+]i was characterized by pronounced oscillations, and the amplitude of the sustained increase in [Ca2+]i was less than that seen with NE. Protein kinase C inhibitor, Ro31-8220 (3 x 10(-6) M) and verapamil (10(-5) M) abolished both NE and UK14,304-evoked Ca2+ oscillations. UK14,304-induced contractions were also strongly inhibited by Ro31-8220 and verapamil. However, NE induced contractions were partly inhibited by these inhibitors. The sustained increases in [Ca2+]i evoked NE and UK14,304 were not significantly inhibited by Ro31-8220 and verapamil. These results suggest that NE and UK14,304 produce Ca2+ oscillations during sustained contractions in rat aorta. The alpha2 adrenoceptor agonist, UK14,304-induced sustained contraction and Ca2+ oscillations may be due to PKC activation and opening of voltage-dependent L type Ca2+ channels.  相似文献   

20.
The neutrophil NADPH-oxidase may be activated in the plasma membrane, resulting in release of oxygen metabolites extracellularly, or in the granule or phagosomal membranes, giving intracellular production of oxidants. An increase in [Ca2+]i mediated through binding of fMLF to its receptor is part of a signaling cascade that activates the plasma membrane-localized oxidase. In contrast, a rise in [Ca2+]i induced by a Ca2+ ionophore results in activation of the intracellular pool of oxidase. We mimicked fMLF-induced emptying of intracellular Ca2+ stores with thapsigargin. This induced a pronounced intracellular oxidase activity but no extracellular release of oxidants. The thapsigargin-induced effect was dependent on capacitative Ca2+ influx, because the effect was inhibited dose-dependently by EGTA and the Ca2+ channel blocker La3+. At La3+ concentrations between 200 and 400 microM, thapsigargin also induced a massive extracellular production of superoxide anion. No other channel blockers tested induced a similar effect. We conclude that elevation in [Ca2+]i by capacitative Ca2+ influx induces NADPH-oxidase activation at an intracellular site. Further, activation of the plasma membrane-localized NADPH-oxidase is regulated by a more complex Ca2+ signaling, involving capacitative Ca2+ influx and possibly the specific action of La3+-sensitive Ca2+ channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号